Химические свойства водорода: особенности и применение. Водород - это что за вещество? Химические и физические свойства водорода


Водород был открыт во второй половине 18 столетия английским ученым в области физики и химии Г. Кавендишем. Он сумел выделить вещество в чистом состоянии, занялся его изучением и описал свойства.

Такова история открытия водорода. В ходе экспериментов исследователь определил, что это горючий газ, сгорание которого в воздухе дает воду. Это привело к определению качественного состава воды.

Что такое водород

О водороде, как о простом веществе, впервые заявил французский химик А. Лавуазье в 1784 году, поскольку определил, что в состав его молекулы входят атомы одного вида.

Название химического элемента по-латыни звучит как hydrogenium (читается «гидрогениум»), что означает «воду рождающий». Название отсылает к реакции горения, в результате которой образуется вода.

Характеристика водорода

Обозначение водорода Н. Менделеев присвоил этому химическому элементу первый порядковый номер, разместив его в главной подгруппе первой группы и первом периоде и условно в главной подгруппе седьмой группы.

Атомарный вес (атомная масса) водорода составляет 1,00797. Молекулярная масса H 2 равна 2 а. е. Молярная масса численно равна ей.

Представлен тремя изотопами, имеющими специальное название: самый распространенный протий (H), тяжелый дейтерий (D), радиоактивный тритий (Т).

Это первый элемент, который может быть полностью разделен на изотопы простым способом. Основывается он на высокой разнице масс изотопов. Впервые процесс был осуществлен в 1933 году. Объясняется это тем, что лишь в 1932 году был выявлен изотоп с массой 2.

Физические свойства

В нормальных условиях простое вещество водород в виде двухатомных молекул является газом, без цвета, у которого отсутствует вкус и запах. Мало растворим в воде и других растворителях.

Температура кристаллизации — 259,2 о C, температура кипения — 252,8 о C. Диаметр молекул водорода настолько мал, что они обладают способностью к медленной диффузии через ряд материалов (резина, стекло, металлы). Это свойство находит применение, когда требуется очистить водород от газообразных примесей. При н. у. водород имеет плотность, равную 0,09 кг/м3.

Возможно ли превращение водорода в металл по аналогии с элементами, расположенными в первой группе? Учеными установлено, что водород в условиях, когда давление приближается к 2 млн. атмосфер, начинает поглощать инфракрасные лучи, что свидетельствует о поляризации молекул вещества. Возможно, при еще более высоких давлениях, водород станет металлом.

Это интересно: есть предположение, что на планетах-гигантах, Юпитере и Сатурне, водород находится в виде металла. Предполагается, что в составе земного ядра тоже присутствует металлический твердый водород, благодаря сверхвысокому давлению, создаваемому земной мантией.

Химические свойства

В химическое взаимодействие с водородом вступают как простые, так и сложные вещества. Но малую активность водорода требуется увеличить созданием соответствующих условий – повышением температуры, применением катализаторов и др.

При нагревании в реакцию с водородом вступают такие простые вещества, как кислород (O 2), хлор(Cl 2), азот (N 2), сера(S).

Если поджечь чистый водород на конце газоотводной трубки в воздухе, он будет гореть ровно, но еле заметно. Если же поместить газоотводную трубку в атмосферу чистого кислорода, то горение продолжится с образованием на стенках сосуда капель воды, как результат реакции:

Горение воды сопровождается выделением большого количества теплоты. Это экзотермическая реакция соединения, в процессе которой водород окисляется кислородом с образованием оксида H 2 O. Это также и окислительно-восстановительная реакция, в которой водород окисляется, а кислород восстанавливается.

Аналогично происходит реакция с Cl 2 с образованием хлороводорода.

Для осуществления взаимодействия азота с водородом требуется высокая температура и повышенное давление, а также присутствие катализатора. Результатом является аммиак.

В результате реакции с серой образуется сероводород, распознавание которого облегчает характерный запах тухлых яиц.

Степень окисления водорода в этих реакциях +1, а в гидридах, описываемых ниже, – 1.

При реакции с некоторыми металлами образуются гидриды, например, гидрид натрия – NaH. Некоторые из этих сложных соединений используются в качестве горючего для ракет, а также в термоядерной энергетике.

Водород реагирует и с веществами из категории сложных. Например, с оксидом меди (II), формула CuO. Для осуществления реакции, водород меди пропускается над нагретым порошкообразным оксидом меди (II). В ходе взаимодействия реагент меняет свой цвет и становится красно-коричневым, а на холодных стенках пробирки оседают капельки воды.

Водород в ходе реакции окисляется, образуя воду, а медь восстанавливается из оксида до простого вещества (Cu).

