Как быстро воздух растворяется в воде? Кислород в воде.


Кроме адсорбции на поверхности (§ 258), при соприкосновении тел (например, двух жидкостей или газа и жидкости) молекулы каждого из них могут проникать в объем, занимаемый другим телом. Это проникновение носит название растворения. В результате растворения растворенное тело равномерно распределяется по объему растворителя и только в поверхностном слое в силу адсорбции концентрация проникшего вещества может быть повышенной. Явление растворения есть результат диффузии (§217) по всему объему вещества, адсорбированного в поверхностном слое.

Рассмотрим сначала растворение газов в жидкостях. Нальем в стакан воды из водопровода. Мы увидим, что из воды выделится множество мельчайших пузырьков, которые поднимутся вверх или удержатся около стенок стакана. Откуда взялись эти пузырьки и что в них находится? Это - газы, которые при повышенном давлении, всегда существующем в водопроводных трубах, были растворены в воде в значительном количестве. При вытекании воды из крана давление в ней резко уменьшается. Кроме того, вода из водопровода в комнате обычно начинает нагреваться, так как воздух в комнате теплее. Эти изменения ведут к тому, что равновесие между газами, растворенными в воде, и газами вне ее нарушается и газы начинают выделяться из воды в виде пузырьков. Обычно это те же газы, которые составляют воздух: кислород, азот, углекислый газ и т. д.

При нагревании воды и особенно при кипячении ее растворенные в ней газы удаляются почти полностью. Присутствие газов в сырой воде и отсутствие их в кипяченой воде являются причиной того, что кипяченая и сырая вода отличаются по вкусу.

Наблюдать растворение воздуха в воде можно при помощи опыта, похожего на опыт с адсорбцией газов углем. Прокипятим в течение некоторого времени воду в колбе и дадим ей остыть. Осторожно, не встряхивая колбы, присоединим к ней жидкостный манометр. Теперь встряхнем колбу так, чтобы большая поверхность воды сразу пришла в соприкосновение с воздухом в колбе. Мы увидим, что манометр покажет заметное уменьшение давления воздуха в колбе. Следовательно, часть воздуха поглотилась водой. Однако, после того как мы хорошо взболтаем воду, дальнейшее растворение прекратится. Получится, как говорят, насыщенный раствор.

Как происходит растворение газа в воде? Пусть над водой находится воздух. Тепловое движение молекул приводит к тому, что сквозь границу вода - воздух проходят и молекулы воды и молекулы воздуха. Проникновение молекул воды в воздух есть не что иное, как испарение; рассмотрение этого явления отложим до гл. XVII. Проникновение молекул газов, составляющих воздух, в воду и дальнейшая диффузия их по всему объему воды - это растворение воздуха в воде. Конечно, часть молекул газа, уже проникших в воду, выходит из нее в силу того же теплового движения. Но пока число молекул газа (например, кислорода) в воде незначительно, за единицу времени выходит из воды меньше молекул газа, чем входит в нее из окружающей атмосферы. Таким образом, число молекул газа в воде продолжает увеличиваться, т. е. продолжается растворение газа в жидкости. Когда, наконец, число молекул газа в жидкости станет так велико, что за единицу времени столько же молекул газа успевает выйти из воды, сколько в нее проникает, дальнейшее увеличение числа молекул газа в воде (дальнейшее растворение) прекратится. Полученный раствор носит название насыщенного. В таком случае говорят, что жидкость находится в равновесии с газом.

Здесь слово «равновесие» употребляется в более общем смысле, чем в механике. Мы говорим, что система «вода, воздух, растворенный в ней, и воздух над поверхностью воды» находится в равновесии, если количество растворенного воздуха с течением времени не меняется, хотя отдельные молекулы то входят, то выходят из раствора. Такое равновесие называют подвижным или динамическим (§248). Иногда вместо слова «равновесие» применяют выражение «стационарное состояние».

