Как выбрать и подключить буферную (аккумулирующую) ёмкость для автономного отопления. Водогрейный котел, работающий на биотопливе, преимущественно из соломы в брикетах цилиндрической формы


Изобретение предназначено для нагрева воды и может быть использовано в теплоэнергетике. Котел включает систему охлаждения, топку, теплообменный блок, выполненный двухходовым с нижним и верхним пучками труб с расположенной на его входе камерой дожигания, оснащенной устройством для регулирования подачи воздуха. С торцов теплообменного блока расположены передняя и задняя газовые камеры. Топка снабжена охладителями свода, выполненными в виде двух экранов из труб, расположенных симметрично по обе стороны теплообменного блока вдоль его продольной оси, и снабженными средствами подключения к системе отопления. В нижней части топки установлена с уклоном в сторону ее задней стенки, оснащенной выступами, обращенными внутрь топки, двухскатная в направлении дна топки колосниковая решетка, под которой расположена зольная камера с, по меньшей мере, одним накопителем золы, выполненным с возможностью свободного перемещения за ее пределы, имеющая, по меньшей мере, один люк для удаления золы. В передней стенке зольной камеры поддувало. Изобретение позволяет повысить эффективность сжигания топлива при одновременном повышении эксплуатационных удобств и снижении шлакообразования на низкотемпературных поверхностях. 3 з.п.ф-лы, 2 ил.

Рисунки к патенту РФ 2263852

Изобретение относится к теплоэнергетике, в частности к водогрейным котлам, работающим на возобновляемом биотопливе, преимущественно из соломы в брикетах цилиндрической формы.

Производство тепловой энергии из возобновляемых источников является характерной тенденцией развития мировой энергетики. В этой связи биомасса (солома злаковых культур, отходы деревообработки и т.д.) рассматриваются в качестве широко доступного, возобновляемого, СО 2 - нейтрального топлива.

Традиционно сжигание твердого топлива с целью получения тепловой энергии осуществляется в котлах с жаровыми или дымогарными трубами (Щеголев М.М. Топливо, топки и котельные установки. М., Гостоптехиздат, 1953 г., с.543).

Как правило, такие котлы включают в себя стальной цилиндрический корпус, заполненный нагреваемой водой, расположенную внутри или снаружи корпуса цилиндрическую камеру сгорания (топку), которая соединяется газовыми панелями с пакетом окружающих камеру сгорания параллельных дымогарных труб, коллектор отработанных газов, выходной газоход, а также устройства для ввода топлива в камеру сгорания.

Сжигание биотоплива в таких котлах сопряжено с необходимостью обеспечения эффективного распределения воздуха по топочному объему и его качественного перемешивания с дымовыми газами, что не всегда осуществимо. Невыполнение этих условий снижает общий коэффициент полезного действия котла и ведет к неоправданному расходу топлива.

Наиболее близким по технической сущности к предлагаемому изобретению является фермерский котел периодической загрузки для сжигания крупных брикетов соломы (Гелетуха Г.Г., Железная Т.А. Обзор технологий сжигания соломы с целью выработки тепла и электроэнергии. "Экотехнологии и ресурсосбережение" №6, 1998 г., с.3-11).

Котел содержит горизонтальную цилиндрическую топку, закрываемую с торца дверью. Непосредственно над топкой расположен теплообменный блок, представляющий собой кожух с расположенным в нем пучком жаровых труб. Межтрубное пространство кожуха, стенки котла, а также дверь связаны в единый контур, охлаждаемый водой. Котел снабжен системой подачи воздуха в зону горения топлива, состоящую из газодувки с регулируемой заслонкой и коллекторов. Отработанные дымовые газы выводятся из котла через газоход.

Работа котла осуществляется в следующей последовательности. В топку устанавливается один или несколько (в зависимости от габаритов) брикетов соломы и с помощью внешнего источника производится их розжиг. Дверь топки закрывается, и в зону горения подается воздух с определенным расходом. Выделяющиеся в процессе горения дымовые газы нагревают воду, циркулирующую через теплообменный блок, стенки и дверь котла. По мере выгорания соломы производится выгрузка золы из топки и закладка следующего брикета топлива.

