Температура теплоносителя в зависимости от наружной температуры. Указание «Указания по контролю за режимом работы тепловых сетей На режим работы тепловых сетей влияет


Температурный график определяет режим работы тепловых сетей, обеспечивая центральное регулирование отпуска тепла. По данным температурного графика определяется температура подающей и обратной воды в тепловых сетях, а также в абонентском вводе в зависимости от температуры наружного воздуха.

Применяемый в г. Москве график 150/70°С (см. графы 2 и 3 таблицы) позволят передавать тепло от источника тепла с меньшими расходами теплоносителя, однако в домовые системы отопления нельзя подавать теплоноситель с температурой выше 105°С. Поэтому производится по сниженным графикам.

Для домовых систем отопления потребителей применяется График качественного регулирования температуры воды в системах отопления при различных расчетных и текущих температурах наружного воздуха при расчетных перепадах температура воды в системе отопления 95-70 и 105-70°С (см. графы 5 и 6 таблицы).

Для сетей, работающих по температурным графикам 95-70°С и 105-70°С (графы 5 и 6 таблицы) температура воды в обратном трубопроводе систем отопления определяется по графе 7 таблицы.

Для потребителей, подключенных по независимой схеме присоединения температура воды в прямом трубопроводе определяется по графе 4 таблицы, а в обратном трубопроводе по графе 8 таблицы.

Температурный график регулирования тепловой нагрузки разрабатывается из условий суточной подачи тепловой энергии на отопление, обеспечивающей потребность зданий в тепловой энергии в зависимости от температуры наружного воздуха, чтобы обеспечить температуру в помещениях постоянной на уровне не менее 18 градусов, а также покрытие тепловой нагрузки горячего водоснабжения с обеспечением температуры ГВС в местах водоразбора не ниже + 60°С, в соответствии с требованиями СанПин 2.1.4.2496-09 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения».Температурный график регулирования тепловой нагрузки утверждается теплоснабжающей организацией.

Т наружного воздуха Т1 Т"3 Т3 Т4 T"4
150-70 с надбавкой 150-70 со срезкой на 130 120-70 105-70 95-70 после системы отопления
после отопительного бойлера
1 2 3 4 5 6 7 8
10 80 70 43 38 37 33 34
9 80 71 45 41 39 34 35
8 80 74 47 43 41 35 36
7 80 75 49 45 42 36 37
6 80 77 51 47 44 38 39
5 80 78 53 49 46 39 40
4 80 79 56 51 48 40 42
3 80 81 58 53 49 41 43
2 81 82 60 55 52 42 44
1 83 84 62 57 53 43 45
0 85 85 64 59 55 45 47
-1 88 86 67 61 57 46 48
-2 91 88 69 63 58 47 49
-3 93 89 71 65 60 48 50
-4 96 90 73 66 62 49 52
-5 98 92 75 68 64 50 54
-6 101 93 78 70 65 51 54
-7 103 95 80 72 67 52 56
-8 106 96 82 74 68 53 57
-9 108 97 84 76 70 54 58
-10 110 99 87 77 71 55 59
-11 113 100 89 79 73 56 60
-12 116 102 91 81 74 57 61
-13 118 103 93 83 76 58 62
-14 121 105 96 84 78 59 63
-15 123 107 98 86 79 60 64
-16 126 108 100 88 81 61 65
-17 128 112 102 90 82 62 67
-18 130 114 104 91 84 63 69
-19 132 116 107 93 85 64 70
-20 135 118 109 95 87 65 70
-21 137 121 111 96 88 66 72
-22 140 123 113 98 90 67 73
-23 142 125 115 100 91 68 74
-24 144 128 117 102 93 69 74
-25 146 130 119 103 94 69 75
-26 148 130 120 105 95 70 76
-28 150 130 120 105 95 70 76

Обозначения

Т 1 (п. 2, 3) - температура воды в магистральной тепловой сети от источника до ЦТП

Т 3 (п. 5, 6) - температура воды в разводящих сетях отопления к потребителю после ЦТП

Т " 3 (п. 4) - температура воды в разводящих сетях отопления к потребителю при независимой схеме присоединения с элеватором у потребителей

Т 4 (п. 7) - температура воды в обратном трубопроводе сети отопления от потребителя для сетей, работающих по температурным графикам п. 5, 6
Т" 4 (п 8) - температура воды после отопительного подогревателя в ЦТП при независимой схеме присоединения

Примечание:

1. Все графики работы источников и местных систем могут быть другими и определяются по решению проектной и энергоснеабжающей организации. Схема присоединения системы отопления выбирается при проектировании в соответствии с требованиями правилам.