Масса газа, которая может раствориться в единице объема жидкости, называется растворимостью. Она зависит от температуры и от парциального (§239) давления данного газа над жидкостью. Опыт показывает, что при насыщении масса растворенного в жидкости газа пропорциональна парциальному давлению этого газа над жидкостью (закон Генри). Этим пользуются, например, при газировании воды. При газировании вода приводится в длительное соприкосновение с углекислым газом, имеющим большое давление; поэтому в воде растворяется большое количество углекислого газа. Когда газированную воду наливают в стакан, газ выделяется обильными пузырьками.

Явление растворения газов в жидкости имеет большое значение в водолазном деле. Водолазов, пробывших длительное время на большой глубине, нельзя быстро поднимать на поверхность воды. Кровь водолаза, дышащего воздухом под большим давлением, насыщена азотом (кислород не следует принимать во внимание, так как он быстро связывается с кровью химически). При быстром подъеме азот может выделиться из крови внутри кровеносных сосудов в виде пузырьков и закупорить их, что крайне опасно.

Масса газа, растворенного в жидкости, зависит также от температуры. Мы уже говорили, что, нагревая воду, заставляем выделиться растворенный в ней воздух. Растворимость газа в жидкости при повышении температуры почти всегда уменьшается. В табл. 13 указаны растворимости в воде некоторых газов при различных температурах. Наконец, растворимость, газа зависит от природы жидкости и газа. Например, кислород растворяется в воде в количестве примерно вдвое большем, чем азот. Это обстоятельство имеет большое значение для жизни живых организмов в воде.

Таблица 13. Растворимость в воде некоторых газов при различных температурах (в г/л)

Отметим, что газы могут растворяться также и в твердых телах. Например, некоторые металлы способны растворять определенное количество газов (в особенности водорода), причем скорость диффузии, а следовательно, и растворения увеличивается при повышении температуры. Вследствие этого такие металлы нельзя считать непроницаемыми для газов. Так, например, сильно нагретый металл палладий довольно легко пропускает сквозь себя водород.

Кислород вместе с другими газами, входящими в состав воздуха, легко растворяется в воде.

Сколько же воздуха может раствориться в воде? Говорить о растворимости воздуха в целом нельзя, нужно говорить о растворимости каждой составной части воздуха в отдельности.

Кислород, азот, аргон, двуокись углерода и другие газы обладают различной растворимостью. При одинаковых температуре и давлении чистого кислорода в воде растворится почти в 2 раза больше, чем азота, а углекислого газа - в 35 раз больше, чем кислорода.

Однако существуют общие закономерности для всех газов. Чем выше температура жидкости, тем меньше растворимость газов. В литре чистой воды при нормальном атмосферном давлении, равном 760 миллиметрам ртутного столба, и при температуре 0° растворяется около 50 кубических сантиметров чистого кислорода. А при температуре 30° - примерно в 2 раза меньше. Чистого азота при температуре 0° и нормальном атмосферном давлении растворится 24 кубических сантиметра, а при температуре 30°-14 кубических сантиметров.

Чем выше давление газа над жидкостью, тем больше его растворимость.

Если в закрытом сосуде, наполненном на одну треть водой, создать давление в 2 атмосферы, то газа растворится вдвое больше, чем при 1 атмосфере. И, наоборот: при пониженном давлении газа растворится во столько же раз меньше, во сколько ниже давление.

Два равных объема различных газов, смешанных при давлении в 1 атмосферу, растворяясь в воде, будут вести себя как два самостоятельно существующих газа, находящихся под давлением в У 2 атмосферы. Растворимость каждого из них будет в 2 раза меньше их растворимости при нормальном атмосферном давлении.

Воздух - это смесь газов. Так как в воздухе содержится 21 процент кислорода, то его парциальное давление, то есть та часть давления, которая падает только на кислород, будет в 5 раз меньше давления воздуха. Поэтому кислорода воздуха при нормальном атмосферном давлении растворится в воде в 5 раз меньше, чем чистого кислорода при том же давлении.