Конструкцию известного котла нельзя признать технически совершенной, поскольку при ее эксплуатации возникают затруднения в обеспечении равномерности выгорания брикета соломы, связанные главным образом с локальным подводом воздуха в зону горения и обусловливающие невысокую температуру в топке, длительность самого процесса горения брикета. При этом на низкотемпературных поверхностях котла возможно появление шлаковых отложений, что существенно снижает эффективность его работы Громоздкая система теплообменных поверхностей котла, подверженных коррозии и отложению накипи, снижает его функциональную надежность и требует наличия сложной системы водоподготовки (обезгаживание и обессоливание). Кроме того, при эксплуатации котла возникают неудобства при выгрузке золы, некомпактно накапливающейся на дне топки.

Задачей настоящего изобретения является разработка конструкции водогрейного котла, работающего на биотопливе, преимущественно из соломы в брикетах цилиндрической формы, позволяющей повысить эффективность сжигания топлива за счет обеспечения равномерного горения брикета во всем его объеме путем оптимального распределения по топочному объему воздуха, поступающего в зону горения и эффективного дожигания летучих компонентов при одновременном повышении эксплуатационных удобств, надежности и снижении шлакообразования на низкотемпературных поверхностях.

Поставленная задача решается предложенным водогрейным котлом, включающим систему охлаждения, средства подключения к системе отопления, дымогарный теплообменный блок, топку с дверью, обмуровкой и средством дозированной подачи воздуха, особенность заключается в том, что теплообменный блок выполнен двухходовым с нижним и верхним пучками труб, с расположенной на его входе камерой дожигания, образованной стенами топки, решеткой нижнего пучка труб и горизонтальной пластиной, размещенной между пучками труб, и оснащенной устройством для регулирования подачи воздуха, с торцов теплообменного блока расположены передняя и задняя газовые камеры, каждая из которых снабжена теплоизолированным люком для чистки пучков труб, а последняя соединена с выходным газоходом, при этом топка снабжена охладителями свода, выполненными в виде двух экранов из труб, расположенных симметрично по обе стороны теплообменного блока вдоль его продольной оси, и снабженными средствами подключения к системе отопления, в нижней части топки установлена с уклоном в сторону ее задней стенки, оснащенной выступами, обращенными внутрь топки, двухскатная в направлении дна топки колосниковая решетка, под которой расположена зольная камера с, по меньшей мере, одним накопителем золы, выполненным с возможностью свободного перемещения за ее пределы, имеющая, по меньшей мере, один люк для удаления золы, расположенный на ее задней стенке, а в передней стенке зольной камеры размещено средство дозированной подачи воздуха, выполненное в виде поддувала.

При этом уклон колосниковой решетки в сторону задней стенки топки составляет 3-5°.

Кроме того, плоскости двухскатной в направлении дна топки колосниковой решетки имеют угол наклона 10-20°.

Предпочтительно двери топки выполнять двухстворчатыми.

Сравнение заявляемого технического решения с прототипом показывает, что предложенный котел отличается иным конструктивным выполнением системы охлаждения, включающей межтрубное пространство теплообменного блока и охладители свода, позволяющие снять избыточную тепловую нагрузку в этой зоне и в итоге увеличить общий коэффициент полезного действия котла (в прототипе - единый контур из межтрубного пространства теплообменного блока, стенок котла и двери); наличием камеры дожигания, позволяющей повысить тепловую эффективность котла путем оптимизации дожига летучих компонентов кислородом воздуха, подаваемого в камеру; наличием колосниковой решетки, делящей внутреннее пространство топки с образованием зольной камеры; наличием накопителей золы; иным выполнением средства дозированной подачи воздуха - в виде поддувала, создающего естественную тягу (в прототипе - воздух подается под давлением воздуходувкой, оснащенной заслонкой); иным выполнением теплообменного блока (из двух пучков труб), позволяющим существенно увеличить площадь тепловоспринимающих поверхностей при незначительном увеличении габаритов и сопротивления газового тракта, а следовательно, и повысить эффективность работы котла с оснащением его газовыми камерами, обеспечивающими возможность чистки труб и одновременно являющимися элементами газового тракта.

Таким образом, заявляемый котел соответствует критерию "новизна".

Сравнение заявляемой конструкции с прототипом и другими техническими решениями показало, что неизвестен котел, в котором бы имело место предложенное сочетание признаков.