Области применения

Водород имеет большое значение для человека и находит применение в самых разных сферах:

  1. В химическом производстве – это сырье, в других отраслях – топливо. Не обходятся без водорода и предприятия нефтехимии и нефтепереработки.
  2. В электроэнергетике это простое вещество выполняет функцию охлаждающего агента.
  3. В черной и цветной металлургии водороду отводится роль восстановителя.
  4. Сего помощью создают инертную среду при упаковке продуктов.
  5. Фармацевтическая промышленность — пользуется водородом как реагентом в производстве перекиси водорода.
  6. Этим легким газом наполняют метеорологические зонды.
  7. Известен этот элемент и в качестве восстановителя топлива для ракетных двигателей.

Ученые единодушно пророчат водородному топливу пальму первенства в энергетике.

Получение в промышленности

В промышленности водород получают методом электролиза, которому подвергают хлориды либо гидроксиды щелочных металлов, растворенные в воде. Также можно получать водород этим способом непосредственно из воды.

Используется в этих целях конверсия кокса или метана с водяным паром. Разложение метана при повышенной температуре также дает водород. Сжижение коксового газа фракционным методом тоже применяется для промышленного получения водорода.

Получение в лаборатории

В лаборатории для получения водорода используют аппарат Киппа.

В качестве реагентов выступают соляная или серная кислота и цинк. В результате реакции образуется водород.

Нахождение водорода в природе

Водород чаще других элементов встречается во Вселенной. Основную массу звезд, в том числе Солнца, и иных космических тел составляет водород.

В земной коре его всего 0,15%. Он присутствует во многих минералах, во всех органических веществах, а также в воде, покрывающей на 3/4 поверхность нашей планеты.

В верхних слоях атмосферы можно обнаружить следы водорода в чистом виде. Находят его и в ряде горючих природных газов.

Газообразный водород является самым неплотным, а жидкий – самым плотным веществом на нашей планете. С помощью водорода можно изменить тембр голоса, если вдохнуть его, а на выдохе заговорить.

В основе действия самой мощной водородной бомбы лежит расщепление самого легкого атома.

Самым распространённым химическим элементом во Вселенной является водород. Это в своём роде точка отсчёта, потому что в таблице Менделеева его атомное число равняется единице. Человечество надеется, что сможет узнать о нём побольше как об одном из самых возможных транспортных средств в грядущем. Водород - это самый простой, самый лёгкий, самый распространённый элемент, его много повсюду - семьдесят пять процентов от всей массы вещества. Он есть в любой звезде, особенно много водорода в газовых гигантах. Его роль в звёздных реакциях синтеза является ключевой. Без водорода нет воды, а значит - нет и жизни. Все помнят, что молекула воды содержит один атом кислорода, а два атома в ней - водород. Это всем известная формула Н 2 О.

Как мы его используем

Обнаружил водород в 1766 году Генри Кавендиш, когда анализировал реакцию окисления металла. Через несколько лет наблюдений он понял, что в процессе горения водорода происходит образование воды. Ранее учёные выделяли этот элемент, но самостоятельным его не считали. В 1783 году водород получил имя гидроген (в переводе с греческого "гидро" - вода, а "ген" - рождать). Элемент, порождающий воду, - водород. Это газ, молекулярная формула которого Н 2 . Если температура близка к комнатной, а давление нормальное, этот элемент неощутим. Водород можно даже не уловить человеческими органами чувств - он безвкусен, не имеет цвета, лишён запаха. А вот под давлением и при температуре -252,87 С (очень большой холод!) этот газ разжижается. Так его и хранят, поскольку в виде газа он занимает гораздо больше места. Именно жидкий водород используют как ракетное топливо.

Водород может становиться твёрдым, металлическим, но для этого давление необходимо сверхвысокое, именно этим сейчас и занимаются самые видные учёные - физики и химики. Уже сейчас этот элемент служит альтернативным топливом для транспорта. Применение его похоже на то, как работает двигатель внутреннего сгорания: когда сжигают водород, высвобождается много его химической энергии. Также практически разработан способ создания топливного элемента на его основе: при соединении с кислородом происходит реакция, а посредством этого образуются вода и электричество. Возможно, скоро транспорт "пересядет" вместо бензина на водород - масса автомобилестроителей интересуется созданием альтернативных горючих материалов, есть и успехи. Но чисто водородный двигатель пока в перспективе, здесь множество трудностей. Однако и преимущества таковы, что создание топливного бака с твёрдым водородом идёт полным ходом, и учёные и инженеры отступать не собираются.

Основные сведения

Hydrogenium (лат.) - водород, первый порядковый номер в таблице Менделеева, обозначается Н. Атом водорода имеет массу 1,0079, это газ, не имеющий при обычных условиях ни вкуса, ни запаха, ни цвета. Химики с шестнадцатого века описывали некий горючий газ, обозначая его по-разному. Но получался он у всех при одинаковых условиях - когда на металл воздействует кислота. Водород даже самим Кавендишем много лет назывался просто "горючий воздух". Лишь в 1783 году Лавуазье доказал, что вода имеет сложный состав, путём синтеза и анализа, а через четыре года он же и дал "горючему воздуху" его современное название. Корень этого сложного слова широко употребляется, когда нужно называть соединения водорода и какие-либо процессы, в которых он участвует. Например, гидрогенизация, гидрид и тому подобное. А русское название предложил в 1824 году М. Соловьёв.