Важнейшей задачей при проектировании и эксплуатации систем теплоснабжения является разработка эффективного гидравлического режима, обеспечивающего надежную работу тепловых сетей.

Под надежной работой подразумевается:

1) обеспечение требуемых напоров перед абонентами ();

2) исключение вскипания теплоносителя в подающей магистрали;

3) исключение опорожнения систем отопления в зданиях, а значит последующего завоздушивания при повторном пуске;

4) исключение опасных превышений давления у потребителей, вызывающих возможность порыва труб и отопительной арматуры.

Под гидравлическим режимом тепловой сети понимают взаимную связь между давлениями (напорами) и расходами теплоносителя в различных точках сети в данный момент времени.

Гидравлический режим тепловой сети изучают с помощью построения графика давлений (пьезометрического графика).

График строится после проведения гидравлического расчета трубопроводов. Он позволяет наглядно ориентироваться в гидравлическом режиме работы тепловых сетей при различном режиме их работы, с учетом влияния рельефа местности, высоты зданий, потерь давления в тепловых сетях. По этому графику можно легко определить давление и располагаемый напор в любой точке сети и абонентской системе, подобрать соответствующее насосное оборудование насосных станций и схему автоматического регулирования гидравлического режима работы ИТП.

Рассмотрим пьезометрический график для тепловой сети, располо­женной на местности со спокойным рельефом (рис. 7.1). Плоскость с нулевой отметкой совмещена с отметкой расположения теплоподготовительной установки. Профиль основной магистрали 1 -2-3 -III совме­щен с вертикальной плоскостью, в которой вычерчен пьезометрический график. В точке 2 к магистрали присоединено ответвление 2 -I . Это от­ветвление имеет свой профиль в плоскости, перпендикулярной основной магистрали. Для возможности изображения профиля ответвления 2 -I на пьезометрическом графике повернем его на 90° против часовой стрел­ки вокруг точки 2 и совместим c плоскостью профиля основной маги­страли. После совмещения плоскостей профиль ответвления займет на графике положение, отображаемое линией 2 - . Аналогично строим профиль и для ответвления 3 - .



Рассмотрим работу двухтрубной системы теплоснабжения, принци­пиальная схема которой показана на рис. 7.1,в . Из теплоподготовительной установки Т высокотемпературная вода с поступает в по­дающий теплопровод в точке П1 с полным напором в подающем коллек­торе источника теплоснабжения (здесь - на­чальный полный напор после сетевых насосов (точка K ); - потери напора сетевой воды в теплоподготовительной установке). Так как гео­дезическая отметка установки сетевых насосов , полные напоры в начале сети равны пьезометрическим напорам и соответствуют избыточ­ным давлениям в коллекторах источника теплоснабжения. Горячая вода по подающей магистрали 1-2-3-III и ответвлениям 2-I и 3-II по­ступает в местные системы потребителей тепла I , II , III . Полные напоры в подающей магистрали и ответвлениях изображены графиками напоров П1-ПIII , П2-ПI , П3-ПII . Охлажденная вода по обратным трубопро­водам направляется к источнику теплоснабжения. Графики полных дав­лений в обратных теплопроводах изображены линиями OIII-О1 , OII- О3, ОI-О1.

Разность напоров в подающей и обратной линиях для любой точ­ки сети называется располагаемым напором . Так как подающий и обрат­ный трубопроводы в любой точке имеют одну и ту же геодезическую от­метку, располагаемый напор равен разности полных или пьезометриче­ских напоров:

У абонентов располагаемые напоры равны: ;

; . Полный напор в конце обратной линии перед сетевым насосом на обратном коллекторе источника тепло­снабжения равен . Следовательно, располагаемый

напор в коллек­торах теплоподготовительной установки

Сетевой насос повышает давление воды, поступающей из обратной линии, и направляет ее в теплоподготовительную установку, где она на­гревается до . Насос развивает напор .