Но именно совокупность отличительных от прототипа признаков с остальными существенными признаками заявляемого решения позволила расширить номенклатуру выпускаемых водогрейных котлов, работающих на биотопливе в брикетах цилиндрической формы, создать конструкцию, обладающую повышенными эксплуатационными удобствами и надежностью, снижающей риск возникновения аварийной ситуации из-за прогорания свода топки и нарушение нормального режима функционирования системы охлаждения; уменьшение площади поверхностей охлаждения, их иное конструктивное исполнение позволяет упростить конструкцию котла при обеспечении высокой тепловой эффективности котла; предлагаемая совокупность признаков, включающая колосниковую решетку, установленную определенным образом и создающую сопротивление поступающему в топку воздуху и обеспечивающую его равномерное распределение по сечению топки, зазор между брикетом сжигаемого топлива и стенкой котла, обеспеченный наличием упоров на ней, позволяет так перераспределить воздушные потоки, что брикет горит равномерно по всему своему объему с более высокой температурой и оптимальным временем, что дает возможность повысить эффективность работы котла и одновременно снизить шлакообразование на низкотемпературных поверхностях, что непременно влечет за собой повышение надежности всей конструкции.

При этом наклон колосниковой решетки в направлении задней стенки котла обеспечивает удобство загрузки брикетов цилиндрической формы в топку. При углах наклона менее 3° загрузка брикета сопряжена с необходимостью применения значительных усилий по его перемещению. При углах наклона более 5° в процессе загрузки возможно возникновение значительных ударных нагрузок на заднюю стенку, что также не желательно.

Кроме того, плоскости двухскатной в направлении дна топки колосниковой решетки должны иметь угол наклона не менее 10° для обеспечения условий обдува нижней части брикета и предотвращения зашлаковывания решетки вследствие низкой температуры плавления золы и не более 20° для предотвращения преждевременного прогара охладителей свода.

Предпочтительно двери топки выполнять двухстворчатыми из соображений удобства обслуживания котла.

Заявляемое изобретение представлено на фиг.1, на которой изображен продольный разрез котла, и на фиг.2, где приведен разрез А-А фиг.1

Предлагаемый котел включает дымогарный теплообменный блок 1, внутри которого размещены пучки 2 и 2" труб, а с торцов к нему примыкают передняя 3 и задняя 4 газовые камеры, имеющие теплоизолированные люки 5 и 6, являющиеся одновременно торцовыми стенками соответствующих камер, задняя камера 4 непосредственно соединена с выходным газоходом 7. Теплообменный блок 1, межтрубное пространство которого в рабочем состоянии заполнено водой, имеет патрубки 8 для подсоединения к коллекторам системы отопления. Топка 9 котла представляет собой стальную конструкцию из проката, являющуюся опорой для теплообменного блока 1 и охладителей свода 10, а также каркасом для обмуровки 11. Охладители свода 10 имеют патрубки (не показаны) для подсоединения к соответствующим коллекторам системы отопления. В передней части топки 9 расположены двухстворчатые теплоизолированные двери 12 для загрузки топлива. В верхней части топки 9 размещена камера дожигания газов 13 с пластиной 14, размещенной между верхним 2 и нижним 2 пучками труб, и с устройством для регулирования подачи воздуха 15 (например, шибер). В нижней части топки 9 установлена двухскатная колосниковая решетка 16, на которой размещают брикет 17 биотоплива. Задняя стенка топки 9 оснащена упорами 18, выполненными в виде выступающих частей обмуровки либо из металлических элементов, вмонтированных в обмуровку. Непосредственно под колосниковой решеткой 16 расположена зольная камера 19 с накопителями золы 20. В передней стенке зольной камеры 19 размещено средство дозированной подачи воздуха, выполненное в виде поддувала 21. На задней стенке зольной камеры 19 расположены люки 22 для удаления золы, собранной в накопителях 20. Снаружи водогрейный котел теплоизолирован слоем минеральной ваты и закрыт металлическим кожухом.

