Влажная стерилизация. Стерилизация: понятия, методы, режимы


МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Стерилизация ОФС.1.1.0016.15

Взамен ст. ГФ XI , вып.2

Настоящая общая фармакопейная статья устанавливает методы и условия стерилизации, используемые при получении стерильных лекарственных средств.

Под стерильностью понимают отсутствие жизнеспособных микроорганизмов и их спор.

Стерилизация – это валидируемый процесс, используемый при получении стерильных лекарственных форм для освобождения продукта, оборудования, вспомогательных веществ и упаковки от живых микроорганизмов и их спор.

При изменении условий стерилизации, в том числе при изменении объема загрузки стерилизатора, необходимо проводить повторную валидацию.

Методы, описанные ниже, применимы для инактивации бактерий, дрожжевых и плесневых грибов.

По возможности продукцию стерилизуют в конечной упаковке (финишная стерилизация).

В случаях, когда финишная стерилизация невозможна, используют метод мембранной фильтрации или получение лекарственных препаратов в асептических условиях без последующей стерилизации конечного продукта. Дополнительно возможно проводить обработку объекта (например, стерилизация гамма-излучением) в конечной упаковке. Во всех случаях упаковка и укупорочные средства должны обеспечивать стерильность препарата в течение всего срока годности.

УРОВЕНЬ ОБЕСПЕЧЕНИЯ СТЕРИЛЬНОСТИ

Для методов, описанных ниже, в случае необходимости, указывают уровень обеспечения стерильности (УОС).

Уровень обеспечения стерильности процесса стерилизации – это степень гарантии, с которой процесс обеспечивает стерильность всех единиц продукции в серии. Для конкретного процесса уровень обеспечения стерильности определяется как вероятность наличия нестерильной единицы в серии. Например, УОС = 10 −6 означает, что в подвергнутой стерилизации серии готового продукта объемом 10 6 единиц существует вероятность наличия не более одного жизнеспособного микроорганизма. Уровень обеспечения стерильности процесса стерилизации для конкретного продукта устанавливают в процессе валидации.

МЕТОДЫ И УСЛОВИЯ СТЕРИЛИЗАЦИИ

Стерилизация может быть проведена одним из следующих методов или их комбинацией.

  1. Термические методы:
  • насыщенным водяным паром под давлением (автоклавирование);
  • горячим воздухом (воздушная стерилизация).
  1. Химические методы:
  • газами;
  • растворами антисептиков.
  1. Стерилизация фильтрованием (через фильтры с требуемым размером пор).
  2. Радиационный метод стерилизации.

Использование модификации или комбинации этих методов допускается при условии проведения валидации выбранного процесса стерилизации, чтобы обеспечить как эффективность процесса, так и целостность продукта, упаковки и укупорочных средств.

Для всех методов стерилизации, в том числе при использовании стандартных условий, для подтверждения обеспечения необходимых условий стерилизации всей серии продукта, на протяжении всего процесса стерилизации проводят мониторинг на критических стадиях производства.

Термическая стерилизация

Стерилизация насыщенным паром под давлением (автоклавирование)

Стерилизацию насыщенным паром осуществляют при температуре
120 – 122°С под давлением 120 кПа и при температуре 130 – 132 °С под давлением 200 кПа. Этот метод чаще всего применяют для водных растворов и других жидких лекарственных форм в герметично укупоренных, предварительно простерилизованных флаконах, ампулах или других видах упаковки. Стерилизацию проводят в паровых стерилизаторах (автоклавах). Стандартными условиями являются нагревание при температуре 120 – 122 °С в течение 8–15 мин. Время стерилизации зависит от физико-химических свойств и объема продукта, а также используемого оборудования (табл. 1).

Таблица 1 — Время стерилизации для различного объема раствора

Жиры и масла стерилизуют при температуре 120 – 122 °С в течение 2 ч.

Изделия из стекла, фарфора, металла, перевязочные и вспомогательные материалы, при необходимости санитарную технологическую одежду, стерилизуют при температуре 120 – 122 °С – в течение 45 мин, при
130 – 132 °С – в течение 20 мин. Для стерилизации изделий из резины следует использовать первый из указанных режимов.

Допускаются другие сочетания времени и температуры, если предварительно доказано, что выбранный режим стерилизации обеспечивает необходимый и воспроизводимый уровень гибели микроорганизмов. Используемые процедуры должны обеспечивать уровень обеспечения стерильности не более 10 -6 .

Автоклав загружают таким образом, чтобы обеспечить однородность температуры в пределах всей загрузки. В процессе автоклавирования следует регистрировать условия процесса стерилизации (температуру, давление и время). Температуру, как правило, измеряют с помощью термочувствительных элементов, помещенных в контрольные упаковки, вместе с дополнительными термоэлементами, помещенными в самые низкотемпературные места стерилизационной камеры, которые устанавливаются заранее. Условия каждого цикла стерилизации регистрируются, например, в виде температурно-временной диаграммы или другим подходящим способом.

Для оценки эффективности каждого цикла стерилизации возможно использование как химических (термовременных), так и биологических индикаторов.

Стерилизация горячим воздухом (воздушная стерилизация)

Для этого метода термической стерилизации стандартными условиями являются нагревание при температуре не менее 160 °С в течение не менее
2 ч.

Для стерилизации термостойких порошкообразных веществ (натрия хлорида, цинка оксида, талька, белой глины и др.) или минеральных и растительных масел, жиров, ланолина, вазелина, воска и др. температуру и время стерилизации устанавливают в зависимости от массы образца (табл. 2 и 3).

Таблица 2 — Условия стерилизации для термостойких порошкообразных веществ

Таблица 3 — Условия стерилизации для минеральных и растительных масел, жиров, ланолина, вазелина, воска и др.