В природе распространение этого элемента не имеет равных. В литосфере и гидросфере земной коры его масса - один процент, зато атомов водорода - целых шестнадцать процентов. Наиболее распространена на Земле вода, и 11,19% по массе в ней - водород. Также он непременно присутствует практически во всех соединениях, из которых состоят нефть, уголь, все природные газы, глина. Есть водород и во всех организмах растений и животных - в составе белков, жиров, нуклеиновых кислот, углеводов и так далее. Свободное состояние для водорода не характерно и почти не встречается - его очень немного в природных и вулканических газах. Совсем ничтожный объем водорода в атмосфере - 0,0001%, по количеству атомов. Зато целые потоки протонов представляют водород в околоземном пространстве, из него состоит внутренний радиационный пояс нашей планеты.

Космос

В космосе ни один элемент не встречается так часто, как водород. Объем водорода в составе элементов Солнца - более половины его массы. Большинство звёзд образует водород, находящийся в виде плазмы. Основная часть разнообразных газов туманностей и межзвёздной среды тоже состояит из водорода. Он присутствует в кометах, в атмосфере целого ряда планет. Естественно, не в чистом виде, - то как свободный Н 2 , то как метан СН 4 , то как аммиак NH 3 , даже как вода Н 2 О. Очень часто встречаются радикалы СН, NH, SiN, OH, РН и тому подобные. Как поток протонов водород является частью корпускулярного солнечного излучения и космических лучей.

В обычном водороде смесь двух устойчивых изотопов - это лёгкий водород (или протий 1 Н) и тяжёлый водород (или дейтерий - 2 Н или D). Есть и другие изотопы: радиоактивный тритий - 3 Н или Т, иначе - сверхтяжёлый водород. А ещё очень неустойчивый 4 Н. В природе соединение водорода содержит изотопы в таких пропорциях: на один атом дейтерия приходится 6800 атомов протия. Тритий образуется в атмосфере из азота, на который воздействуют нейтроны космических лучей, но ничтожно мало. Что обозначают числа массы изотопов? Цифра указывает, что ядро протия - только с одним протоном, а у дейтерия в ядре атома не только протон, но и нейтрон. У трития в ядре к одному протону уже два нейтрона. А вот 4 Н содержит три нейтрона на один протон. Поэтому физические свойства и химические у изотопов водорода очень сильно отличаются по сравнению с изотопами всех других элементов, - слишком большое различие масс.

Строение и физические свойства

По строению атом водород наиболее прост по сравнению со всеми другими элементами: одно ядро - один электрон. Потенциал ионизации - энергия связи ядра с электроном - 13,595 электронвольт (eV). Именно из-за простоты этого строения атом водорода удобен как модель в квантовой механике, когда нужно рассчитать энергетические уровни более сложных атомов. В молекуле Н 2 - два атома, которые соединены химической ковалентной связью. Энергия распада очень велика. Атомарный водород может образоваться в химических реакциях, например цинка и соляной кислоты. Однако взаимодействие с водородом практически не происходит - атомарное состояние водорода очень коротко, атомы сразу рекомбинируют в молекулы Н 2 .

С физической точки зрения водород легче всех известных веществ - более чем в четырнадцать раз легче воздуха (вспомним улетающие воздушные шарики на праздниках - внутри у них как раз водород). Однако он умеет кипеть, сжижаться, плавиться, затвердевать, и только гелий кипит и плавится при более низких температурах. Сжижать его сложно, нужна температура ниже -240 градусов по Цельсию. Зато теплопроводность он имеет очень высокую. В воде почти не растворяется, зато прекрасно происходит взаимодействие с водородом металлов - он растворяется почти во всех, лучше всего в палладии (на один его объем водорода уходит восемьсот пятьдесят объемов). Жидкий водород лёгок и текуч, а когда растворяется в металлах, часто разрушает сплавы из-за взаимодействия с углеродом (сталь, например), происходит диффузия, декарбонизация.

Химические свойства

В соединениях по большей части водород показывает степень окисления (валентность) +1, как натрий и другие щелочные металлы. Его и рассматривают как их аналог, стоящий во главе первой группы системы Менделеева. Но ион водорода в гидридах металлов заряжен отрицательно, со степенью окисления -1. Также этот элемент близок к галогенам, которые даже способны замещать его в органических соединениях. Значит, водород можно отнести и к седьмой группе системы Менделеева. В обычных условиях молекулы водорода активностью не отличаются, соединяясь только с самыми активными неметаллами: хорошо с фтором, а если светло - с хлором. Но при нагревании водород становится другим - он со многими элементами вступает в реакцию. Атомарный водород по сравнению с молекулярным очень активен химически, так в связи с кислородом образуется вода, а попутно выделяется энергия и тепло. При комнатной температуре эта реакция очень медленная, зато при нагревании выше пятисот пятидесяти градусов получается взрыв.