Водогрейный котел работает следующим образом. Водяной контур котла, образованный дымогарным теплообменным блоком 1 и охладителями овода 10, подключают через соответствующие патрубки к коллекторам системы отопления. Через двери 12 топки 9, нагретой предварительно до 400-500°С, на колосниковую решетку 16 вкатывают брикет соломы 17. Через поддувало 21 в топку 9 поступает необходимый для горения воздух, расход которого регулируют степенью открытия поддувала 21. Воздух охлаждает колосниковую решетку 16, двери 12 топки 9 и, нагреваясь далее от обмуровки 11, обеспечивает интенсивное горение брикета соломы, что позволяет существенно увеличить температуру горения. Продукты горения поступают из топки 9 в камеру дожигания 13. Поступающий в камеру 13 через устройство 15 регулируемый поток воздуха обеспечивает дожигание летучих компонентов и дополнительное тепловыделение. Поток горячих дымовых газов проходит через нижний пучок 2" дымогарных труб, переднюю газовую камеру 3 и верхний пучок 2 дымогарных труб. При этом снимается основное количество тепла, содержащегося в дымовых газах. Далее газы последовательно проходят через заднюю газовую камеру 4 и под действием разрежения, создаваемого дымовой трубой (не показана), поступают в выходной газоход 7. Часть тепла от сгорания брикета соломы 17 снимается непосредственно в топке 9 котла с помощью охладителей свода 10. Зола с колосниковой решетки 16 падает в накопители 20 (например, выполненные в виде тележек) и удаляется из зольной камеры 19 через люки 22. Сажа и копоть из дымогарных труб 2 и 2" удаляются через люки 5 и 6. После полного сгорания брикета соломы двери 12 открывают и производят загрузку очередного брикета соломы.

Таким образом, предлагаемая конструкция водогрейного котла, работающего на биотопливе, преимущественно из соломы в брикетах цилиндрической формы, практически реализуема. Изготовлены два образца, прошедшие опытную проверку. Изобретение позволяет решить давно существующую потребность в надежных и эффективно работающих котлах, функционирующих на возобновляемом и доступном виде топлива, решить поставленную задачу. Следовательно, заявляемое техническое решение обладает промышленной применимостью.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Водогрейный котел, работающий на биотопливе, преимущественно из соломы в брикетах цилиндрической формы, включающий систему охлаждения, средства подключения к системе отопления, дымогарный теплообменный блок, топку с дверью, обмуровкой и средством дозированной подачи воздуха, отличающийся тем, что теплообменный блок выполнен двухходовым с нижним и верхним пучками труб, с расположенной на его входе камерой дожигания, образованной стенами топки, решеткой нижнего пучка труб и горизонтальной пластиной, размещенной между пучками труб и оснащенной устройством для регулирования подачи воздуха, с торцов теплообменного блока расположены передняя и задняя газовые камеры, каждая из которых снабжена теплоизолированным люком для чистки пучков труб, а последняя соединена с выходным газоходом, при этом топка снабжена охладителями свода, выполненными в виде двух экранов из труб, расположенных симметрично по обе стороны теплообменного блока вдоль его продольной оси, и снабженными средствами подключения к системе отопления, в нижней части топки установлена с уклоном в сторону ее задней стенки, оснащенной выступами, обращенными внутрь топки, двухскатная в направлении дна топки колосниковая решетка, под которой расположена зольная камера с, по меньшей мере, одним накопителем золы, выполненным с возможностью свободного перемещения за ее пределы, имеющая, по меньшей мере, один люк для удаления золы, расположенный на ее задней стенке, а в передней стенке зольной камеры размещено средство дозированной подачи воздуха, выполненное в виде поддувала.

2. Водогрейный котел по п.1, отличающийся тем, что уклон колосниковой решетки в сторону задней стенки топки составляет 3-5°.

3. Водогрейный котел по п.1, отличающийся тем, что плоскости двускатной в направлении дна топки колосниковой решетки имеют угол наклона 10-20°.

4. Водогрейный котел по п.1, отличающийся тем, что двери топки выполнены двухстворчатыми.

Цилиндрическая стенка. На поверхности действует источник теплоты, радиусом r рисунок 10, тепловой поток равномерно распределен с плотностью q, Вт/м2. Поскольку процесс теплообмена установился, то температура в любой точке наружной Qн и внутренней Qв поверхности во времени не меняется. Изотермические поверхности будут иметь форму цилиндров, коаксиальных оси Z. При установившемся тепловом режиме через любую изотермическую поверхность радиусом r в единицу времени протекает одно и то же количество теплоты.