В самом деле, если при нормальном давлении и при температуре 0° насытить воду не чистым кислородом, а воздухом, то в литре воды растворится только 10 кубических сантиметров кислорода вместо 50, а азота из воздуха растворится 19 кубических сантиметров вместо 24.

Чтобы растворить газ в воде, его нужно привести в соприкосновение или перемешать с водой; чтобы вытеснить газ из воды, воду нужно подогреть. Доведя температуру воды до 100°, можно почти полностью вытеснить из нее газ.

Возьмите колбу, наполненную доверху водой, закройте ее пробкой, в которую вставлена загнутая стеклянная трубка. Второй конец этой трубки вставьте в стакан с водой и наденьте на этот конец трубки наполненную водой пробирку. Доведите воду в колбе до кипения. В опрокинутой пробирке появится газ, тот самый газ, который был растворен в воде до ее кипячения.

Хотя до кипячения вода соприкасалась только с воздухом, но в силу различной растворимости кислорода и азота состав вытесненного газа будет существенно отличаться от состава обычного воздуха. В него входит 1 объем кислорода и 2 объема азота. А это означает, что в полученном газе кислорода уже не 21, как в воздухе, а 33 процента.

В обыкновенной, неочищенной воде, кроме растворенного газообразного кислорода, имеется еще кислород, входящий в состав растворенных в ней солей. Этот кислород вытеснить кипячением нельзя, так как он прочно связан с каким-нибудь другим элементом.

Чтобы освободить воду от солей, ее нужно перегнать.

Прибор для перегонки состоит из колбы для кипячения воды, холодильника, где конденсируются пары, и приемника, куда стекает дистиллированная вода.

Полученная таким образом вода содержит только растворенные газы, которые можно вытеснить кипячением.

Что же содержится в воде, в которой нет ни солей, ни растворенных газов?

Вода, как и всякое химическое соединение, состоит из однородных молекул.

В состав молекулы воды (Н 2 O) входит 2 атома водорода и 1 атом кислорода, тесно связанные между собой.

Разделить, разорвать молекулу воды на ее составные части нелегко, на это нужно затратить энергию.

Молекулярный вес воды равен 18. Он состоит из 2 атомных весов водорода, равных 2 единицам, и атомного веса кислорода - 16. Следовательно, в молекуле воды содержится около 89 процентов кислорода и около 11 процентов водорода. В килограмме воды насчитывается 890 граммов кислорода.

Это означает, что все реки, моря и океаны состоят главным образом из кислорода.

Вода занимает три четверти земной поверхности.

Но в природе вода встречается не только в жидком виде. В полярных странах и на высоких горах круглый год сохраняются огромные толщи льда и снега. Большие количества воды мы встречаем в воздухе в виде пара.

Животные и растения больше чем наполовину состоят из воды. В человеческом организме, при среднем весе тела 65-70 килограммов, содержится до 40 килограммов воды.

Cтраница 1


Растворенный воздух удаляют из суспензии смолы в буфере путем деаэрирования. Благодаря этому в колонке не образуются воздушные карманы и частички смолы упаковываются равномерно.  

Растворенный воздух не оказывает влияния на скорость распространения упругих волн, поэтому скорость звука а определяется по формуле Кортевега.  

Растворенный воздух следует удалять, пропуская диоксид углерода.  

Растворенный воздух повышает окисляемость минеральных рабочих жидкостей, загрязняя тем самым рабочую жидкость и стабилизируя эмульсию, возникающую при работе гидравлической системы. Одновременно растворенный воздух влияет на физико-химические свойства жидкости, в частности на ее вязкость. Жидкость, содержащая растворенный в ней под избыточным давлением воздух, изменяет свою вязкость как за счет повышения давления, так и за счет увеличения содержания растворенного воздуха. При этом давление увеличивает вязкость, а растворенный воздух, наоборот, уменьшает, влияя на изменение вязкости значительно сильнее, чем давление.  