Используется водород для восстановления металлов, потому что у их оксидов он отнимает кислород. Со фтором водород образует взрыв даже в темноте и при минус двухсот пятидесяти двух градусах по Цельсию. Хлор и бром возбуждают водород только при нагревании или освещении, а йод - только при нагревании. Водород с азотом образует аммиак (так производятся большинство удобрений). При нагревании он очень активно взаимодействует с серой, и получается сероводород. С теллуром и селеном вызвать реакцию водорода трудно, а с чистым углеродом реакция происходит при очень высоких температурах, и получается метан. С оксидом углерода водород образует разные органические соединения, здесь влияют давление, температура, катализаторы, и всё это имеет огромное практическое значение. И вообще, роль водорода, а также и его соединений исключительно велика, поскольку он даёт кислотные свойства протонным кислотам. Со многими элементами образуется водородная связь, влияющая на свойства и неорганических и органических соединений.

Получение и применение

Получают водород в промышленных масштабах из природных газов - горючих, коксового, газов переработки нефти. Также его можно получить методом электролиза там, где электроэнергия не слишком дорога. Однако важнейшим способом производства водорода является каталитическое взаимодействие углеводородов, по большей части метана, с водяным паром, когда получается конверсия. Также широко применяется и способ окисления углеводородов кислородом. Добыча водорода из природного газа является самым дешёвым способом. Другие два - использование коксового газа и газа нефтепереработки - водород выделяется, когда сжижаются остальные компоненты. Они более легко поддаются сжижению, а для водорода, как мы помним, нужно -252 градуса.

Очень популярна в использовании перекись водорода. Лечение этим раствором применяется очень часто. Молекулярную формулу Н 2 О 2 вряд ли назовут все те миллионы людей, которые хотят быть блондинками и осветляют себе волосы, а также и те, кто любит чистоту на кухне. Даже те, кто обрабатывает царапины, полученные от игры с котёнком, чаще всего не отдают себе отчёта, что применяют лечение водородом. Зато все знают историю: с 1852 года водород долгое время использовался в воздухоплавании. Дирижабль, изобретённый Генри Гиффардом, был создан на основе водорода. Их называли цеппелинами. Вытеснило цеппелины с небесных просторов стремительное развитие самолётостроения. В 1937 году произошла крупная авария, когда сгорел дирижабль "Гинденбург". После этого случая цеппелины более не использовались никогда. Зато в конце восемнадцатого века распространение воздушных шаров, наполненных водородом, было повсеместным. Помимо производства аммиака, сегодня водород необходим для изготовления метилового спирта и других спиртов, бензина, гидрогенизированного тяжёлого жидкого топлива и твёрдого топлива. Не обойтись без водорода при сварке, при резке металлов - она может быть кислородно-водородной и атомно-водородной. А тритий и дейтерий дают жизнь атомной энергетике. Это, как мы помним, изотопы водорода.

Неумывакин

Водород как химический элемент настолько хорош, что у него не могли не появиться собственные фанаты. Иван Павлович Неумывакин - доктор медицинских наук, профессор, лауреат Государственной премии и ещё много у него званий и наград, - в их числе. Будучи врачом традиционной медицины, он назван лучшим народным целителем России. Именно он разрабатывал многие методы и принципы оказания медицинской помощи космонавтам, находящимся в полёте. Именно он создал уникальный стационар - больницу на борту космического судна. В то же самое время был государственным координатором направления косметической медицины. Космос и косметика. Его увлечение водородом направлено не на то, чтобы сделать большие деньги, как это сейчас бытует в отечественной медицине, а напротив - научить народ вылечиваться от чего угодно буквально копеечным средством, без дополнительного посещения аптек.

Он пропагандирует лечение препаратом, который присутствует буквально в каждом доме. Это - перекись водорода. Неумывакина можно сколько угодно критиковать, он всё равно будет настаивать на своём: да, действительно, перекисью водорода можно вылечить буквально всё, потому что она насыщает внутренние клетки организма кислородом, разрушает токсины, нормализует кислотное и щелочное равновесие, а отсюда регенерируются ткани, омолаживается весь организм. Вылечившихся перекисью водорода пока ещё никто не видел и тем более не обследовал, однако Неумывакин утверждает, что, пользуясь этим средством, можно полностью избавиться от вирусных, бактериальных и грибковых заболеваний, предупредить развитие опухолей и атеросклероза, победить депрессию, омолодить организм и никогда не болеть ОРВИ и простудой.