Изделия из стекла, металла, фарфора, установки для стерилизующего фильтрования с фильтрами и приемники фильтрата стерилизуют при температуре 180 °С в течение 60 мин, или при температуре 160 °С – в течение 2,5 ч.

Воздушную стерилизацию при температуре более 220 °С обычно применяют для стерилизации и депирогенизации стеклянной упаковки. В этом случае должно быть доказано уменьшение на 3 порядка количества термостойких эндотоксинов вместо использования биологических индикаторов.

Допускается использование сочетаний времени и температуры, если предварительно доказано, что выбранный режим стерилизации обеспечивает необходимый и воспроизводимый уровень гибели микроорганизмов. Используемые процедуры должны обеспечивать уровень обеспечения стерильности не более 10 -6 .

Воздушную стерилизацию проводят в специальном сухожаровом шкафу с принудительной циркуляцией стерильного воздуха или на другом оборудовании, специально предназначенном для этих целей. Стерилизационный шкаф загружают таким образом, чтобы обеспечить однородность температуры в пределах всей загрузки. Температуру в стерилизационном шкафу, как правило, измеряют с помощью термочувствительных элементов, помещенных в контрольные упаковки, вместе с дополнительными термоэлементами, помещенными в самые низкотемпературные места стерилизационного шкафа, которые устанавливаются заранее. В ходе каждого цикла стерилизации регистрируют температуру и время. Для оценки эффективности каждого цикла стерилизации возможно использование как химических (термовременных), так и биологических индикаторов.

Химическая стерилизация

Химическую стерилизацию проводят газом или растворами.

Газовая стерилизация

Стерилизация газом применяется только в случае, если не могут быть использованы другие методы. При этом способе стерилизации должно быть обеспечено проникновение газа и влаги в стерилизуемый продукт, а также последующая дегазация и удаление продуктов его разложения в стерилизуемом продукте до уровня, не вызывающего токсического эффекта при применении лекарственного средства.

Стерилизацию газом проводят в газовых стерилизаторах или микроанаэростатах (портативный аппарат), оборудованных системой подачи газа и постстерилизационной дегазации. В качестве газа обычно используют оксид этилена. В связи с его высокой пожароопасностью, допускается его смешивание с каким-либо инертным газом.

Стерилизацию газом проводят при следующих режимах:

  • – оксид этилена: стерилизующая доза 1200 мг/дм 3 , температура не менее
    18 °С, относительная влажность 80 %, время выдержки – 16 ч (портативный аппарат);
  • – смесь оксида этилена и бромистого метила (1:2,5):

а) стерилизующая доза 2000 мг/дм 3 , температура 55 °С, относительная влажность 80 %, время выдержки 4 ч;

б) стерилизующая доза 2000 мг/дм 3 , температура не менее 18 °С, относительная влажность 80 %, время выдержки 16 ч.

Допускается использование других валидированных режимов газовой стерилизации, обеспечивающих стерильность и сохранность объекта.

Оксид этилена может проявлять мутагенные свойства и токсичность, особенно при использовании материалов, содержащих ионы хлора. В связи с токсичностью оксида этилена и бромистого метила применение стерилизованных этими газами изделий допускается только после их дегазации, т. е. выдержки в вентилируемом помещении до допустимых остаточных количеств, указанных в нормативной документации.

Условия дегазации зависят от назначения, способа применения, размеров изделий, материала изделия и упаковки и указываются в нормативно-технической документации на изделие.

По возможности в процессе стерилизации регистрируют следующие показатели: концентрацию газа, относительную влажность, температуру и время стерилизации. Измерения проводят в тех зонах, где условия стерилизации достигаются хуже всего, что устанавливают в процессе валидации.

Стерилизуемые изделия упаковывают в пакеты из полиэтиленовой пленки толщиной от 0,06 до 0,20 мм, пергамента и др. Метод рекомендован для изделий из резины, полимерных материалов, стекла, металла.

Эффективность процесса газовой стерилизации проверяют при каждой загрузке с помощью биологических индикаторов.

Перед выпуском каждой серии проверяют стерильность на определенном количестве образцов.

Химическая стерилизация растворами

Химическую стерилизацию проводят растворами антисептиков (водорода пероксид и надкислоты). Эффективность стерилизации растворами антисептиков зависит от концентрации активно действующего вещества, времени стерилизации и температуры стерилизующего раствора.

При стерилизации 6 % раствором водорода пероксида температура стерилизующего раствора должна быть не менее 18 °С, время стерилизации – 6 ч; при температуре 50 °С – 3 ч.

При стерилизации 1 % раствором дезоксона-1 (по надуксусной кислоте) температура стерилизующего раствора должна быть не менее 18 °С, время стерилизации 45 мин.

Химическую стерилизацию растворами антисептиков проводят в закрытых емкостях из стекла, пластмассы или емкостях, покрытых неповрежденной эмалью, при полном погружении изделия в раствор на время стерилизации. После этого изделие промывают стерильной водой в асептических условиях.

Метод стерилизации растворами антисептиков применяют для изделий из полимерных материалов, резины, стекла, коррозийно-стойких металлов.

Стерилизация фильтрованием

Некоторые действующие вещества и лекарственные препараты, которые не могут быть подвергнуты финишной стерилизации ни одним из описанных выше методов, могут быть простерилизованы с использованием мембранных фильтров. Такие продукты требуют соблюдения специальных мер предосторожности. Производственный процесс и производственная среда должны обеспечивать минимальный риск микробного загрязнения и требуют регулярного мониторинга. Оборудование, упаковка, укупорочные средства и, по возможности, ингредиенты следует подвергать соответствующей стерилизации. Рекомендуется проводить фильтрацию непосредственно перед наполнением упаковки. Операции, следующие за фильтрацией, проводят в асептических условиях.