Рис. 7.1. Пьезометрический график (а), однолинейная схема трубопроводов (б) и схе­ма двухтрубной тепловой сети (в)

I -III - абоненты; 1, 2, 3 - узлы; П - подающая линия; О - обратная линия; Н - напоры; Т -теплоподготовительная установка; СИ - сетевой насос; РД - регулятор давления; Д - точка от­бора импульса для РД; ПН - подпиточный насос; Б - бак подпиточной воды; ДК - дренажныйклапан.

Потери напора в подающей и обратной линиях равны разности пол­ных напоров в начале и конце трубопровода. Для подающей магистрали они равны , а для обратной .

Описанный гидродинамический режим наблюдается при работе се­тевого насоса. Положение пьезометрической линии обратного трубопро­вода в точке О1 поддерживается постоянным в результате работы подпиточного насоса ПН и регулятора давления РД . Напор, развиваемый подпиточным насосом при гидродинамическом режиме , дросселируется клапаном РД таким образом, чтобы в точке отбора импульса давления Д из байпасной линии сетевого насоса поддерживался напор , рав­ный полному напору, развиваемому подпиточным насосом.

На рис. 7.2 показаны график напоров в линии подпитки и в байпас­ной линии, а также принципиальная схема подпиточного устройства.

Рис. 7.2. График напоров в линии подпитки 1 -2 и в байпасной линии сетевого насоса 2 -3 (а) и схема подпиточного устройства (б):

Н - пьезометрические напоры; - поте­ри напора в дроссельных органах регуля­тора давления РД и в задвижках А и В; СН, ПН - сетевой и подпиточный насосы; ДК - дренажный клапан; Б - бак подпиточной воды

Перед подпиточным насосом полный напор условно принимаем равным нулю. Подпиточный насос ПН развивает напор . Этот напор будет в трубопроводе до регулятора давления РД. Потерями напора на трение на участках 1 -2 и 2 -3 пренебрегаем ввиду их малости. В байпасной линии теплоноситель движется от точки 3 к точке 2. В задвижках А и В срабатывается весь напор, развиваемый сетевым насосом. Степень за­крытия этих задвижек регулируют таким образом, чтобы в задвижке А был сработан напор и полный напор после нее был равен .

В задвижке В срабатывается напор , причем (здесь - напор после РД). Регулятор давления под­держивает постоянное давление в точке Д между задвижками А и В. При этом в точке 2 будет поддерживаться напор , а на клапане РД будет срабатываться напор .

При увеличении утечки теплоносителя из сети давление в точке Д начинает снижаться, клапан РД приоткрывается, увеличивается подпит­ка тепловой сети и давление восстанавливается. При сокращении утечки давление в точке Д начинает повышаться и клапан РД прикрывается. Если при закрытом клапане РД давление будет продолжать расти, на­пример в результате прироста объема воды при повышении ее темпера­туры, в работу включится дренажный клапан ДК, поддерживающий по­стоянное давление «до себя» в точке Д, и сбросит избыток воды в дре­наж. Так работает подпиточное устройство при гидродинамическом ре­жиме. При остановке сетевых насосов прекращается циркуляция тепло­носителя в сети и во всей системе напор падает вплоть до . Регуля­тор давления РД открывается, а подпиточный насос ПН поддерживает во всей системе постоянный напор .

Таким образом, при втором характерном гидравлическом режиме - статическом - во всех точках системы теплоснабжения устанавливается полный напор, развиваемый подпиточным насосом. В точке Д как при гидродинамическом, так и при статическом режимах поддерживается постоянный напор .Такая точка называется нейтральной.

Ввиду большого гидростатического давления, создаваемого столбом воды, и высокой температуры транспортируемой воды возникают жест­кие требования к допустимому диапазону давлений как в подающем, так и в обратном трубопроводах. Эти требования накладывают ограни­чения на возможное расположение пьезометрических линий как при статическом, так и при гидродинамическом режимах.