Панацея

Иван Павлович уверен, что при грамотном использовании этого простейшего препарата и при соблюдении всех нехитрых инструкций можно победить очень многие болезни, среди которых и очень серьёзные. Список их огромен: от пародонтоза и ангины до инфарктов миокарда, инсультов и сахарного диабета. Такие пустяки, как гайморит или остеохондроз, улетают с первых сеансов лечения. Даже раковые опухоли пугаются и бегут от перекиси водорода, потому что стимулируется иммунитет, жизнь организма и его защита активизируются.

Лечить таким образом можно даже детей, разве что беременным женщинам лучше пока от употребления перекиси водорода воздержаться. Также не рекомендуется данный метод людям с пересаженными органами из-за возможной несовместимости тканей. Дозировка должна соблюдаться чётко: от одной капли до десяти, прибавляя по одной каждый день. Трижды в день (тридцать капель трёхпроцентного раствора перекиси водорода в сутки, ого!) за полчаса до еды. Можно вводить раствор внутривенно и под наблюдением врача. Иногда перекись водорода комбинируют для более действенного эффекта с другими препаратами. Внутрь раствор применяют только в разведённом виде - с чистой водой.

Наружно

Компрессы и полоскания ещё до создания профессором Неумывакиным его методики были весьма популярны. Все знают, что так же, как и спиртовые компрессы, в чистом виде перекись водорода применять нельзя, потому что получится ожог тканей, а вот бородавки или грибковые поражения смазывают локально и крепким раствором - до пятнадцати процентов.

При кожных высыпаниях, при головных болях тоже делают процедуры, в которых участвует перекись водорода. Компресс нужно делать с помощью хлопковой ткани, смоченной в растворе из двух чайных ложек трёхпроцентной перекиси водорода и пятидесяти миллиграммов чистой воды. Ткань накрыть плёнкой и укутать шерстью или полотенцем. Время действия компресса от четверти часа до полутора часов утром и вечером до выздоровления.

Мнение врачей

Мнения разделились, далеко не всех восхищают свойства перекиси водорода, более того, им не только не верят, над ними смеются. Находятся среди медиков и те, кто поддержал Неумывакина и даже подхватил развитие его теории, но их меньшинство. Большая часть врачей считает такого плана лечение не только неэффективным, но и часто губительным.

И правда, не существует пока официально ни единого доказанного случая, когда пациент вылечился бы перекисью водорода. Одновременно нет сведений и об ухудшении состояния здоровья в связи с применением этого метода. А вот время драгоценное теряется, и человек, получивший одно из серьёзных заболеваний и полностью положившийся на панацею Неумывакина, рискует опоздать к началу своего настоящего традиционного лечения.

Занимает первое место в периодической системе химических элементов Менделеева и обозначается символом H.

  • Водород - самый маленький и распространённый элемент во Вселенной. На его долю приходится около 88,6 % всех атомов. Таким образом, - основная составная часть звёзд и межзвёздного газа.
  • В больших количествах обнаружен в звездах и планетах типа «газовый гигант». Он играет ключевую роль в протекающих в звездах реакциях синтеза.
  • Простое вещество водород - H2 - самый лёгкий газ, он легче воздуха в 14,5 раз.
  • При комнатной температуре и нормальном давлении водород в виде газа не имеет вкуса, цвета и запаха.
  • Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.
  • А. Л. Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ - «вода» и γεννάω - «рождаю») - «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году - по аналогии с «кислородом» М. В. Ломоносова
  • В 2007 году : молекулярный водород имеет высокий терапевтический потенциал для организма человека.
  • оздоравливает организм на клеточном уровне, повышает иммунитет и жизненный тонус организма, оказывает профилактическое и лечебное действие при множестве самых различных заболеваний, включая хронические, омолаживает организм и препятствует преждевременному старению.
  • На сегодняшний день о пользе водороде для организма человека написано более чем 600 научных и медицинских статей.
  • Наиболее простой и эффективный способ употребления водорода в лечебно-профилактических целях — в виде .
  • полезна и безопасна для людей любого возраста и не имеет побочных эффектов. Она имеет нейтральный либо слабощелочной и высоко отрицательный , являясь идеальным напитком для употребления человеком.
  • Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения, проникая во все клетки и ткани тела человека.
  • Водород — самый мощный . В результате ликвидации водородом вредных в организме человека образуется вода. Другие антиоксиданты, при аналогичной реакции, образуют вредные побочные отходы.
  • Водород является одним из двух элементов, из которых состоит (H2O). Каждая молекула воды содержит два атома водорода и один атом кислорода.
  • Для увеличения концентрации молекулярного водорода в воде используют метод , т.е. разложение воды на водород и кислород под действием постоянного тока. Такая вода становится лечебной, обладает терапевтическим потенциалом. Уже существуют, в домашних условиях.
  • Под давлением и при сильном холоде (-252,87 градусах по Цельсию) водород переходит в жидкое состояние. Хранимый в этом состоянии водород занимает меньше места, чем в своей «нормальной» газообразной форме. Жидкий водород используется, в том числе, и в качестве ракетного топлива.
  • При сверхвысоком давлении переходит в твердое состояние и становится металлическим водородом. В этом направлении ведутся научные исследования.
  • Водород используется в качестве альтернативного топлива для транспорта. Химическая энергия водорода высвобождается при его сжигании способом, подобным тому, который применяется в традиционных двигателях внутреннего сгорания. На его основе также создаются топливные элементы, в которых задействован процесс образования воды и электричества путем осуществления химической реакции водорода с кислородом.
  • Водород зарегистрирован в качестве пищевой добавки E949 (упаковочный газ, класс «Прочие»). Входит в список пищевых добавок, допустимых к применению в пищевой промышленности Российской Федерации в качестве вспомогательного средства для производства пищевой продукции.
  • Читайте статью и заходите на сайт www.h2miraclewater-russia.ru для получения более подробной информации о водородных аппаратах и водородной воде.