Общетехнические дисциплины / Теплофизика / Цилиндрическая стенка. На поверхности действует источник теплоты, радиусом r рисунок 10, тепловой поток равномерно распределен с плотностью q, Вт/м2. Поскольку процесс теплообмена установился, то температура в любой точке наружной Qн и внутренней Qв поверхности во времени не меняется. Изотермические поверхности будут иметь форму цилиндров, коаксиальных оси Z. При установившемся тепловом режиме через любую изотермическую поверхность радиусом r в единицу времени протекает одно и то же количество теплоты.

Основываясь на законе Фурье, можно решать задачи, возникающие при описании тепловых процессов в твердых телах различной формы. Температура поверхности стенки Q1 и Q2 непрерывно меняются. При установившемся теплообмене рисунке 9.,q1-q2, а Q1 и Q2 сохраняют свои значения во времени. Можно полагать температурное поле в пластине стационарным одномерным, и поэтому закон Фурье можно представить

после преобразования получим

Это позволяет сделать важный вывод о том что, используя закон Фурье, можно вместо переменного значения (Q) применить среднее в интервале действующих температур постоянного значения коэффициента теплопроводности и этим существенно упростить расчетные формулы без потери прочности расчета.

Конструкция котла В.Г.Шухова (рис. 3.8) имеет два концентрических цилиндра 1 и 2. Во внутреннем цилиндре размещается топка и небольшая конвективная поверхность, выполненная из нескольких пучков труб 3. Пучки труб ввальцовывают в сплющенные стенки 4 внутреннего цилиндра. Против труб в наружном цилиндрическом корпусе котла имеются отверстия, закрываемые крышками 5 (для удаления отложений из труб во время ремонтов). Котел конструкции Шухова послужил прообразом вертикально-цилиндрических котлов ММЗ (рис. 3.9), ВГД (рис. 3.10), ТМЗ (рис. 3.11), МЗК (рис. 3.12).

Рис. 3.8. Вертикально-цилиндрический котел системы В.Г.Шухова.

Рис. 3.9. Вертикально-цилиндрический котел ММЗ.

Рис. 3.10. Вертикально-цилиндрический водотрубно-газотрубный котел конструкции инж. Н.Г. Добрина.

Рис. 3.11. Вертикально-цилиндрический котел ТМЗ-0,4/8.

Рис. 3.12. Вертикально-цилиндрический котел МЗК.

Котел МЗК состоит из двух вертикально расположенных концентрических обечаек, межкольцевое пространство которых перегорожено двумя горизонтальными, верхней – 1 и нижней – 2, перегородками. В эти перегородки вварено три ряда кипятильных труб – 3. Топочной камерой служит внутренний цилиндр, который по существу представляет вертикальную жаровую трубу. Горелки – 4 (5) с вентилятором – 6 расположены с фронта котла. Дымовые газы из топки через специальный в ней вырез – горловину – 7 попадают в межкольцевое пространство котла и поперечным потоком омывают кипятильные трубы, а затем через боковое отверстие – 8 удаляются с помощью патрубка – 9 и дымососа – 10 в дымовую трубу. На фланце – 11 устанавливается взрывной клапан. Техническая характеристика котлов МЗК приведена в табл. 2.9 и 3.3.

Таблица 3.3. Паровые вертикально-цилиндрические котлы МЗК.
Наименование Марка по ГОСТ 3619-89
Е-0,4-9-ГН Е-0,4-9ЖН Е-0,4-9 Е-0,8-9 Е-0,4-9 Е-0,7-9 Е-1-9ГН Е-1-9ГН Е-1-9ЖН Е-1-9ГН Е- Е-1,6-9ГН
Марка котла завода-изготовителя
МЗК-8АГ МЗК-8АЖ ММЗ-0,4/9 ММЗ-4-08/9 ТМЗ-0,4/8 ВГД-28/8М ТМЗ-1,0/8 МЗК-7АГ-1 МЗК-7АЖ-1 МЗК-11Г МЗК-12Г
1 2 3 4 5 6 7 8 9 10 11 12
Номинальная производительность, т/ч Абсолютное давление пара, МПа (кгс/см 2) Расчетное топливо 0,4

Природ. газ

0,4

Печное бытовое

0,4

Кам. угол уголь,

0,8

Кам. угол уголь,

0,4

Кам. угол уголь,

0,7

Кам. и бурый уголь, торф

1,0

Кам. и бурый уголь, антрац.

