Что такое отрыв пламени. Эксплуатация газовых горелок котельных установок


При горении газовоздушных смесей в ламинарном потоке устойчивой частью конусного фронта пламени является только его нижняя периферийная часть, прилегающая к кромке огневого канала горелки. Объясняется это тем, что в этом месте фронт пламени за счет тормозящего действия стенки канала развернут по горизонтали. стабилизация конусного фронта горения обусловливается наличием постоянного источника зажигания в виде кольцевого пояска, без которого остальная часть фронта была бы снесена потоком газовоздушной смеси. При повышении форсировки горелки, т. е. при переходе ламинарного режима движения в турбулентный, ширина зажигающего пояска начинает уменьшаться, пока не станет ничтожно малой. В этом случае устойчивость фронта горения нарушается, и пламя начинает отрываться от кромки горелки. Наоборот, при чрезмерном снижении форсировки горелки скорость распространения пламени в кольцевой пристенной области может превышать скорость потока, и пламя начинает втягиваться внутрь сместителя горелки. Первый случай получил название отрыва пламени, а второй - проскока, или обратного удара пламени.

В практике при отрыве пламени наблюдаются следующие явления:

Срыв пламени с горелки, вызывающий его погасание;

Отрыв от кромки огневого канала, когда пламя достигает нового достаточно устойчивого положения в потоке над горелкой;

Срыв поднятого пламени, ведущий к его погасанию;

Обратный отброс приподнятого факела к кромке огневого канала горелки;

Создание взвешенного пламени при движении струи на некотором расстоянии от горелки.

Пределы устойчивой работы горелок ограничиваются скоростью отрыва и скоростью проскока пламени. Для расширения диапазона устойчивости горения любых горючих газовоздушных смесей скорость потока принимается в несколько раз большей скорости отрыва. Предотвращение отрыва пламени в этих случаях достигается различными искусственными стабилизаторами. Стабилизатор представляет собой оголовок инжекционной горелки, в котором часть горючей смеси (5-10 %) проходит через боковые отверстия 1 в канал 2, где возникает спокойное кольцевое пламя, окружающее основной поток .

Рис. 6.1 Схемы стабилизаторов горения в отношении отрыва пламени: а - кольцевой стабилизатор; б - стабилизатор в виде цилиндрического туннеля; в - стабилизатор в виде осесимметричного тела; г - стабилизатор в виде шамотной наброски; 1 - боковые отверстия; 2 - канал.

Стабилизирующее действие этого устройства основано на рециркуляции части раскаленных продуктов горения к корню струи, возникающей за счет создаваемого струёй разрежения. Конструкции стабилизирующих туннелей и их оптимальные размеры могут быть различны в зависимости от типа горелок и способов их установки в топках. В тех случаях, когда установка кольцевых и туннельных стабилизаторов горения нецелесообразна или неудобна, применяются U-образные стабилизаторы, размещаемые в центральной части потока газовоздушной смеси. В качестве простейших стабилизаторов, создающих обратные токи продуктов горения, применяются также стержни, размещаемые поперек потока смеси. В отдельных случаях для стабилизации горения используются шамотные наброски (горки), размещенные в непосредственной близости от кратера горелки .