    Водород H — самый распространённый элемент во Вселенной (около 75 % по массе), на Земле — девятый по распространенности. Наиболее важным природным соединением водорода является вода.
    Водород занимает первое место в периодической системе (Z = 1). Он имеет простейшее строение атома: ядро атома – 1 протон, окружено электронным облаком, состоящим из 1 электрона.
    В одних условиях водород проявляет металлические свойства (отдает электрон), в других - неметаллические (принимает электрон).
    В природе встречаются изотопы водорода: 1Н — протий (ядро состоит из одного протона), 2Н — дейтерий (D — ядро состоит из одного протона и одного нейтрона), 3Н — тритий (Т — ядро состоит из одного протона и двух нейтронов).

    Простое вещество водород

    Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью.
    Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы. Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
    Водород легче воздуха, D (по воздуху) = 0,069; незначительно растворяется в воде (в 100 объемах H2O растворяется 2 объема H2). Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

    Получение водорода

    В лаборатории :

    1.Действие разбавленных кислот на металлы:
    Zn +2HCl → ZnCl 2 +H 2

    2.Взаимодействие щелочных и щ-з металлов с водой:
    Ca +2H 2 O → Ca(OH) 2 +H 2

    3.Гидролиз гидридов: гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:
    NaH +H 2 O → NaOH +H 2
    СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

    4.Действие щелочей на цинк или алюминий или кремний:
    2Al +2NaOH +6H 2 O → 2Na +3H 2
    Zn +2KOH +2H 2 O → K 2 +H 2
    Si + 2NaOH + H 2 O → Na 2 SiO 3 + 2H 2

    5. Электролиз воды. Для увеличения электрической проводимости воды к ней добавляют электролит, например NаОН, Н 2 SO 4 или Na 2 SO 4 . На катоде образуется 2 объема водорода, на аноде - 1 объем кислорода.
    2H 2 O → 2H 2 +О 2

    Промышленное получение водорода

    1. Конверсия метана с водяным паром, Ni 800 °С (самый дешевый):
    CH 4 + H 2 O → CO + 3 H 2
    CO + H 2 O → CO 2 + H 2

    В сумме:
    CH 4 + 2 H 2 O → 4 H 2 + CO 2

    2. Пары воды через раскаленный кокс при 1000 о С:
    С + H 2 O → CO + H 2
    CO +H 2 O → CO 2 + H 2

    Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

    3. Нагреванием метана до 350°С в присутствии железного или нике­левого катализатора:
    СH 4 → С + 2Н 2

    4. Электролизом водных растворов KCl или NaCl, как побочный продукт:
    2Н 2 О + 2NaCl→ Cl 2 + H 2 + 2NaOH

    Химические свойства водорода

    • В соединениях водород всегда одновалентен. Для него характерна степень окисления +1, но в гидридах металлов она равна -1.
    • Молекула водорода состоит из двух атомов. Возникновение связи между ними объясняется образованием обобщен­ной пары электронов Н:Н или Н 2
    • Благодаря этому обобщению электронов молекула Н 2 более энергети­чески устойчива, чем его отдельные атомы. Чтобы разорвать в 1 моль водорода молекулы на атомы, необходимо затратить энергию 436 кДж: Н 2 = 2Н, ∆H° = 436 кДж/моль
    • Этим объясняется сравнительно небольшая активность молекулярного водорода при обычной температуре.
    • Со многими неметаллами водород образует газообразные соедине­ния типа RН 4 , RН 3 , RН 2 , RН.