Предварительную фильтрацию осуществляют через мембранные фильтры с размером пор не более 0,45 мкм. Затем растворы пропускают через мембранные фильтры с номинальным размером пор не более 0,22 мкм, способные задерживать не менее 10 7 микроорганизмов Pseudomonas diminuta на квадратный сантиметр поверхности. Допускается использование других типов фильтров, обеспечивающих такую же эффективность фильтрации.

Пригодность мембранных фильтров устанавливают путем микробиологических испытаний с использованием соответствующих микроорганизмов, например, Pseudomonas diminuta (ATCC 19146, NCIMB 11091 или CIP 103020). Рекомендуется использовать не менее 10 7 КОЕ/см 2 активной поверхности фильтра. Суспензия микроорганизмов должна быть приготовлена в триптонно-соевом бульоне, который после прохождения через фильтр собирают асептически и инкубируют в аэробных условиях при температуре не более 32 °С.

Уровень фильтрации определяют как величину логарифма снижения (ВЛС) микробной загрязненности. Например, если при фильтрации через мембранный фильтр с размером пор 0,22 мкм задерживается 107 микроорганизмов, ВЛС составляет не менее 7.

Следует учитывать уровень микробной контаминации до начала фильтрации, пропускную способность фильтра, объем серии продукта, продолжительность фильтрации, а также избегать загрязнений продукта микроорганизмами с фильтра. Срок использования фильтра не должен превышать времени, установленного при валидации данного фильтра в сочетании с конкретным фильтруемым продуктом. Не следует повторно использовать мембранные фильтры.

Целостность готового к применению мембранного фильтра проверяют до и после фильтрации путем испытаний, соответствующих типу фильтра и стадии проверки, например, испытанием на определение насыщенности («точка пузырька») методом диффузионного потока или выдержкой под давлением.

В связи с тем, что при проведении стерилизации фильтрованием существует больший потенциальный риск по сравнению с другими методами стерилизации, рекомендуется проводить предварительную фильтрацию через мембранные фильтры в тех случаях, когда низкий уровень микробной контаминации не может быть обеспечен другими средствами.

Получение лекарственных препаратов в асептических условиях без последующей стерилизации конечного продукта

Целью получения лекарственных препаратов в асептических условиях без последующей стерилизации конечного продукта является сохранение стерильности препарата с использованием компонентов, каждый из которых был предварительно простерилизован одним из вышеописанных методов. Это достигается путем проведения процесса в помещениях определенного класса чистоты, а также использования условий и оборудования, обеспечивающих стерильность.

В асептических условиях могут осуществляться: процесс наполнения упаковки, укупорка, асептическое смешивание ингредиентов с последующим асептическим наполнением и укупоркой. Для сохранения стерильности ингредиентов и готового продукта в ходе производственного процесса особое внимание следует уделять:

  • – состоянию производственной среды;
  • – персоналу;
  • – критическим поверхностям;
  • – стерилизации упаковки и укупорочных средств и передаточным процедурам;
  • – предельно допустимому времени хранения продукта до момента наполнения конечной упаковки.

Валидация процесса включает надлежащую проверку всех перечисленного выше пунктов, а также систематический контроль с применением имитационных тестов с использованием питательной среды, которую инкубируют и исследуют на наличие микробной контаминации (тесты на заполнение питательными средами). Перед выпуском каждой серии продукта, простерилизованного фильтрованием и/или изготовленного в асептических условиях, следует проводить испытания стерильности на соответствующем количестве образцов.

Радиационный метод стерилизации

Радиационный метод стерилизации осуществляют путем облучения продукта ионизирующим излучением. Данный метод может быть использован для стерилизации лекарственного растительного сырья, лекарственных растительных препаратов, лекарственных средств растительного происхождения и др.

γ-излучение, источником которого может быть либо радиоизотопный элемент (например, кобальт-60), либо пучок электронов, подаваемый соответствующим ускорителем электронов.

Для этого метода стерилизации дозу поглощения устанавливают от
10 до 50 кГр. Допускается использование других доз, если предварительно доказано, что выбранный режим обеспечивает необходимый и воспроизводимый уровень летальности микроорганизмов. Используемые процедуры и меры предосторожности должны обеспечивать уровень обеспечения стерильности не более 10 -6 .

Преимуществом радиационной стерилизации является ее низкая химическая активность и легко контролируемая доза излучения, которая может быть точно измерена. Радиационная стерилизация проходит при минимальной температуре, однако могут быть ограничения при использовании некоторых типов стеклянной и пластиковой упаковки.

В процессе радиационной стерилизации следует постоянно осуществлять мониторинг поглощенного готовым продуктом излучения при помощи установленных дозиметрических методов независимо от величины дозы. Дозиметры калибруют по отношению к стандартному источнику на эталонной радиационной установке при получении от поставщика и затем с периодичностью, не превышающей одного года.

Если предусмотрена биологическая оценка, ее проводят с использованием биологических индикаторов.

БИОЛОГИЧЕСКИЕ ИНДИКАТОРЫ СТЕРИЛИЗАЦИИ

Биологические индикаторы – это стандартизованные препараты определенных микроорганизмов, используемые для оценки эффективности процесса стерилизации.

Биологический индикатор обычно представляет собой споры бактерий, нанесенные на инертный носитель, например, полоску фильтровальной бумаги, стеклянную пластинку или пластиковую пробирку. Инокулированный носитель изолируют так, чтобы предотвратить его повреждение или загрязнение и, в то же время, обеспечить контакт стерилизующего агента с микроорганизмами. Суспензии спор могут находиться в герметично запаянных ампулах.

Биологические индикаторы готовят таким образом, чтобы обеспечить их сохранность при определенных условиях; для них должен быть указан срок годности.