Проскок пламени начинается по краям горелки, так как скорость потока у краев, вследствие тормозящего воздействия стенок, минимальна. Проскок пламени может произойти вследствие изменения концентраций СН4 и О2 или увеличения скорости горения смеси при повышении ее температуры. Проскоки пламени наблюдаются при скоростях выхода смеси, значительно превышающих нормальную скорость распространения пламени, что свидетельствует о значительном искривлении фронта пламени и большой его поверхности при проскоке. Проскок пламени возникает в том случае, если скорость распространения пламени в среде газо-воздушной смеси до каким-либо причинам становится больше скорости движения самой газо-воздушной смеси через выходное отверстие горелки. Скорость распространения пламени в газо-воздушной смеси, достигающая при комнатной температуре 64 еле / сек, зависит от различных факторов. Чаще всего проскок происходит при повышении содержания воздуха в смеси. В этом случае следует закрыть газовый кран, чтобы потушить пламя, и затем отрегулировать горелку так, чтобы уменьшить доступ воздуха или соответственно увеличить приток газа. Проскок пламени внутрь горелки имеет место, когда скорость распространения пламени больше скорости истечения горючей смеси. Проскоки пламени характерны для инжекционных горелок как низкого, так и среднего давления, исключая горелки с пластинчатыми стабилизаторами. При работе исправных смесительных горелок проскоков пламени не бывает. Проскок пламени начинается по краям горелки, так как скорость потока у краев, вследствие тормозящего воздействия стенок, минимальна. Лучшей гарантией, предотвращающей проскок пламени внутрь горелки, является снижение диаметров горелочных отверстий до критических размеров и ниже их. Проскок пламени внутрь горелки несколько ослабляется охлаждающим действием мундштука, уменьшающим скорость распространения пламени в непосредственной близости от стенок выходных сопел. Однако дополнительные устройства для охлаждения горелки проточной водой усложняют ее конструкцию и эксплуатацию, увеличивают вес горелки, создают неудобства в работе и снижают эффективную мощность пламени. Проскок пламени происходит, наоборот, при резком понижении давления газа. Проскок пламени наблюдается в неэкономичных горелках при содержании воздуха в газе 87 - 95 % объемн. Проскок пламени недопустим, так как приводит к истечению из горелки несгоревшего газа или продуктов незавершенного горения, а также перегреву горелки. Проскок пламени возникает в том случае, если скорость распространения пламени в среде газо-воздушной смеси по каким-либо причинам становится больше скорости движения самой газовоздушной смеси через выходное отверстие горелки. Скорость распространения пламени в газо-воздушной смеси, достигающая при комнатной температуре до 64 см в секунду, зависит от различных факторов. Проскок пламени в смеситель является существенным недостатком горелок предварительного смешения, ограничивающим их производительность и уровень подогрева дутья, так как при этом горелка может быть разрушена.

а) Проскок пламени (обратный удар) – это проникновение пламени внутрь горелки. Такое явление происходит в том случае, когда скорость истечения газовоздушной смеси из горелки меньше скорости распространения пламени. Чаще всего проскок происходит при неправильном зажигании и выключении горелки, а также при быстром снижении ее производительности. Проскок пламени может быть только у горелок с предварительным смешением газа и воздуха.

б) Метод борьбы: охлаждение туннеля горелки.

Причины проскока и отрыва пламени.

Причины проскока пламени в горелку – понижение давление газа или воздуха, уменьшение производительности горелки ниже значений, указанных в паспорте

Причины отрыва пламени от горелки – резкое повышение давления газа или воздуха, нарушение соотношения расходов газ - воздух, резкое увеличение разрежения на выходе из топки, увеличение производительности горелки выше значений, указанных в паспорте.

Типы стабилизаторов пламени.

а) Стабилизаторы газового пламени. Наиболее распространенными стабилизаторами пламени являются туннели конической и цилиндрической формы, применяемые при установке горелок различных типов. В туннелях стабилизацию пламени обеспечивают высокая температура и большая излучающая способность поверхности туннеля. Кроме того, в туннелях создаются зоны обратных токов (рециркуляции) или завихрений части продуктов горения, имеющих высокую температуру и способствующих воспламенению вытекающей из горелки газовоздушной смеси.

б) Газовые котлы отопления

Экологические проблемы при горении газов и других видов топлива.

В газовых выбросах присутствуют оксиды азота и серы. При растворении в атмосферном воздухе образуются кислотные осадки, что приводит к подкислению снежного и почвенного покрова, выпадению нитратов и сульфатов.

Что касается вредных влияний на почву, совокупная площадь нарушенных почв от воздействия выбросов горящих факелов составляет около 100 тыс. га. Вблизи факелов при воздействии высоких температур происходит практически полное выжигание.

Для лесных экосистем наиболее характерны такие негативные последствия, как сокращение лесов, повышение риска пожаров лесов вблизи факелов, снижение численности животных, насекомых и микроорганизмов.

Образование сажи и оксида углерода при горении.

Оксид углерода содержится в продуктах сгорания из перечисленных веществ в наибольшем количестве. Схема образования и выгорания СО имеет следующий характер: на начальном участке выгорания идёт накопление СО, а затем его окисление по длине факела или камеры сгорания. Высокие концентрации СО сохраняются, если происходит «замораживание» продуктов сгорания, т.е. быстрое охлаждение в результате расширения или соприкосновения с относительно холодными поверхностями теплообмена.

(В атмосфере оксид углерода окисляется до диоксида.)

Сажа обнаруживается в продуктах сгорания углеводородных газов при низком качестве смесеобразования и при значительном недостатке кислорода в зоне горения, а также вследствие резкого локального охлаждения пламени. Причина образования сажи заключается в том, что под воздействием высокой температуры углеводородные молекулы полностью разрушаются. Более лёгкие атомы водорода диффундируют в богатый кислородный слой и окисляются. А атомы углерода образуют аморфные частицы сажи.