Для исключения влияния местных систем на режим давления в сети будем считать, что они присоединены по независимой схеме, при которой гидравлические режимы тепловой сети и местных систем автономны. В таких условиях к режиму давлений в сети предъявляются излагаемые ниже требования.

При работе тепловой сети и при разработке графика пьезометрических напоров должны быть соблюдены следующие условия (как при динамическом, так и при статическом режимах), которые перечисляются в порядке очередности их проверки при построении графика.

1. Пьезометрический напор в обратном трубопроводе сети должен быть выше статического уровня подсоединенных систем (высоты зданий Н зд ) не менее чем на 5 м (запас), иначе давление в обратном трубопроводе Н обр будет меньше статического давления здания Н зд и уровень воды в зданиях установится на высоте напора обратного пьезометра, а над ним возникнет вакуум (оголение системы), который вызовет подсос воздуха в систему. На графике это условие выразится тем, что линия обратного пьезометра должна пройти на 5 м выше здания:

Н обр Н зд + 5 м ; Н ст Н зд + 5 м .

2. В любой точке обратной магистрали пьезометрический напор должен быть не менее 5 м , чтобы не было вакуума и подсоса воздуха в сеть (5 м – запас). На графике это условие выражается тем, что пьезометрическая линия обратной магистрали и линия статического напора в любой точке сети должны идти не менее чем на 5м выше уровня земли:

Н обр Н з + 5 м ; Н ст Н з + 5 м.

3. Напор на всасе сетевых насосов (напор подпитки Н о ) должен быть не менее 5 м , чтобы обеспечить залив насосов водой и отсутствие кавитации:

Н о 5 м.

4. Давление воды в системе отопления должно быть меньше максимально допустимого, которое могут выдержать отопительные приборы (6 кгс/см 2 ). На графике это условие выражается тем, что на вводах в здания пьезометрические напоры в обратной магистрали и статический уровень сети не должны быть выше Н доп = 55 м (с запасом 5 м ):

Н обр - Н з 55 м ; Н ст - Н з 55 м .

5. В подающем трубопроводе до элеватора, где температура воды выше , должно поддерживаться давление не менее давления кипения воды при температуре теплоносителя – принимается с запасом; (для статического уровня это не обязательно):

Н s =20 м при и Н s =40 м при .

На графике это условие выразится тем, что линия напоров в подающем трубопроводе должна быть соответственно на величину Н s выше наивысшейточки перегретой воды в системе отопления (для жилых зданий это будет уровень земли, а для промышленных зданий –высшаяточка перегретой воды в цехах):

Н под Н s + 5 м .

6. Статический уровень местных систем (уровень верха зданий) не должен создавать в системах других зданий давление больше максимального допустимого для них, иначе при остановке сетевых насосов произойдет раздавливание приборов этих систем за счет давления воды высоко расположенных зданий. На графике это условие выразится тем, что уровни высоко расположенных зданий не должны превышать больше чем на 55 м уровни земли у других зданий.

7. Давление в любой точке системы не должно превышать максимально допустимое из условий прочности оборудования, деталей и арматуры. Обычно принимают максимальное избыточное давление Р доп =16…22 кгс/см 2 . Это означает, что и пьезометрический напор в любой точке подающего трубопровода (от уровня земли) должен быть не менее Н доп – 5 м (с запасом5 м ):

Н под – Н з Н доп – 5 м .

8. Располагаемый напор (разность пьезометрических напоров в подающем и обратном трубопроводах) на вводах в здания должен быть не менее потери напора в системе абонента:

Н р = Н под – Н обр Н зд .

Таким образом, пьезометрический график позволяет обеспечить эффективный гидравлический режим тепловой сети и подобрать насосное оборудование.

Контрольные вопросы

1. Изложите основные задачи выбора режима давлений водяных тепловых сетей из условия надежности работы системы теплоснабжения.

2. Что такое гидродинамический и статический режимы работы тепловой сети? Обоснуйте условия определения положения статического уровня.

3. Представьте методику построения пьезометрического графика.

4. Изложите требования к определению положения на пьезометрическом графике линий давления в подающей и обратной магистралях тепловой сети.

5. На основе каких условий на пьезометрическом графике наносятся наносятся уровни допустимых максимальных и минимальных пьезометрических напоров для подающей и обратной линий системы теплоснабжения?