Те же штаммы бактерий, что используют при производстве биологических индикаторов, могут быть инокулированы непосредственно в жидкий продукт, подлежащий стерилизации, или в жидкий продукт, аналогичный стерилизуемому. В этом случае должно быть доказано, что жидкий продукт не оказывает ингибирующего действия на споры, особенно на их прорастание.

Для биологического индикатора указывают следующие характеристики: вид бактерий, используемых в качестве эталонных микроорганизмов; номер штамма в исходной коллекции; число жизнеспособных спор, приходящееся на носитель; величину D .

Величина D – значение параметра стерилизации (продолжительность или поглощенная доза), обеспечивающее снижение числа жизнеспособных микроорганизмов до 10 % от их исходного числа. Эта величина имеет смысл для строго определенных экспериментальных условий стерилизации. Биологический индикатор должен содержать только указанные микроорганизмы. Допускается использование биологических индикаторов, содержащих более одного вида бактерий на одном носителе. Должна быть указана информация о питательной среде и условиях инкубации.

Рекомендуется размещать индикаторы в областях, наименее доступных для стерилизующего агента, определенных предварительно эмпирически или на основании предварительных физических измерений. После воздействия стерилизующего агента носитель спор переносят на питательную среду в асептических условиях.

Допускается использование биологических индикаторов промышленного производства в закрытых ампулах с питательной средой, помещенных непосредственно в упаковку, защищающую инокулированный носитель.

Выбор эталонных микроорганизмов для биологических индикаторов осуществляют с учетом следующих требований:

  • – устойчивость тест-штамма к конкретному методу стерилизации должна быть выше по сравнению с устойчивостью всех патогенных микроорганизмов и других микроорганизмов, контаминирующих продукт;
  • – тест-штамм должен быть непатогенным;
  • – тест-штамм должен легко культивироваться.

Если после инкубации наблюдается рост эталонных микроорганизмов, это свидетельствует о неудовлетворительно проведенном процессе стерилизации.

Особенности применения биологических индикаторов стерилизации

Стерилизация насыщенным паром под давлением

Биологические индикаторы для контроля стерилизации насыщенным паром под давлением рекомендуется использовать при валидации циклов стерилизации. Рекомендуется использовать Bacillus stearothermophilus (например, ATCC 7953, NCTC 10007, NCIMB 8157 или CIP 52.81). Число жизнеспособных спор должно превышать 5 · 10 5 на носитель. Величина D при температуре 121 °С должна составлять более 1,5 мин. При обработке биологического индикатора паром при температуре (121 ± 1) °С под давлением 120 кПа в течение 6 мин должно наблюдаться сохранение жизнеспособных спор, а обработка при той же температуре в течение 15 мин должна приводить к полной гибели эталонных микроорганизмов.

Воздушная стерилизация

Рекомендуется использовать для приготовления биологических индикаторов Bacillus subtilis (например, var . niger ATCC 9372, NCIMB 8058 или CIP 77.18). Число жизнеспособных спор должно превышать 1 ∙ 10 5 на носитель, величина D при температуре 160 °С составляет 1 – 3 мин. Для стерилизации и депирогенизации стеклянного оборудования часто используют горячий воздух при температуре более 220 °С. В этом случае заменой биологическим индикаторам может служить снижение на 3 порядка количества термостойких бактериальных эндотоксинов.

Радиационная стерилизация

Биологические индикаторы могут использоваться для мониторинга текущих операций в качестве дополнительной оценки эффективности установленной дозы излучения, особенно в случае стерилизации ускоренными электронами. Рекомендуются споры Bacillus pumilus (например, ATCC 27.142, NCTC 10327, NCIMB 10692 или CIP 77.25). Число жизнеспособных спор должно превышать 1 ∙ 10 7 на носитель. Величина D должна составлять более 1,9 кГр. Следует убедиться, что после облучения биологического индикатора дозой 25 кГр (минимальная поглощенная доза) рост эталонных микроорганизмов не наблюдается.

Газовая стерилизация

Использование биологических индикаторов необходимо при проведении всех процедур газовой стерилизации как при валидации циклов, так и при проведении рутинных операций. Рекомендуется использовать споры Bacillus subtilis (например, var . niger ATCC 9372, NCIMB 8058 или CIP 77.18) при использовании этилена оксида. Число жизнеспособных спор должно превышать 5 · 10 5 на носитель. Параметры устойчивости следующие: величина D составляет более 2,5 мин для испытания цикла при концентрации этилена оксида 600 мг/л, температуре 54 °С и 60 % относительной влажности. Следует убедиться, что после 60-минутного цикла стерилизации с указанными параметрами не наблюдается рост эталонных микроорганизмов, тогда как после 15 мин цикла стерилизации при более низкой температуре (600 мг/л, 30 °С, 60 % влажности) жизнеспособность спор сохраняется.

Биологический индикатор должен позволять обнаруживать недостаточную влажность в стерилизаторе и продукте: при воздействии на него этилена оксида концентрации 600 мг/л при температуре 54 °С в течение 60 мин без увлажнения должна сохраняться жизнеспособность спор.

Стерилизация - (лат. sterilis - обеспложивание) или полное уничтожение микроорганизмов и их спор путем воздействия как физических факторов, так и химических препаратов.

В настоящее время действует отраслевой стандарт (ОСТ 42-21-2-85), определяющий методы, средства и режимы стерилизации и дезинфекции изделий медицинского назначения, который дополнен приказом № 408 и «Методическими указаниями по дезинфекции, предстерилизационной очистке и стерилизации предметов медицинского назначения», утвержденными М3 России 30 декабря 1998 г. № М У-287-113.

Стерилизации подвергаются все изделия, соприкасающиеся с раневой поверхностью, контактирующие с кровью или инъекционными препаратами, и отдельные виды медицинских инструментов, которые в процессе эксплуатации соприкасаются со слизистыми оболочками и могут вызвать их повреждения.