Растворенный воздух всегда присутствует в охлаждающей воде, однако он может оказывать влияние лишь в том случае, если конденсация осуществляется непосредственным соприкосновением пара и охлаждающей среды. В современных полностью сварных конструкциях установки, а также в результате применения различных коррозионностойких покрытий подсос воздуха в аппарат при обычном вакууме практически отсутствует. Такие подсосы возможны через фланцевые соединения, штоки вентилей и сальники насосов.  


Растворенный воздух увеличивает взрывоопасность масляных паров. При растворении воздуха в масле изменяется соотношение между входящими в состав воздуха газами.  

Растворенный воздух имеет около 33 % кислорода.  


Полностью растворенный воздух практически не влияет на физико-механические свойства масел, однако способствует пенообразованию при понижении давления в системе.  

Удалить растворенный воздух проще всего вакуумированием (- 50 мм рт. ст. или меньше) контейнера с перемешиваемой подвижной фазой, вакуумирование проводите вплоть до видимого выделения пузырьков.  

Удаление растворенного воздуха из сырья необходимо для уменьшения количества накапливающихся инертных rasoiB, вызывающих повышение давления в системе. Это удаление производится в вакуум-деаэраторе перед вводом сырья в фильтры с хлористым кальцием. Так как некоторое проникновение воздуха в систему все же неизбежно, принимают меры для непрерывного вывода его.  

Влияние растворенного воздуха на работу гидравлических устройств наиболее ощутимо проявляется в тех из них, которые содержат значительные объемы, заполненные рабочей жидкостью, давление и температура которой меняются. В электрогидравлических сервомеханизмах такими устройствами являются исполнительные механизмы и соединительные трубопроводы.  

Наличие растворенного воздуха способствует возникновению процессов ионизации, приводящих к разложению пропитывающей жидкости и сокращению срока службы конденсаторов.  

Атмосфера нашей планеты - это уникальная газовая смесь, содержащую азот, кислород, углекислый газ и некоторые другие компоненты. Она называется воздухом. Эта смесь обладает множеством свойств. Все важнейшие физико-химические и биологические процессы, происходящие вокруг нас в живой и неживой природе, полностью обусловлены составом воздуха, и зависимы от него. К ним можно отнести дыхание и горение, фотосинтез и реакции круговорота химических элементов в природе. Эта статья будет посвящена изучению физических и химических свойств газового состава атмосферы.

Также мы рассмотрим, в каких отраслях промышленности, медицины и сельского хозяйства могут быть использованы его физические характеристики. Например, те из них, которые являются наиболее существенными: удельный вес, плотность, упругость и теплопроводность. В статье также будет представлена информация о том, как используют воздух в современных технических приборах и устройствах, созданных с учетом его физических характеристик.

Как выяснили состав воздуха

Газообразная смесь, которой мы дышим, с давних времен трактовалась различными философскими школами как уникальная субстанция, дающая жизнь. У индусов она называлась праной, у китайцев - ци.

В середине 18 века гениальный французский естествоиспытатель А. Лавуазье своими химическими опытами развенчивает ошибочную научную гипотезу о существовании особого вещества - флогистона. Оно, якобы, содержало частицы неизвестной энергии, дающей жизнь всему сущему на Земле. Лавуазье доказал, что состав и свойства воздуха определяются наличием двух основных газов: кислорода и азота. На их долю приходится более 98%. Оставшаяся часть включает углекислый газ, водород, инертные элементы и примеси промышленных отходов, например, газообразные оксиды азота или серы. Изучение свойств компонентов атмосферы послужило для человека стимулом к использованию этой газообразной смеси в различных отраслях техники и в быту.

Воздух и его роль в жизнедеятельности живых организмов

Одним из первых ответов на вопрос, как человек использует свойства воздуха, будет следующий: он необходим нам для дыхания. Попав во время вдоха в верхние дыхательные пути, его порция достигает легких. В капиллярах альвеол кислород диффундирует в кровь. Она поставляет молекулы О 2 в межклеточную жидкость. Кровь непосредственно контактирует с клеточными мембранами, пропускающими кислород прямо в цитоплазму. Получив частицы О 2 , клетка расходует их в метаболических реакциях. В отличие от животных и человека, растения используют элементы атмосферы не только для дыхания, но и для фотосинтетических процессов, извлекая из него углекислый газ.