1,0 1,0

Печное

1,0

Прир. газ

1,6

Прир. газ

Температура пара, 0 С Влажность пара, % Поверхность нагрева, м 2 Водяной объем, м 3 Температура питательной воды, 0 С 174 насыщ. 3,0 174 насыщ. 2,0 174 174 174 насыщ. - 210-215 210-215 210 210 210 210
Температура уходящих газов, 0 С Расчетный КПД, % Объем топочной камеры, м 3 Площадь колосниковой решетки, м 2 250-270 300-320 - - - - - 250-270 300-320 210 224
Диаметр и толщина стенки наружного корпуса котла или уторного кольца, мм Диаметр и толщина стенки внутреннего корпуса котла или уторного кольца, мм Диаметр кипятильных труб, мм Масса, т: котла обмуровки 900х6

1,65 0,1

900х6

1,65 0,1

1120х8 1420х8

1126х13

1216х6 1526х7

1226х13

1522х7

1226х13

1168х8

2,5 0,24

1168х8

2,5 0,24

1168х8

2,65 0,24

1168х8

2,65 0,24

Габаритные размеры, мм: длина ширина высота Расход топлива: жидкого, кг/ч газа, м 3 /ч Сумма потребления электроэнергии, кВт 1720 1330 2290

36 2,3

1720 1330 2290

29 - 3,4

1500 1500 4200 1550 1550 4500 1760 1760 4050 2800 2050 5350 2800 2200 5400 2300 1525 2750

90 2,6

2300 1525 2750

72 - 3,7

2300 1525 2750

84,5 2,6

2300 1525 2750

135 5,5

Специфическим недостатком вертикакльно-цилиндрических котлов является пониженная теплопередача в нижней части барабана из-за шлама и отложений.

Общими достоинствами цилиндрических котлов являются:

Простота и надежность конструкции;

Способность отапливаться по необходимости твердым, жидким, газообразным топливом (зависит от конструкции топки).

Общий недостаток цилиндрических котлов заключается в высоких напряжениях, возникающих в продольном и поперечном сечениях цилиндрического барабана, которые пропорциональны его диаметру. Именно это обстоятельство препятствует разработке мощных цилиндрических котлов, способных обеспечить более высокие параметры теплоносителя (пара).

Хозяева домов в частном секторе часто сталкиваются с проблемами эффективности . Один из современных способов рационального их решения – монтаж в своем жилище буферной ёмкости. Она способна равномерно распределять тепло по комнатам и экономить деньги и время на обслуживание. Поставить ёмкость собственными руками несложно. В статье собраны советы специалистов по составлению чертежа и подробной схемы, рекомендации по подключению.

Принцип работы и виды буферной ёмкости

Если вы когда-либо видели термос, то поймёте и принцип работы буферной ёмкости. Её еще называют аккумулирующей или тепловым аккумулятором. С виду это бак цилиндрической формы. Стенки внутри него заизолированы поролоном или другим материалом. Это своеобразный посредник, который хранит тепло и равномерно распределяет его по отопительной системе. Это полезно и выгодно по таким причинам:


Внимание! Есть у буферной ёмкости и минусы. Например, при своих габаритах она должна располагаться рядом с котлом. К тому же современный аккумулирующий бак стоит недешево, чтобы окупить его потребуется не менее 2-х лет.

Виды и строение теплоаккумуляторов

Ёмкости различают по материалу, который применяется как термоаккумулирующий:

  • твердотельные;
  • паровые;
  • а также термохимические;
  • жидкостные;
  • с добавочным нагревом.

Вверху бака расположены пара штуцеров (патрубков), предназначенные для совмещения с котлом и всей системой, а также клапаном-предохранителем для спуска лишнего воздуха, если давление в глубине повысится. Внизу есть кран, через который можно спустить воду. Также производитель иногда размещает тут фланцы для монтажа датчика давления и температуры.

Внимание! Ёмкость работает за счет разности давления воды, создаваемой насосом. Встроенный тепловой аккумулятор в разы увеличивает инерционность всей отопительной системы.