Методы стерилизации

Различают термические методы - физический: паровой, воздушный, гласперленовый (в среде нагретых шариков), а также ультрафиолетовое облучение воздуха помещений: перевязочных, процедурных, операционных. . В клинической практике чаще всего применяются термические методы стерилизации, которые заключаются в воздействии пара под избыточным давлением и температуры стерилиации (автоклавирование) и воздействии сухого горячего воздуха, достигающего температуры стерилизации (используются сухожаровые шкафы разной модификации).

Химические методы стерилизации осуществляются растворами дезинфицирующих средств или газами изделий из полиэтилена, аппаратуры для искусственной вентиляции легких (ИВЛ), различных эндоскопов с волоконной оптикой. К химическому методу относится газовая стерилизация оксидом этилена, окисью пропилена, бромистым метилом и их смесью, а также пароформальдегидный метод.

Ультразвуковой метод стерилизации. Стерилизация инфракрасным излучением. Радиационный метод в (установке с источником излучения для промышленной стерилизации изделий однократного применения). Выбор метода зависит от многих факторов, основными из которых являются:

1. Материал, из которого состоит изделие.

2. Конструкция изделия.

3. Сроки стерильности изделия.

4. Оперативность метода

Автоклав (от греч. ауто - сам и лат. клавис - ключ) - означает «самозапирание». Автоклавирование, или стерилизация в паровом стерилизаторе, применяется для процесса стерилизации инструмента, любых ИМН из металла, стекла, резины и текстиля, растворов, лигатурного шовного материала.

Режимы стерилизации

1-й режим - температура 132 °С, давление 2 атм., время 20 мин. Первый режим (основной) предназначен для стерилизации изделий из бязи, марли (перевязочного материала, белья и т.д.), стекла, включая шприцы с пометкой «200 ‘С», изделий из коррозийностойкого металла.

2-й режим - температура 120 °С, давление 1,1 атм., время 45 мин. Второй режим (щадящий) рекомендуется для изделий из тонкой резины, латекса (хирургические перчатки и т.д.) и отдельных видов полимеров (полиэтилен высокой плотности).

3-й режим - температура 134 °С - 5 мин, 2 атм.

Воздушный метод стерилизации

Проводится в воздушном стерилизаторе сухим горячим воздухом. Рекомендуется для стерилизации любых ИМН из металла, стекла, силиконовой резины.

Режимы стерилизации

1-й режим - температура 180 °С, время 60 мин. Первый режим (основной) предназначен для стерилизации изделий из стекла, включая шприцы с пометкой «200 °С», изделий из металла: хирургические, стоматоло-гические, гинекологические инструменты, в том числе коррозийнонестойких металлов.

2-й режим - температура 160 °С, время 150 мин. Второй режим (щадящий) предназначен для стерилизации изделий из силиконовой резины, а также деталей некоторых аппаратов и приборов.

Стерилизация растворами химических веществ Перекись водорода обладает выраженным обеззаражи-вающим свойством. Для стерилизации используется 6% раствор перекиси водорода - экспозиция 180 мин, температура 50 °С; при полном погружении для стерилизации изделий из полимеров, резины, стекла и коррозийнонестойких металлов экспозиция - 360 мин при темпера туре 18 “С. (срок стерильности - трое суток)

Стерилизация газами Стерилизация производится в стационарном газовом стерилизаторе. ОСТ рекомендует выполнять газовую стерилизацию ряда медицинских изделий окисью этилена или смесью ОБ. Стерилизации подвергают оптику, кардиостимуляторы, изделия из полимерных материалов, резины, стекла, металла, пластмассовых частей различных аппаратов. Практическое осуществление этого метода встречает значительные трудности, поэтому газовая стерилизация не получила еще того распространения, которого она заслуживает по своим возможностям.

ОЦЕНКА ЭФФЕКТИВНОСТИ ДЕЙСТВИЯ АНТИСЕПТИКОВ И ДЕЗИНФЕКТАНТОВ. ОПРЕДЕЛЕНИЕ ЧУВСТВИТЕЛЬНОСТИ БАКТЕРИЙ К АНТИМИКРОБНЫМ ПРЕПАРАТАМ

Введение. Уничтожение патогенных для человека микробов является одной из важнейших проблем в профилактике и ле­чении различных заболеваний. Для борьбы с микробами ис­пользуют методы асептики, антисептики, дезинфекции и анти­микробной терапии. Каждый метод имеет свои особые цели и условия применения.

Тема 7.1. МЕТОДЫ ОЦЕНКИ АНТИМИКРОБНОГО ДЕЙСТВИЯ ХИМИЧЕСКИХ И ФИЗИЧЕСКИХ ФАКТОРОВ

Введение. Асептика - система мероприятий, предупрежда­ющих внесение (попадание) микроорганизмов из окружающей среды в ткани или полости человеческого организма при ле­чебных и диагностических манипуляциях, а также в материал для исследования, в питательные среды и культуры микроор­ганизмов при лабораторных исследованиях. Асептика предус­матривает соблюдение особых санитарно-гигиенических пра­вил и приемов работы, а также специальную обработку инстру­ментов, материалов, рук медицинских работников, помещений и т.д. с целью частичного (дезинфекция) или полного (стери­лизация) уничтожения микробов.

Антисептика - комплекс лечебно-профилактических меро­приятий, направленных на уничтожение микроорганизмов, способных вызвать инфекционный процесс, на поврежденных участках кожи и слизистых оболочек, путем обработки микро-бицидными веществами - антисептиками.

Стерилизация - полное уничтожение микроорганизмов, включая вегетативные формы и споры. Существуют 3 основ­ные группы методов стерилизации: физические, механические и химические. Выбор метода, используемого для решения прак­тической задачи, зависит от стерилизуемого объекта.