Образование оксидов азота при сжигании газов.

Оксиды азота образуются в промышленных печах при высоких температурах 1800-2000 °С. Обычно концентрация оксида NO при выходе из дымовой трубы превышает в 1000-20000 раз ПДК. После выхода из дымовой трубы оксид азота переходит в диоксид NO 2 по двум реакциям:

1 В корне дымового факела протекает окисление кислородом

2NO + O 2 = 2NO 2

2 При низких концентрациях окисление идет за счет атмосферного воздуха

NO + O 3 = NO 2 + O 2 .

39. Тепловой механизм Я.Б. Зельдовича образования NO при горении

Высокотемпературный механизм окисления азота в зоне горения был предложен Я. Б. Зельдовичем в середине 1940-х годов и считается основным механизмом образования оксидов азота при горении. Этот механизм включает следующие элементарные стадии:

к которым добавляется реакция (Фенимор и Джонс, 1957):

Совокупность реакций (1-3) называется расширенным механизмом Зельдовича. В силу того что энергия тройной связи в молекуле N 2 составляет около 950 кДж/моль, реакция (1) имеет большую энергию активации и может проходить с заметной скоростью только при высоких температурах. Поэтому этот механизм играет важную роль в случае высоких температур в зоне реакции, например, при горении околостехиометрических смесей или при диффузионном горении. Считается, что повышение максимальной температуры в зоне горения свыше 1850 К приводит к недопустимо высоким выбросам NO x , и одним из основных способов снижения выбросов по тепловому механизму является недопущение образования очагов высокой температуры во фронте пламени.

Образование канцерогенных ПАУ при горении.

Полициклические ароматические углеводороды – нежелательный побочный продукт сжигания ископаемого топлива, в первую очередь угля и нефтепродуктов. Уголь считается смесью огромного количества поликонденсированных ароматических бензольных ядер с минимальным содержанием водорода. При сжигании этих веществ в печах, электростанциях, двигателях внутреннего сгорания эти соединения разлагаются. При низких температурах сгорания и недостаточном поступлении атмосферного кислорода образуется очень реактивный ацетилен, равно как и различные алифатические фрагменты углеводородов. Ацетилен полимеризуется в бутадиен, который в дальнейшем образует ядро ароматического углеводорода. При добавлении его к существующим ароматическим ядрам возникает ПАУ, например пирен, из которого путем добавления еще одной молекулы бутадиена выделяется наиболее известный канцероген – бензо[а]пирен (БаП). При сжигании при высокой температуре и обильном поступлении атмосферного кислорода образуется мало ПАУ, потому что практически весь углерод сгорает, превращаясь в оксид углерода.

При неполном сгорании возникают частички углерода – сажа. Можно предположить, что образующиеся ПАУ, адсорбированные на поверхности частичек сажи и дыма, вместе с ними попадают в окружающую нас среду. Сажа, твердые частички дыма и выхлопных газов содержатся в дорожной пыли, смоге больших городов, пыльном воздухе коксовых заводов. Вместе с пылью они попадают на одежду, кожу, в дыхательные пути. Сегодня известно уже несколько сот различных полициклических ароматических веществ: несколько десятков из них – канцерогены. Однако их действие неодинаково и зависит от строения соответствующего вещества.

1.Проскок и отрыв пламени в горелках. Причины и последствия этого явления. Проскок пламени в горелку - горение топлива непосредственно в горелке.Последствия - образуются продукты неполного сгорания топлива, горелка раскаляется и может выйти из строя.Причины проскока пламени в горелку – понижение давление газа или воздуха, уменьшение производительности горелки ниже значений, указанных в паспорте.Отрыв пламени от горелки – это перемещение пламени в направлении движения газовоздушной смеси, сопровождается погасанием пламени. Последствия - приводит к наполнению топки газовоздушной смесью, а затем к хлопку или взрыву.Причины отрыва пламени от горелки – резкое повышение давления газа или воздуха, нарушение соотношения расходов газ - воздух, резкое увеличение разрежения на выходе из топки, увеличение производительности горелки выше значений, указанных в паспорте.