Как правильно рассчитать объем

Перед покупкой следует вычислить объем бака, который сможет обеспечить рациональный обогрев вашего дома. Если буферную ёмкость вы монтируете вместе с системой отопления, то для начала соберите данные:

  1. Площадь дома.
  2. Тепловые потери при различных значениях температуры воздуха (кВт/ч).
  3. Объем воды, которая проходит по системе за 1 ч при минимальном значении температуры.
  4. Чтобы использовать ёмкость в периоды отключения котла, посчитайте, на сколько часов максимально вы собираетесь его выключать. Полученное число умножьте на величину из пункта 3.

Если система отопления установлена, тогда рассчитать объем бака легче. В таком случае вы опытным путём можете установить количество воды и временной отрезок между топками в самые холодные периоды (в случае с твердотопливным котлом). Чтобы из этих данных получить подходящий размер ёмкости, просто их перемножьте. Для дома площадью около 200 кв. м, как правило, используется котел мощностью 25-32 кВт. Из описанной формулы объем теплоаккумулятора должен составить 1 тыс. л. Именно такой расход нагретой жидкости в системе нужен при температуре -25 C, хотя в более тёплые дни вам понадобится меньше.

Совет. Не нужно увеличивать объем и покупать бак «с запасом», предполагая, что система может работать некорректно или температура опустится ниже заданного вами минимума. Даже если в вашей местности наступят чересчур сильные морозы, вы всегда можете пустить котел в обход ёмкости.

Покупка буферной ёмкости: что проверить в магазине

Теплоаккумулятор – не сложный для понимания механизм. Однако в заводском баке немало разных нюансов, которые производитель предусмотрел для повышения функциональности. При покупке обратите внимание на такие важные особенности ёмкости:

  1. На какой максимум давления жидкости в системе отопления рассчитаны стенки.
  2. Какова наибольшая потенциальная температура воды для неё.
  3. Из чего она изготовлена. Лучший материал – мягкая углеродистая сталь. Она должна быть покрыта «нержавейкой» или другим непромокаемым слоем.
  4. Имеет ли она изоляцию. Полезное свойство, но не обязательное.

Хороший бак разделен на несколько секций. В них собирается вода разной температуры. Эта опция и позволяет ёмкости равномерно распределять тёплую воду по системе отопления. Она может быть снабжена вспомогательными полезными приспособлениями:

  • электронагреватель;
  • теплообменники для подсоединения к разным источниками или горячей воде;
  • резиновые фланцы.

Совет. Выбирайте только тот котел, который подойдёт по размерам вашей комнаты. Как правило, производители предлагают широкую линейку моделей, объемом от 300 л до 5 тыс. л. Обязательно проверяйте наличие всех сертификатов.

А вот самостоятельно изготавливать буферную ёмкость специалисты не советуют. Вам, как минимум, придётся проводить сварку металла толщиной в 5 мм и вырезать бак в форме сферы (технологическая необходимость для корректной работы). А ещё заводские ёмкости оборудованы змеевиками, которые затем подключаются к водоснабжению и горячей воде. Сделать их своими руками крайне сложно. Купленный бак может быть даже экономичнее по стоимости и временным затратам и, конечно, более надежным.

Подключение буферной емкости

Как подключить буферную ёмкость

Главное правило при подключении аккумулятора тепла – он должен быть вмонтирован в систему параллельно котлу. С помощью верхних патрубков следует включить бак в систему. Один из штуцеров внизу котла следует соединить с самим котлом – на эту обратную магистраль монтируется циркуляционный насос. Второй нижний патрубок крепится к обратной магистрали отопительной системы, на которой также обустроен насос. Кроме того, система допускает наличие двух теплообменников:

Схема подключения буферной емкости

  • вверху бака, для поступления горячей воды;
  • вверху или снизу для подсоединения к добавочным источникам тепла.

Совет. Нередко бывает, что бак рассчитанного вами объёма попросту не помещается в доме. Тогда следует посчитать его объем, снижая до минимального показателя объём циркулирующей в системе воды. Размер бака тоже уменьшится, а вам просто придётся чаще топить котел.

Буферная ёмкость – очень полезное усовершенствование автономной отопительной системы, новый шаг к созданию энергоэффективного жилища. Наибольшая выгода ждёт хозяина: топить котел нужно меньше, времени на другие дела больше, а в доме не будет перепадов температуры.

Тепловой аккумулятор: видео

Буферная емкость для отопления: фото