Дезинфекция - обеззараживание объектов окружающей сре­ды. В отличие от стерилизации дезинфекция приводит к гибели большинства, но не всех форм микробов и, таким образом, обеспечивает только снижение микробной контаминации (за­грязнения), а не полное обеззараживание объекта. Поэтому предметы, подвергшиеся дезинфекции, не являются абсолютно безопасными.

План

Программа

1. Асептика, антисептика и дезинфекция. Антисептики и дезинфектанты.

2. Антимикробное действие физических и химических факторов.

3. Методы стерилизации; аппаратура, используемая для стерилизации.

4. Методы контроля эффективности стерилизации, дей­ствия антисептических и дезинфицирующих веществ.

Демонстрация

1. Аппаратура, используемая при стерилизации: авто­клав, сушильный шкаф, аппаратура для фильтрации и УФ-облучения.

А Задание студентам

1. Учесть результаты опытов, поставленных с бактери­альными тест-объектами для контроля эффективности стерилизации, проведенной путем кипячения и авто-клавирования. Сделать заключение.

2. Определить по готовым посевам антибактериальное действие УФ-лучей на стафилококки и кишечную па­лочку.

3. Учесть результаты опытов, поставленных для опреде­ления антимикробного действия антисептических и дезинфицирующих веществ. Сделать заключение.

Методические указания

Методы стерилизации

I. Физические методы. Воздействие высоких темпе­ратур. Высокая температура обладает микробицидным действи­ем благодаря способности вызывать денатурацию важнейших биополимеров, в первую очередь белков.

Стерилизация сухим жаром в сушильно-стерилизационном шкафу (печи Пастера) основана на бактерицидном действии нагретого до 165-170 °С воздуха в течение 45 мин. При более высокой температуре происходит обугливание ватных пробок, бумаги, в которую завернута посуда, а при более низкой тем­пературе требуется большой срок стерилизации. Сухим жаром стерилизуют стеклянную посуду (чашки Петри, пробирки, пи­петки и др.).


Автоклавирование - стерилизация перегретым водяным паром (при повышенном давлении) в паровом стерилизаторе (автоклаве). Один из наиболее эффективных методов стерили­зации, который широко применяют не только в микробиоло­гической, но и клинической практике. Работа с автоклавом требует точного выполнения специальной инструкции и со­блюдения правил безопасности. Максимальную температуру пара измеряют специальным термометром, который помещают в автоклав вместе со стерилизуемым материалом. В некоторых случаях используют химические вещества с определенной тем­пературой плавления: бензонафтол (ПО °С), бензойную кисло­ту (120 °С). Многие питательные среды, перевязочный матери­ал, белье стерилизуют при давлении 1 атм в течение 15-20 мин, питательные среды с углеводами - при 0,5 атм в течение 15 мин, а обеззараживание инфицированного материала про­изводят при 1,5-2 атм в течение 20-25 мин (табл. 7.1.1).

Таблица 7.1.1. Соотношение между давлением, температурой и про­должительностью стерилизации в паровом стерилизаторе (автоклаве)

0 100 30-60 (дробно) 0,5 111 20-30

1 121 15-20 1,5 127 15-20

Стерилизация текучим паром осуществляется в автоклаве при незавинченной крышке и открытом выпускном кране. Данный способ стерилизации основан на антибактериальном действии пара в отношении вегетативных клеток. Он приме­няется в тех случаях, когда стерилизуемый материал не выдер­живает высокой температуры, например питательные среды с витаминами, углеводами. Для полного обеспложивания приме­няют принцип дробной стерилизации, т.е. стерилизуют мате­риал при 100 "С (или 80-90 °С) в течение 20-30 мин 3 дня подряд. При этом вегетативные клетки погибают, а споры сохраняются и за 1 сут прорастают. Последующее двукратное прогревание обеспечивает достаточно надежную стерильность материала.

Тиндализация - это дробная стерилизация материалов при 56-58 "С в течение 1 ч 5-6 дней подряд. Применяется для стерилизации легко разрушающихся при высокой температуре веществ (сыворотка крови, витамины и др.).

Прокаливание в пламени спиртовки или газовой горелки при-

Меняют ограниченно, например для стерилизации бактериоло­гических петель, препаровальных игл, пинцетов.

Воздействие ионизирующих излучений. Микроби-цидное действие ионизирующих излучений основано на их способности вызывать повреждения в молекуле ДНК. Для сте­рилизации одноразовых медицинских инструментов и бактери­ологического оборудования, чувствительного к термическим воздействиям (пластиковая посуда для культивирования мик­робов и клеточных культур, пластиковые шприцы, системы переливания крови и т.д.), обычно применяют стерилизацию у-излучением.

И. Механические методы. Основаны на фильтровании через специальные мембранные фильтры с малым размером пор, способные механически задерживать микроорганизмы. В лабо­раторной практике широко применяют бумажные и полимер­ные фильтры. Существуют фильтры с порами различных, стро­го откалиброванных размеров, что позволяет гарантированно очищать материал не только от бактерий, но и вирусов, а при необходимости и от некоторых макромолекул. Фильтрование ис­пользуют для стерилизации жидких материалов, не выдержива­ющих нагревания (сыворотка крови, растворы антимикробных препаратов, компоненты питательных сред для бактерий и культур клеток), для получения бактериальных токсинов и других продуктов жизнедеятельности бактерий. Фильтрование является ведущим методом стерилизации воздуха в тех случаях, когда это необходимо. Для этого воздух пропускают через фильтры, пропитанные микробицидными веществами. Такие системы стерилизации применяют, например, в настольных боксах для работы с возбудителями особо опасных инфекций, а также в операционных блоках, родильных отделениях и т.д.