6. Что такое «нейтральная» точка» на пьезометрическом графике и при помощи какого устройства на ТЭЦ или котельной регулируется ее положение?

7. Как определяется рабочий напор сетевых и подпиточных насосов?

Каждая управляющая компания стремиться к достижению экономичных затрат на обогрев многоквартирного дома. К тому же пытаются прийти жильцы частных домов. Этого можно достичь, если составить температурный график, в котором будет отражена зависимость выдаваемого носителями тепла от погодных условий на улице. Правильное использование этих данных позволяют оптимально распределять горячую воду и отопление потребителям.

Что такое температурный график

В теплоносителе не должна поддерживаться один и тот же режим работы, ведь за пределами квартиры температура меняется. Именно ею нужно руководствоваться и в зависимости от нее менять температуру воды в объектах отопления. Зависимость температуры теплоносителя от наружной температуры воздуха составляется специалистами-технологами. Для его составления учитываются значения, имеющиеся у теплоносителя и у температуры воздуха снаружи.

Во время проектирования любого здания должны учитываться размер поставленного в нем обеспечивающего тепло оборудования, размеры самого здания и сечения, имеющиеся у труб. В высотном здании жильцы не могут самостоятельно увеличить или уменьшить температуру, так как она подается из котельной. Наладка режима работы выполняется всегда с учетом температурного графика теплоносителя. Учитывается и сама температурная схема - если обратная труба дает воду с температурой выше 70°C, то расход теплоносителя будет избыточным, если же значительно ниже - имеет место дефицит.

Важно! Температурный график составляется таким образом, чтобы при любой температуре воздуха на улице в квартирах поддерживался стабильный оптимальный уровень отопления на уровне 22 °C. Благодаря ему даже самые суровые морозы становятся не страшны, потому что системы отопления окажутся к ним готовы. Если на улице -15 °C, то достаточно отследить значение показателя, чтобы узнать, какой будет температура воды в системе отопления в этот момент. Чем уличная погода будет суровее, тем горячее должна оказаться вода внутри системы.

Но уровень отопления, поддерживающийся внутри помещений, зависит не только от теплоносителя:

  • Температура на улице;
  • Наличие и сила ветра - сильные его порывы значительно отражаются на теплопотерях;
  • Теплоизоляция - качественно обработанные конструктивные части здания помогают сохранить тепло в здании. Это выполняется не только во время строительства дома, но и отдельно по желанию собственников.

Таблица температуры теплоносителя от температуры наружного воздуха

Для того, чтобы рассчитать оптимальный температурный режим, нужно учесть и характеристики, имеющиеся у отопительных приборов - батарей и радиаторов. Важнее всего необходимо посчитать их удельную мощность, она будет выражаться в Вт/см 2 . Это будет сказываться самым прямым образом на отдаче тепла от нагретой воды к нагреваемому воздуху в помещении. Важно учесть их поверхностную мощность и коэффициент сопротивления, имеющийся у оконных проемов и наружных стен.

После того, как будут учтены все значения, нужно рассчитать разницу между температурой в двух трубах - на вводе в дом и на выходе из него. Чем выше будет значение в трубе входа, тем выше - в обратной. Соответственно, отопление внутри помещения будет расти под этими значениями.

Погода на улице, С на вводе в здание, С Обратная труба, С
+10 30 25
+5 44 37
0 57 46
-5 70 54
-10 83 62
-15 95 70

Грамотное использование теплоносителя подразумевает попытки жителей дома уменьшить разницу температур между трубой входа и выхода. Это может быть строительная работа по утеплению стены снаружи или теплоизоляция внешних теплоснабжающих труб, утепление перекрытий над холодным гаражом или подвалом, утепление внутренней части дома или несколько выполняемых одновременно работ.

Отопление в радиаторе также должна соответствовать нормам. В центральных отопительных системах обычно варьируется от 70 С до 90 С в зависимости от температуры воздуха на улице. Важно учитывать, что в угловых комнатах не может быть менее 20 С, хотя в иных комнатах квартиры допускается снижение до 18 С. Если на улице температура снижается до -30 С, то в комнатах отопление должно подняться на 2 С. В остальных комнатах тоже должна вырасти температура при условии, что в комнатах разного назначения она может быть разной. Если в помещении находится ребенок, то она может колебаться от 18 С до 23 С. В кладовых и коридорах отопление может варьироваться от 12 С до 18 С.