Состав и свойства воздуха

Пример, иллюстрирующий факт способности элементов атмосферы к поглощению тепловой энергии, проще сказать, к нагреванию, будет таким: если газоотводную трубку предварительно нагретой колбы с притертой пробкой опустить в емкость с холодной водой, то из трубки будут выходить пузырьки воздуха. Нагретая смесь азота и кислорода расширяется, не помещаясь больше в емкости. Часть воздуха выделяется и попадает в воду. При охлаждении колбы, объем газа в ней уменьшается и сжимается, и вода поступает вверх колбы по газоотводной трубке.

Рассмотрим еще один эксперимент, проводимый на уроках природоведения для учащихся 2 класса. Свойства воздуха, например, упругость и давление, наглядно видны, если надутый воздушный шар сжимать ладонями, а затем осторожно проколоть иглой. Резкий хлопок и разлетевшиеся лоскуты демонстрируют детям давление газа. Учащимся можно также объяснить, что эти свойства человек применил в производстве пневматических устройств, например, отбойных молотков, насосов для накачивания велосипедных камер, пневматического оружия.

Физические характеристики воздуха

Прозрачность, отсутствие цвета и запаха газообразной атмосферы, которая нас окружает, из собственного жизненного опыта хорошо известны ученикам 2 класса. Свойства воздуха, например, его легкость и подвижность, можно объяснить ребятам на примере ветровых электростанций. Их строят на возвышенностях и холмах. Ведь скорость движения воздуха зависит от высоты. Такие электростанции безопасны в эксплуатации и не наносят вред окружающей природе.

Как и другие вещества, компоненты атмосферы имеют массу. Для решения задач в курсе неорганической химии принято считать, что относительная молекулярная масса воздуха равна 29. Учитывая эту величину, можно узнать, какие газы легче атмосферы.

К ним относятся, например, гелий, водород. Чтобы создать летательный аппарат, человек проводил эксперименты и изучал свойства воздуха. Опыты увенчались успехом, и первый в мире полет на осуществили французские изобретатели братья Монгольфье уже в XVIII веке. Оболочка их аэростата была заполнена горячей смесью водорода, азота и кислорода.

Дирижабли - более маневренные и лучше управляемые устройства, поднимаются вверх потому, что их оболочки заполняют легкими газами, а именно гелием или водородом. Способность газовой смеси к сжатию человек применяет в таких устройствах, как воздушные тормоза. Ими оснащены автобусы, составы метро, троллейбусы. Приведенные примеры являются наглядной иллюстрацией того, как человек использует свойства воздуха.

Как возникают звуковые ощущения?

Один из важнейших анализаторов нашего организма - слуховой. Он воспринимает в качестве внешних раздражителей колебания, называемые звуковыми волнами. Они давят на барабанную перепонку, вызывая в ней вибрации, которые передаются слуховым косточкам среднего уха. Порция воздуха постоянно находится в полости евстахиевой трубы и выравнивает давление на барабанную перепонку. Это препятствует ее деформации и разрыву, обеспечивая передачу звуковых колебаний во внутреннее ухо, где и происходит возбуждение. По слуховым нервам оно поступает в височную долю коры головного мозга, что вызывает возникновение слуховых ощущений. Подобные примеры показывают нам, как человек использует свойства воздуха для осуществления нормальной жизнедеятельности собственного организма.

Воздух на службе у человека

Различные характеристики атмосферной смеси газов: плотность, удельный вес, теплопроводность, способность к сжатию и движению, широко применяются в нашей промышленности, медицине и в быту. Аппарат искусственного дыхания поставляет смесь обогащенную кислородом, непосредственно в легкие тяжелобольных людей и спасает им жизнь. Пылесос и кондиционер стали давно привычными в нашем обиходе.