III. Химические методы. Основаны на обработке объекта химическими веществами, обладающими микробицидным дей­ствием и способными при соблюдении определенных режимов воздействия обеспечить полное уничтожение микрофлоры. Хи­мическую стерилизацию обычно применяют для обработки различных приборов и инструментов многоразового использо­вания, чувствительных к высоким температурам (фиброопти-ческие приборы, медицинские имплантаты и др.). К стерилизу­ющим агентам относятся окись этилена, перекись водорода, глю-таровый альдегид, пероксиуксусная кислота, двуокись хлора.

Независимо от метода во всех случаях требуется регулярный контроль эффективности процедуры стерилизации. С этой целью используют биологические индикаторы - известные микроор­ганизмы, наиболее устойчивые к данному способу обработки (например, споры Bacillus stearothermophilus для контроля эф­фективности автоклавирования, Bacillus subtilis - для контроля сухожаровой стерилизации). Существуют также физико-хими­ческие индикаторы - вещества, которые претерпевают види-


мые изменения (изменяют цвет, агрегатное состояние и т.д.) только при соблюдении правильного режима обработки.

Методы дезинфекции

Для дезинфекции применяют физические и химические ме­тоды.

I. Физические методы. Воздействие высоких темпера­
тур.

Кипячение. Шприцы, мелкий хирургический инструмента­рий, предметные и покровные стекла и некоторые другие пред­меты помещают в стерилизаторы, в которые наливают воду. Для устранения жесткости и повышения температуры кипяче­ния к воде добавляют 1-2 % раствор бикарбоната натрия. Кипячение производят не менее 30 мин. При кипячении не­которые вирусы (например, вирус гепатита В) и споры бакте­рий сохраняют жизнеспособность.

Пастеризация основана на антибактериальном действии температуры в отношении вегетативных клеток, но не бакте­риальных спор. Нагревание материала производится при тем­пературе 50-65 "С в течение 5-10 мин с последующим бы­стрым охлаждением. Обычно пастеризуют напитки и пищевые продукты (вино, пиво, соки, молоко и др.).

Воздействие ионизирующих излучений. Ультрафи­олетовое излучение (УФ) с длиной волны 260-300 мкм обладает достаточно выраженным микробицидным действием, однако некоторые виды микробов и споры резистентны к УФ. Поэто­му УФ-облучение не способно обеспечить полного уничтоже­ния микрофлоры - стерилизацию объекта. Обработку УФ обыч­но используют для частичного обеззараживания (дезинфекции) крупных объектов: поверхностей предметов, помещений, воз­духа в медицинских учреждениях, микробиологических лабо­раториях и т.д.

Гамма-излучение обладает выраженным микробицидным дей­ствием на большинство микроорганизмов, включая вегетатив­ные формы бактерий и споры большинства видов, грибы, виру­сы. Применяют для стерилизации пластиковой посуды и меди­цинских инструментов одноразового использования. Следует иметь в виду, что обработка гамма-излучением не обеспечивает уничтожения таких инфекционных агентов, как прионы.

II. Химические методы. Это обработка объекта дезинфектан-
тами - микробицидными химическими веществами. Некото­
рые из этих соединений могут оказывать токсическое действие
на организм человека, поэтому их применяют исключительно
Для обработки внешних объектов. В качестве дезинфектантов
обычно используют перекись водорода, хлорсодержащие со­
единения (0,1-10 % раствор хлорной извести, 0,5-5 % раствор
хлорамина, 0,1-10 % раствор двутретьеосновной соли гипо-

Хлората кальция - ДТСГК), формальдегид, фенолы (3-5 % раствор фенола, лизола или карболовой кислоты), йодофоры. Выбор дезинфицирующего вещества и его концентрации зави­сят от материала, подлежащего дезинфекции. Дезинфекция может быть достаточной процедурой для обеззараживания только таких медицинских инструментов, которые не прони­кают через естественные барьеры организма (ларингоскопы, цистоскопы, системы для искусственной вентиляции легких). Некоторые вещества (борная кислота, мертиолат, глицерин) применяют как консерванты для приготовления лечебных и диагностических сывороток, вакцин и других препаратов.

Методы антисептики

В качестве антисептиков используют только малотоксичные для организма соединения, оказывающие антимикробное дей­ствие. Наиболее часто применяют 70 % этиловый спирт, 5 % раствор йода, 0,1 % раствор КМп0 4 , 0,5-1 % спиртовые рас­творы метиленового синего или бриллиантового зеленого, 0,75-4,0 % раствор хлоргексидина, 1-3 % раствор гексахло-рофена и некоторые другие соединения. Антимикробные ве­щества добавляют также к материалам, используемым при из­готовлении перевязочных средств, лейкопластырей, зубных протезов, пломбировочных материалов и т.п. с целью придания им бактерицидных свойств.

Методы контроля эффективности стерилизации, действия антисептических и дезинфицирующих веществ. Изучение антибактериального действия высоких температур. В пробирки с питательным бульоном поместить шелковые нити, смоченные смесью спорообразующей (3 пробирки) и неспорообразующей (3 пробирки) культур. По одной пробирке с каждой культурой подвергнуть автоклавированию или кипя­чению; контрольные пробирки никакому воздействию не под­вергать. После обработки все посевы выдержать в термостате при 37 °С в течение 24 ч. Отметить результат поставленного опыта и сделать заключение.

Контроль стерильности перевязочного материала и хирургических инструментов. Проводят посев исследуе­мых образцов (или смывов с поверхности крупных инструмен­тов) на три среды: сахарный бульон, тиогликолевую среду и жидкую среду Сабуро. Посевы инкубируют в термостате 14 дней. При отсутствии роста во всех посевах материал считают стерильным.

Изучение антибактериального действия УФ-лучей. Суспензию стафилококка или E.coli в изотоническом растворе хлорида натрия в объеме 1 мл поместить на расстоянии 10-20 см от центра лампы. Облученную и необлученную (контроль) сус­пензии бактерий засеять в питательный бульон и инкубировать


при 37 "С в течение 16-24 ч, после чего оценить результаты: отсутствие помутнения среды связано с гибелью облученной культуры бактерий, в контроле отмечается помутнение, что свидетельствует о наличии роста.