Важно отметить! Учитывается среднесуточная температура - если ночью держится температура примерно -15 С, а днем - -5 С, то считаться будет по значению -10 С. Если в ночное время держалось около -5 С, а в дневное время она поднялась до +5 С, то отопление учитывается по значению 0 С.

График подачи горячей воды в квартиру

Для того, чтобы доставить потребителю оптимальное ГВС, ТЭЦ должны отправлять ее максимально горячей. Теплотрассы всегда настолько длинные, что их протяженность можно измерять в километрах, а протяженность по квартирам измеряется и вовсе в тысячах квадратных метров. Какой бы ни была теплоизоляция труб, тепло теряется по пути к пользователю. Поэтому необходимо нагреть воду максимально.


Однако, вода не может быть нагрета больше, чем до точки кипения. Поэтому был найден выход - увеличить давление.

Важно знать! При его повышении смещается в сторону увеличения температура кипения воды. Как следствие - до потребителя она доходит действительно горячей. При увеличении давления не страдают стояки, смесители и краны, а все квартиры до 16 этажа можно обеспечить ГВС без дополнительных насосов. В теплотрассе обычно вода содержит 7-8 атмосфер, верхняя граница обычно имеет 150 с запасом.

Выглядит это так:

Температура кипения Давление
100 1
110 1,5
119 2
127 2,5
132 3
142 4
151 5
158 6
164 7
169 8

Подача горячей воды в зимнее время года должна быть непрерывной. Исключения из этого правила составляют аварии на теплоснабжения. Отключить горячее водоснабжение могут только в летний период для профилактических работ. Такие работы проводятся как в системах теплоснабжения закрытого типа, так и в системах открытого типа.

Каким закономерностям подчиняются изменения температуры теплоносителя в системах центрального отопления? Что это такое — температурный график системы отопления 95-70? Как привести параметры отопления в соответствие с графиком? Попробуем ответить на эти вопросы.

Что это такое

Начнем с пары отвлеченных тезисов.

  • С изменением погодных условий теплопотери любого здания меняются вслед за ними . В заморозки для того, чтобы сохранить в квартире постоянную температуру, требуется куда больше тепловой энергии, чем в теплую погоду.

Уточним: затраты тепла определяются не абсолютным значением температуры воздуха на улице, а дельтой между улицей и внутренними помещениями.
Так, при +25С в квартире и -20 во дворе затраты тепла будут точно такими же, как при +18 и -27 соответственно.

  • Тепловой поток от отопительного прибора при постоянной температуре теплоносителя тоже будет постоянным .
    Падение температуры в помещении несколько увеличит его (опять-таки за счет увеличения дельты между теплоносителем и воздухом в комнате); однако этого увеличения будет категорически недостаточно для компенсации возросших потерь тепла через ограждающие конструкции. Просто потому, что нижний порог температуры в квартире действующие СНиП ограничивают 18-22 градусами.

Очевидное решение проблемы роста потерь — повышение температуры теплоносителя.

Очевидно, ее рост должен быть пропорционален снижению уличной температуры: чем холоднее за окном, тем большие потери тепла придется компенсировать. Что, собственно, и подводит нас к идее создания определенной таблицы согласования обоих значений.

Итак, график температурный системы отопления — это описание зависимости температур подающего и обратного трубопроводов от текущей погоды на улице.

Как все устроено

Существует два разных типа графиков:

  1. Для тепловых сетей.
  2. Для внутридомовой отопительной системы.

Чтобы разъяснить разницу между этими понятиями, вероятно, стоит начать с краткого экскурса в то, как устроено центральное отопление.

ТЭЦ — тепловые сети

Функция этой связки — нагреть теплоноситель и доставить его конечному потребителю. Протяженность теплотрасс обычно измеряется километрами, суммарная площадь поверхности — тысячами и тысячами квадратных метров. Несмотря на меры по теплоизоляции труб, потери тепла неизбежны: пройдя путь от ТЭЦ или котельной до границы дома, техническая вода успеет частично остыть.