2.Взрывной предохранительный клапан, его назначение. Предохраняет обмуровку, и каркас от разрушений при взрыве газо-воздушной смеси в топке, газоходах и борове, т. е. там, где возможно образование газовоздушных мешков Конструкция может быть различной.Представляет собой круглые или квадратные рамки, перекрытые листом асбеста, толщиной 2-2,5 мм асбеста и армированные медной сеткой, с откидной дверцей на петлях. При взрыве сначала разрывается асбест, а затем открывается дверца над асбестом., давление снижается, уменьшается опасность разрушения, после выхода газа. Необходимо ежедневное наблюдение оператором за клапаном (герметичность, отсутствие подсоса воздуха). При выполнении взрывного предохранительного клапана из асбеста необходимо следить за его целостностью, так как вследствие пульсаций в топке возможен его разрыв и повышенный присос холодного воздуха. При выполнении взрывного предохранительного клапана в виде откидывающихся дверей необходимо проверять плотность прилегания клапана к раме.Требования к взрывным предохранительным клапанам:Число, расположение, размеры для паровых и водогрейных котлов определяет проектная организация..Следует их предусматривать в верхней части топки и дымоходов, газоходах и где возможно скопление газов.Должны предусматриваться защитные устройства, на случай срабатывания взрыв. клапан.

3.Режимная карта котла, её назначение. Для обеспечения безопасного и экономичного сжигания топлива с минимальным коэффициентом избытка воздуха и устойчивого теплового режима котла, на каждый котёл составляется режимная карта пусконаладочной организацией, после испытания котла на разных режимах горения для получения разной производительности. Режимная карта является основным оперативным документом, в соответствии с которым регулируется работа котла при изменениях его нагрузки. Режимная карта, как правило, составляется на несколько режимов. Каждый режим имеет строгую зависимость между параметрами (давлением топлива, воздуха, разрежения в топке и др).При работе на котле, надо строго придерживаться режимов горения, указанных в режимной карте.Режимные карты должны быть вывешены у агрегатов и доведены до персонала. Пуско-наладочная организация выдаёт режимные карты, и они утверждаются главным инженером предприятия. Раз в три года, при работе на газе, должна составляться новая режимная карта. При работе на мазуте – 1 раз в 5 лет. Режимная карта должна уточняться после ремонта оборудования.


4.Ручной розжиг инжекционных горелок. Растопка котла производятся только по распоряжению начальника котельной или лица, его заменяющего, записанного в вахтенном журнале. Растопка котла должна производиться в течение времени, установленного администрацией предприятия (производственной инструкцией по безопасному обслуживанию котельных агрегатов), при слабом огне, уменьшенной тяге. Непосредственно перед розжигом включают вначале дымосос, а затем вентилятор и вентилируют топку, газоходы и воздуховоды согласно производственной инструкции,если время в инструкции не указано,то не менее 10- 15 мин.Окончание вентиляции топки и дымохода, определяют взятием пробы на наличие газа с помощью газоиндикатора, с верхней части топочного пространства. Отрегулировать тягу растапливаемого котла. По приборам КиП проверяют давление газа, разрежение в топке, они должны соответствовать режимной карте. После проверки закрытия кранов перед горелками открывают регуляторы первичного воздуха, проверяют давление газа перед кранами горелок, открывают газовый кран перед переносным запальником, который зажженным вводит в топку, подводя пламя к выходному отверстию горелки. Затем открывают кран перед горелкой (примерно наполовину) до появления ясно слышимого шума от истечения газа, который и должен загореться.В процессе регулирования инжекционной горелки надо следить, чтобы пламя не проскакивало в горелку, особенно при снижении ее нагрузки. В этом случае горелку выключают и после остывания ее снова включают в работу. При появлении сильных пульсаций в топке уменьшают подачу газа. Если розжиг не удачен, то снова вентилируем топку, проверяем герметичность котловой задвижки и выполняем розжиг горелки. Если розжиг удачный то: делается запись в журнале о времени растопки котла.

5.Предъявляемые требования к противогазу. Каждый участвующий в газоопасных работах должен иметь подготовленный к работе шланговый или кислородно-изолирующий противогаз. Применение фильтрующих противогазов не допускается. Разрешение на включение кислородно-изолирующих противогазов дает руководитель работ.При работе в кислородно-изолирующем противогазе необходимо следить за остаточным давлением кислорода в баллоне противогаза, обеспечивающем возвращение работающего в незагазованную зону. Продолжительность работы в противогазе без перерыва не должна превышать 30 мин. Время работы в кислородно-изолирующем противогазе следует записывать в его паспорт. Воздухозаборные патрубки шланговых противогазов должны располагаться с наветренной стороны и закрепляться. При отсутствии принудительной подачи воздуха вентилятором длина шланга не должна превышать 15 м. Шланг не должен иметь перегибов и защемлений. Противогазы проверяют на герметичность перед выполнением работ зажатием конца гофрированной дыхательной трубки. В подобранном правильно противогазе невозможно дышать.