Оба эти устройства используют сжатые компоненты атмосферы: пылесос струей втягивает частицы пыли и механических загрязнений с различных поверхностей. Поток холодных газов из кондиционера охлаждает помещение в жару. Эти примеры еще раз демонстрируют возможности того, как человек использует свойства воздуха в своей жизни.

Все жидкости растворяют газы, которые в растворенном (дисперсном) состоянии не оказывают существенного влияния на механические свойства жидкости. Однако, если давление в какой-либо точке объема жидкости уменьшается, газы выделяются из раствора в виде пузырьков, которые ухудшают свойства жидкости. Относительное количество газа, который может раствориться в жидкости до ее насыщения, прямо пропорционально давлению на поверхности раздела. Этот объем можно вычислить по формуле

где V г – объем растворенного газа, отнесенный к атмосферному давлению (760 мм рт. Ст.) и нулевой температуре;

k = – коэффициент растворимости газа в жидкости;

Объем жидкости;

р 1 и р 2 – начальное и конечное давление газа, находящегося в контакте с жидкостью.

Коэффициент растворимости зависит от свойств жидкостей и газов. Воздух растворяется в минеральных маслах, применяемых в гидросистемах машин, в объеме, равном ~10% (k = 0,10) объема жидкости на 1 ат.

Растворимость кислорода в жидкостях выше, чем атмосферного воздуха, ввиду чего растворенный в жидкости воздух содержит кислорода на 40-50% больше чем атмосферный воздух, что интенсифицирует окисление жидкости и разрушение резиновых деталей гидроагрегатов.

Ниже приведены коэффициенты растворимости воздуха k в распространенных жидкостях при 20 0 С

велосит …………………………….0,0959

вазелиновое………………………..0,0877

трансформаторное 12…………….0,0828

индустриальное 12 ……………….0,0759

АМГ-10 ……………………………0,1038

Керосин…………………………………0,1270

Вода……………………………………..0,16

Растворимостью примерно такого же порядка обладает и азот, который широко применяется для наддува жидкостных баков (резервуаров).

Растворимость воздуха в минеральных маслах зависит от сорта масла, уменьшаясь с увеличением его плотности. Для масел с объемным весом, равным 0,82 и 0,9 г/см 3 , коэффициент растворимости k соответственно составляет 0,10 и 0,08.

Растворимость воздуха в маслах малой вязкости несколько выше, чем в маслах высокой вязкости.

С увеличением температуры растворимость воздуха в масле практически сохраняется постоянной. Так, например, коэффициент растворимости воздуха в керосине при температуре - 30° С равен 0,12 и при температуре 20° С он повышается до 0,125.

Последний фактор следует учитывать при проектировании гидросистем, находящихся под давлением газа (воздуха) в усло­виях широкого температурного диапазона, поскольку в результате изменения объема растворенного газа, обусловленного его тепло­вым расширением, может нарушаться условие насыщенности жидкости газом.

Время, в течение которого происходит насыщение масла газом, зависит от величины поверхности раздела, приходящейся на единицу объема масла, а также от степени возмущенности состояния этой поверхности. При интенсивном перемешивании жидкость насыщается в течение одной или нескольких минут, тогда как в спокойном состоянии процесс длится часами.

Рассмотренное свойство жидкости имеет важное значение для работы гидросистемы, так как присутствие газа ухудшает, а во многих случаях может полностью нарушить работу гидросистемы и ее агрегатов. В частности, при наличии газа ускоряется наступление кавитации. Газ, выделившийся из жидкости в местах пониженного давления, может частично заполнить рабочие полости насоса, уменьшая тем самым его производительность и ухудшая режим его работы. Как показали наблюдения, при вакууме у входа в насос, равном 200-250 мм рт. ст., который образуется при определенных условиях в результате сопротивле­ния всасывающей магистрали, наступает помутнение потока минерального масла из-за выделения воздуха; при вакууме 380-400 мм рт. ст. количество выделившегося воздуха становится таким, что резко изменяется окраска масла и образуются видимые глазом пузырьки, и при вакууме в баке 400- 450 мм рт ст. масло, поступающее но трубе из бака в насос, превращается в пену.