Отсюда — вывод: для того, чтобы она дошла до потребителя, сохранив приемлемую температуру, подача теплотрассы на выходе из ТЭЦ должна быть максимально горячей. Ограничивающим фактором является точка кипения; однако при повышении давления она смещается в сторону повышения температуры:

Давление, атмосферы Температура кипения, градусы по шкале Цельсия
1 100
1,5 110
2 119
2,5 127
3 132
4 142
5 151
6 158
7 164
8 169

Типичное давление в подающем трубопроводе теплотрассы — 7-8 атмосфер. Такое значение даже с учетом потерь напора при транспортировке позволяет запустить отопительную систему в домах высотой до 16 этажей без дополнительных насосов. Вместе с тем оно безопасно для трасс, стояков и подводок, шлангов смесителей и прочих элементов систем отопления и ГВС.

С некоторым запасом верхняя граница температуры подачи принята равной 150 градусам. Наиболее типичные температурные графики отопления для теплотрасс лежат в диапазоне 150/70 — 105/70 (температуры подающей и обратной трассы).

Дом

В домовой системе отопления действует ряд дополнительных ограничивающих факторов.

  • Максимальная температура теплоносителя в ней не может превышать 95 С для двухтрубной и 105 С для .

Кстати: в дошкольных воспитательных учреждениях ограничение куда более жесткое — 37 С.
Цена снижения температуры подачи — увеличение количества секций радиаторов: в северных регионах страны помещения групп в детских садах буквально опоясаны ими.

  • Дельта температур междуподающим и обратным трубопроводами по понятным причинам должна быть по возможности небольшой — иначе температура батарей в здании будет сильно различаться. Это подразумевает быструю циркуляцию теплоносителя.
    Однако слишком быстрая циркуляция через домовую систему отопления приведет к тому, что вода обратки будет возвращаться в трассу с непомерно высокой температурой, что в силу ряда технических ограничений в работе ТЭЦ неприемлемо.

Проблема решается монтажом в каждом доме одного или нескольких элеваторных узлов, в которых к струе воды из подающего трубопровода подмешивается обратка. Полученная смесь, собственно, и обеспечивает быструю циркуляцию большого объема теплоносителя без перегрева обратного трубопровода трассы.

Для внутридомовых сетей задается отдельный график температур с учетом схемы работы элеватора. Для двухтрубных контуров типичен температурный график отопления 95-70, для однотрубных (что, впрочем, редкость в многоквартирных домах) — 105-70.

Климатические зоны

Основной фактор, определяющий алгоритм составления графика — расчетная зимняя температура. Таблица температур теплоносителя должна быть составлена таким образом, чтобы максимальные значения (95/70 и 105/70) в пик морозов обеспечивали соответствующую СНиП температуру в жилых помещениях.

Приведем пример внутридомового графика для следующих условий:

  • Отопительные приборы — радиаторы с подачей теплоносителя снизу вверх.
  • Отопление — двухтрубное, со .

  • Расчетная температура уличного воздуха — -15 С.
Температура наружного воздуха,С Подача, С Обратка, С
+10 30 25
+5 44 37
0 57 46
-5 70 54
-10 83 62
-15 95 70

Нюанс: при определении параметров трассы и внутридомовой системы отопления берется среднесуточная температура.
Если ночью будет -15, а днем -5, в качестве наружной температуры фигурируют -10С.

А вот некоторые значения расчетных зимних температур для городов России.

Город Расчетная температура, С
Архангельск -18
Белгород -13
Волгоград -17
Верхоянск -53
Иркутск -26
Краснодар -7
Москва -15
Новосибирск -24
Ростов-на-Дону -11
Сочи +1
Тюмень -22
Хабаровск -27
Якутск -48

На фото — зима в Верхоянске.

Регулировка

Если за параметры трассы отвечает руководство ТЭЦ и тепловых сетей, то ответственность за параметры внутридомовой сети возлагается на жилищников. Весьма типична ситуация, когда при жалобах жильцов на холод в квартирах замеры показывают отклонения от графика в нижнюю сторону. Чуть реже бывает так, что замеры в колодцах тепловиков показывают завышенную температуру обратки с дома.