Сжигание газа производится в газовых горелках. В зоне горения, при устойчивом пламени, устанавливается динамическое равновесие между стремлением пламени продвинуться навстречу движению газовоздушной смеси и стремлением потока продвинуть пламя от устья горелки в топку.

Отрыв и проскок пламени в горелку являются пределами устойчивости работы горелок. Перемещение фронта пламени в направлении движения, полное отделение пламени от горелки и последующее его погасание можно наблюдать при большой скорости движения газовоздушной смеси. Это явление называется отрывом пламени. Если уменьшается подача и скорость выхода газовоздушной смеси нарушается стабильное горение, в результате чего пламя начинает втягиваться в горелку. При горении газовоздушной смеси внутри горелки, может произойти проскок пламени.

Необходимо для поддержания устойчивого горения обеспечивать необходимое соотношение между скоростями распространения пламени и поступления газовоздушной смеси к месту ее горения. Также большое влияние на устойчивость пламени имеет соотношение объемов газа и воздуха в газовоздушной смеси, чем больше газа, тем устойчивее будет пламя.

Если пламя проскакивает, горение газа происходит внутри горелки, что приводит к неполному сгоранию газа и образованию оксида углерода или даже погасанию пламени. Если горение газа происходит внутри горелки, горелка раскаляется и может выйти из строя. А при отрывном пламени газовоздушная смесь поступает в окружающее пространство, а это может привести к взрыву газовоздушной смеси. Очень важно обеспечить стабильное горение газа, чтобы создать условия его безопасного использования.

Устойчивость пламени газовоздушной смеси обеспечивается по средствам специальных устройств. Для удержания устойчивого пламени необходимо придерживаться таких условий:

- поддержание скорости выхода газовоздушной смеси в безопасных пределах;

- поддержание температуры в зоне горения не ниже температуры воспламенения газовоздушной смеси.

При попадании вместо газовоздушной смеси в горелку чистого газа пламя будет наиболее устойчиво, потому что в чистом газе пламя не распространяется и проскок пламени не возникает. При резком увеличении скорости выхода газа есть вероятность отрыва пламени, но это менее вероятно, чем при подаче газовоздушной смеси. Регулировать расход чистого газа в горелке можно в достаточно широких пределах.

При подаче газовоздушной смеси, с содержанием воздуха 50-60 % от теоретически необходимого для полного сжигания газа, обеспечивается горение менее устойчивое. Заранее подготовленные газовоздушные смеси для полного сжигания газа обеспечивают наименьшее горение пламени. Чем меньше воздуха содержится в газовоздушной смеси, тем устойчивее процесс его сгорания.

Добить стабилизации пламени, при сжигании полностью подготовленной газовоздушной смеси, можно с помощью специальных устройств (рис. 1).

Например, проскок пламени предотвращается, если сузить выходное отверстие для газовоздушной смеси, при этом увеличивающаяся скорость выхода смеси не позволяет произойти проскоку. Пламя не распространяется через узкие щели плоской стабилизирующей решетки (рис. 1, г), из-за быстрого охлаждения в них газовоздушной смеси. Предотвратить проскок пламени в горелку можно с помощью выходного отверстия в виде мелкой решетки. При охлаждении выходного отверстия носика горелки можно снизить вероятность проскока пламени, скорость распространения пламени в этом месте снижается, и температура смеси становится ниже температуры воспламенения.

С помощью установки различных устройств предотвращают отрыв пламени от горелки. Например, у устья горелки помещают небольшую дежурную горелку с устойчивым факелом для постоянного поджигания выходящей из горелки газовоздушной смеси, либо на поду печи выполняют горку из битого огнеупорного кирпича (рис. 1, в).

Широко используются при стабилизации горения огнеупорные тоннели. Газовоздушная смесь поступает из кратера горелки в цилиндрический тоннель (рис. 1, а, б) диаметр которого в 2-3 раза больше диаметра кратера горелки. Резкое расширении тоннеля вокруг корневой части факела создается разрежение, и вызывает обратное движение части раскаленных продуктов горения. За счет этого температура газовоздушной смеси в корне факела повышается и обеспечивается устойчивая зона зажигания. Такой же эффект достигается при размещении на выходе из горелки плохо обтекаемого тела (рассекающий стабилизатор (рис.1, в).