    1) С галогенами образует галогеноводороды:
    Н 2 + Cl 2 → 2НСl.
    При этом с фтором — взрывается, с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

    2) С кислородом:
    2Н 2 + О 2 → 2Н 2 О
    с выделением тепла. При обычных температурах реакция протекает медленно, выше 550°С — со взрывом. Смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом.

    3) При нагревании энергично реагирует с серойь(значительно труднее с селеном и теллуром):
    Н 2 + S → H 2 S (сероводород),

    4) С азотом с образованием аммиака лишь на катализаторе и при повышенных температурах и давлениях:
    ЗН 2 + N 2 → 2NН 3

    5) С углеродом при высоких температурах:
    2Н 2 + С → СН 4 (метан)

    6) С щелочными и щелочноземельными металлами образует гидриды (водород – окислитель):
    Н 2 + 2Li → 2LiH
    в гидридах металлов ион водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na + H — построен подобно хлориду Na + Cl —

    Со сложными веществами:

    7) С оксидами металлов (используется для восстановления металлов):
    CuO + H 2 → Cu + H 2 O
    Fe 3 O 4 + 4H 2 → 3Fe + 4Н 2 О

    8) с оксидом углерода (II):
    CO + 2H 2 → CH 3 OH
    Синтез — газ (смесь водорода и угарного газа) имеет важное практическое значение, тк в зависимости от температуры, давления и катализатора образуются различные органические соединения, например НСНО, СН 3 ОН и другие.

    9)Ненасыщенные углеводороды реагируют с водородом, переходя в насыщенные:
    С n Н 2n + Н 2 → С n Н 2n+2 .


    В трудах химиков 16 и 17 веков неоднократно упоминалось о выделении горючего газа при действии кислот на металлы. В 1766 году Г. Кавендиш собрал и исследовал выделяющийся газ, назвав его "горючий воздух". Будучи сторонником теории флогистона, Кавендиш полагал, что этот газ и есть чистый флогистон. В 1783 году А. Лавуазье путем анализа и синтеза воды доказал сложность ее состава, а в 1787 определил "горючий воздух" как новый химический элемент (Водород) и дал ему современное название hydrogene (от греч. hydor - вода и gennao - рождаю), что означает "рождающий воду"; этот корень употребляется в названиях соединений Водорода и процессов с его участием (например, гидриды, гидрогенизация). Современное русское наименование "Водород" было предложено М. Ф. Соловьевым в 1824 году.

    Распространение Водорода в природе. Водород широко распространен в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. Водород входит в состав самого распространенного вещества на Земле - воды (11,19% Водорода по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (то есть в состав белков, нуклеиновых кислот, жиров, углеводов и других). В свободном состоянии Водород встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного Водорода (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве Водород в виде потока протонов образует внутренний ("протонный") радиационный пояс Земли. В космосе Водород является самым распространенным элементом. В виде плазмы он составляет около половины массы Солнца и большинства звезд, основную часть газов межзвездной среды и газовых туманностей. Водород присутствует в атмосфере ряда планет и в кометах в виде свободного Н 2 , метана СН 4 , аммиака NH 3 , воды Н 2 О, радикалов типа CH, NH, OH, SiH, PH и т. д. В виде потока протонов Водород входит в состав корпускулярного излучения Солнца и космических лучей.

    Изотопы, атом и молекула Водорода. Обыкновенный Водород состоит из смеси 2 устойчивых изотопов: легкого Водорода, или протия (1 H), и тяжелого Водорода, или дейтерия (2 Н, или D). В природных соединениях Водорода на 1 атом 2 Н приходится в среднем 6800 атомов 1 Н. Радиоактивный изотоп с массовым числом 3 называют сверхтяжелым Водородом, или тритием (3 Н, или Т), с мягким β-излучением и периодом полураспада T ½ = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4·10 -15 % от общего числа атомов Водорода). Получен крайне неустойчивый изотоп 4 Н. Массовые числа изотопов 1 Н, 2 Н, 3 Н и 4 Н, соответственно 1, 2, 3 и 4, указывают на то, что ядро атома протия содержит только один протон, дейтерия - один протон и один нейтрон, трития - один протон и 2 нейтрона, 4 Н - один протон и 3 нейтрона. Большое различие масс изотопов Водорода обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

    Атом Водорода имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв. Нейтральный атом Водород может присоединять и второй электрон, образуя отрицательный ион Н - при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв. Квантовая механика позволяет рассчитать все возможные энергетические уровни атома Водород, а следовательно, дать полную интерпретацию его атомного спектра. Атом Водорода используется как модельный в квантовомеханических расчетах энергетических уровней других, более сложных атомов.

    Молекула Водород Н 2 состоит из двух атомов, соединенных ковалентной химической связью. Энергия диссоциации (то есть распада на атомы) составляет 4,776 эв. Межатомное расстояние при равновесном положении ядер равно 0,7414Å. При высоких температурах молекулярный Водород диссоциирует на атомы (степень диссоциации при 2000°С 0,0013, при 5000°С 0,95). Атомарный Водород образуется также в различных химических реакциях (например, действием Zn на соляную кислоту). Однако существование Водорода в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы Н 2 .