Как своими руками привести параметры отопления в соответствие с графиком?

Рассверливание сопла

При заниженной температуре смеси и обратки очевидное решение -увеличить диаметр сопла элеватора. Как это делается?

Инструкция — к услугам читателя.

  1. Перекрываются все задвижки или вентиля в элеваторном узле (входные, домовые и ГВС).
  2. Демонтируется элеватор.
  3. Сопло вынимается и рассверливается на 0,5-1 мм.
  4. Элеватор собирается и запускается со стравливанием воздуха в обратном порядке.

Совет: вместо паронитовых прокладок на фланцы можно поставить резиновые, вырезанные по размеру фланца из автомобильной камеры.

После демонтажа сопла глушится нижний фланец.

Внимание: это экстренная мера, применяющаяся в крайних случаях, поскольку в этом случае температура радиаторов в доме может достигать 120-130 градусов.

Регулировка перепада

При завышенных температурах в качестве временной меры до окончания отопительного сезона практикуется регулировка перепада на элеваторе задвижкой.

  1. ГВС переключается на подающий трубопровод.
  2. На обратку устанавливается манометр.
  3. Входная задвижка на обратном трубопроводе полностью закрывается и потом постепенно открывается с контролем давления по манометру. Если просто прикрыть задвижку, просадка щечек на штоке может остановить и разморозить контур. Перепад снижается за счет повышения давления на обратке по 0,2 атмосферы в сутки с ежедневным контролем температур.

Температурный график тепловых сетей дает возможность поставщикам теплопередающих компаний устанавливать режим соответствия температуры передаваемого и возвратного теплоносителя среднесуточным температурным показателям окружающего воздуха.

Иначе говоря, в отопительный период для каждого населенного пункта РФ разрабатывается температурный график теплоснабжения (в небольших поселениях - температурный график котельной), который обязывает тепловые станции разного уровня обеспечивать технологические условия поставки теплоносителя (горячей воды) потребителям.

Регулирование температурного графика подачи теплоносителя может осуществляться несколькими способами: количественным (изменение расхода подаваемого в сеть теплоносителя); качественным (регулировка температуры подводящих потоков); временным (дискретная подача горячей воды в сеть). Методики расчета и построения температурного графика предполагают специфические подходы при рассмотрении тепловых сетей по назначению.

Температурный график отопления - нормальный температурный график контуров отопительных сетевых трубопроводов, работающих исключительно на отопительную нагрузку и регулируемых централизованно.

Повышенный температурный график - рассчитывается для замкнутой схемы теплоснабжения, обеспечивающей потребности системы отопления и горячего водоснабжения подключенных объектов. В случае открытой системы (потери теплоносителя при водопотреблении) принято говорить о скорректированном температурном графике системы отопления.

Расчет графика температурного режима отопительных систем по методологии достаточно сложен. Для примера можем порекомендовать методическую разработку «Роскоммунэнерго», получившую согласование Госстроя РФ 10.03.2004 №СК-1638/12. Исходные данные для построения температурного графика конкретной теплогенерирующей станции: температуры наружного воздуха Tнв ; воздуха в здании Tвн ; теплоносителя в подающем (T 1 ) и обратном (T 2 ) трубопроводах; на входе в отопительную систему здания (T 3 ). Значения относительного расхода теплоносителя коэффициенты гидравлической устойчивости системы при расчете нормируются.

Расчеты системы отопления можно провести для любого температурного графика, например, для общепринятых графиков крупных теплопередающих организаций (150/70, 130/70, 115/70) и местных (домовых) тепловых пунктов (105/70, 95/70). Числитель графика показывает максимальную температуру воды на входе в систему, знаменатель - на выходе.

Результаты расчета температурного графика тепловой сети сводятся в таблицу, задающую температурные режимы в узловых точках трубопровода в зависимости от Tнв , например такую.

Последовательный расчет температурных показателей теплоносителя при уменьшении дискретности Tнв позволяет построить температурный график тепловой сети, на основании которого по среднесуточной температуре окружающего воздуха и выбранному эксплуатационному графику можно делать минимальный и максимальный температурный срез и определять текущие параметры теплоносителя в системе.