    Физические свойства Водорода. Водород - легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°С и 1 атм. Водород кипит (сжижается) и плавится (затвердевает) соответственно при -252,8°С и -259,1°С (только гелий имеет более низкие температуры плавления и кипения). Критическая температура Водорода очень низка (-240°С), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см 2 (12,8 атм), критическая плотность 0,0312 г/см 3 . Из всех газов Водород обладает наибольшей теплопроводностью, равной при 0°С и 1 атм 0,174 вт/(м·К), то есть 4,16·10 -4 кал/(с·см·°С). Удельная теплоемкость Водорода при 0°С и 1 атм С p 14,208 кДж/(кг·К), то есть 3,394 кал/(г·°С). Водород мало растворим в воде (0,0182 мл/г при 20°С и 1 атм), но хорошо - во многих металлах (Ni, Pt, Pa и других), особенно в палладии (850 объемов на 1 объем Pd). С растворимостью Водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия Водорода с углеродом (так называемая декарбонизация). Жидкий Водород очень легок (плотность при -253°С 0,0708 г/см 3) и текуч (вязкость при -253°С 13,8 спуаз).

    Химические свойства Водорода. В большинстве соединений Водород проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий I группу системы Менделеева. Однако в гидридах металлов ион Водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na + H - построен подобно хлориду Na + Cl - . Этот и некоторые других факты (близость физических свойств Водорода и галогенов, способность галогенов замещать Водород в органических соединениях) дают основание относить Водород также и к VII группе периодической системы. При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный Водород обладает повышенной химические активностью по сравнению с молекулярным. С кислородом Водород образует воду:

    Н 2 + 1 / 2 О 2 = Н 2 О

    с выделением 285,937 кДж/моль, то есть 68,3174 ккал/моль тепла (при 25°С и 1 атм). При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объему) от 4 до 94% Н 2 , а водородо-воздушной смеси - от 4 до 74% Н 2 (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом). Водород используется для восстановления многих металлов, так как отнимает кислород у их оксидов:

    CuO + H 2 = Cu + H 2 O,

    Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

    С галогенами Водород образует галогеноводороды, например:

    Н 2 + Cl 2 = 2НСl.

    При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом Водород взаимодействует с образованием аммиака:

    ЗН 2 + N 2 = 2NН 3

    лишь на катализаторе и при повышенных температуpax и давлениях. При нагревании Водород энергично реагирует с серой:

    Н 2 + S = H 2 S (сероводород),

    значительно труднее с селеном и теллуром. С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

    2Н 2 + С (аморфный) = СН 4 (метан).

    Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя гидриды:

    Н 2 + 2Li = 2LiH.

    Важное практическое значение имеют реакции Водорода с оксидом углерода (II), при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например НСНО, СН 3 ОН и другие. Ненасыщенные углеводороды реагируют с Водородом, переходя в насыщенные, например:

    С n Н 2n + Н 2 = С n Н 2n+2 .

    Роль Водород и его соединений в химии исключительно велика. Водород обусловливает кислотные свойства так называемых протонных кислот. Водород склонен образовывать с некоторыми элементами так называемую водородную связь, оказывающую определяющее влияние на свойства многих органических и неорганических соединений.

    Получение Водорода. Основные виды сырья для промышленного получения Водорода - газы природные горючие, коксовый газ и газы нефтепереработки. Водород получают также из воды электролизом (в местах с дешевой электроэнергией). Важнейшими способами производства Водорода из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия):

    СН 4 + H 2 О = СО + ЗН 2 ,

    и неполное окисление углеводородов кислородом:

    СН 4 + 1 / 2 О 2 = СО + 2Н 2

    Образующийся оксид углерода (II) также подвергается конверсии:

    СО + Н 2 О = СО 2 + Н 2 .

    Водород, добываемый из природного газа, самый дешевый.

    Из коксового газа и газов нефтепереработки Водород выделяют путем удаления остальных компонентов газовой смеси, сжижаемых более легко, чем Водород, при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор КОН или NaOH (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях Водород получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской Водород в баллонах.

    Применение Водорода. В промышленном масштабе Водород стали получать в конце 18 века для наполнения воздушных шаров. В настоящее время Водород широко применяют в химической промышленности, главным образом для производства аммиака. Крупным потребителем Водорода является также производство метилового и других спиртов, синтетического бензина и других продуктов, получаемых синтезом из Водорода и оксида углерода (II). Водород применяют для гидрогенизации твердого и тяжелого жидкого топлив, жиров и других, для синтеза HCl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы Водорода - дейтерий и тритий.