Определение антимикробного действия антисептических и дез­инфицирующих средств. 1. Подготовить два вида тест-объектов: а) шелковые нити, смоченные культурой E.coli; б) шелковые нити, смоченные спорообразующей культурой (с большим со­держанием спор). Нити поместить в растворы фенола (5 %), лизола (5 %), хлорной извести (10 %) на 5 и 60 мин, после чего отмыть от исследуемых веществ, засеять в питательный бульон и поместить в термостат до следующего дня. Контроль­ные пробы действию химических веществ не подвергать. От­метить результат поставленного опыта и сделать заключение.

2. Диски из фильтровальной бумаги смочить растворами исследуемых веществ и поместить на поверхность питательного агара в чашке Петри, засеянной (газоном) тест-культурой ста­филококка или кишечной палочки. Чашку инкубировать в течение суток при 37 °С. Об антибактериальном действии ис­следуемых веществ судят по диаметру зон задержки роста бак­терий, образующихся вокруг дисков.

Тема 7.2. МЕТОДЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ ДЕЙСТВИЯ АНТИМИКРОБНЫХ ПРЕПАРАТОВ

Введение. Антимикробные препараты (природные и синте­тические антибиотики) используются для лечения заболеваний, вызванных микроорганизмами. Для эффективной терапии необ­ходим подбор препарата, обладающего наибольшей активностью по отношению к данному возбудителю инфекции и оказываю­щего наименьший вред нормальной микрофлоре человека. Ши­рокое распространение бактериальных штаммов, обладающих различной степенью устойчивости ко многим препаратам (поли­резистентностью), делает особенно актуальными качественную (метод дисков) и количественную (метод серийных разведений) оценку чувствительности бактерий к лечебным препаратам.

▲ Программа

1. Спектры действия основных групп антимикробных препаратов.

2. Оценка действия на бактерии антимикробных пре­паратов методом дисков.

3. Определение минимальной ингибирующей концент­рации (МИК) антимикробных препаратов методом се­рийных разведений.

А. Демонстрация

1. Антимикробные препараты различных групп.

2. Стандартные бумажные диски, пропитанные антими­кробными препаратами, для определения чувствитель­ности к ним бактерий.

3. Таблицы и схемы антимикробных спектров важней­ших групп антибиотиков и механизмы их антибакте­риального действия.

Задание студентам

1. Поставить опыт по определению чувствительности стафилококков к различным антибиотикам методом дисков.

2. По результатам поставленного опыта определить ми­нимальную ингибирующую концентрацию пеницил­лина для различных бактериальных культур методом серийных разведений.

Методические указания

Количественное определение чувствительности бактерий к антимикробным препаратам методом серийных разведений.Дан­ный метод применяют для определения минимальной подав­ляющей концентрации (МП К) - наименьшей концентрации антибиотика, полностью подавляющей рост исследуемых бак­терий. Готовят основной раствор антибиотика, содержащий препарат в определенной концентрации (мкг/мл или ЕД/мл) в физиологическом или буферном растворе или в специальном растворителе. Основной раствор используют для приготовле­ния серийных (2-кратных) разведений антибиотика в питатель­ной среде - бульоне (в объеме 1 мл) или агаре. Из исследуемой бактериальной культуры готовят суспензию стандартной плот­ности и засевают по 0,1 мл на среды с разной концентрацией антибиотика, а также на среду без препарата (контроль куль­туры). Посевы инкубируют при 37 "С 20-24 ч или более (для медленно растущих бактерий), после чего отмечают результаты опыта по помутнению питательного бульона или появлению видимого роста бактерий на агаре, сравнивая с контролем. Наименьшая концентрация антибиотика, полностью подав­ляющая рост исследуемой культуры, принимается за МПК.


шую концентрацию препарата, препятствующую развитию ЦПД или накоплению в клетках антигенов возбудителя, принимают за МПК.

Интерпретацию результатов, т.е. оценку клинической чув­ствительности, осуществляют на основании критериев, приве­денных в табл. 7.2.1. К чувствительным относятся штаммы бактерий, рост которых подавляется при концентрациях пре­парата, обнаруживаемых в сыворотке крови пациента при ис­пользовании средних терапевтических доз антибиотиков. К уме­ренно устойчивым относятся штаммы, для подавления роста которых требуются концентрации, создающиеся в сыворотке крови при введении максимальных лечебных доз препарата. Устойчивыми являются микроорганизмы, рост которых не по­давляется препаратом в концентрациях, создаваемых в орга­низме при использовании максимально допустимых доз.

Таблица 7.2.1. Интерпретация результатов определения чувствитель­ности бактерий к антибиотикам методом серийных разведений

Антибиотик МПК (мкг/мл)
чувстви- промежу- устой-
тельные точные чивые
(S) (D (R)
Пенициллины
Бензилпенициллин:
для стафилококков £0,12 - >0,25
для других бактерий <1,5 >1,5
Оксациллин
для Staphylococcus aureus <2 - >4
для других видов стафилококков <0,25 - >0,5
Метициллин <2 - >4
Ампициллин:
для стафилококков <0,25 - >0,5
для E.coli и других энтеробактерий <8 >32
Карбенициллин:
для E.coli и других энтеробактерий <16 >64
для Pseudomonas aeruginosa <128 >512
Пиперрациллин
для E.coli и других энтеробактерий <16 >64
для Pseudomonas aeruginosa >64 - >182
Азлоциллин <64 - >128
Цефалоспорины
Цефазолин <8 >32
Цефалотин <8 >32
Цефаклор <8 >32
Цефалексин <8 >32
Цефуроксим <8 >32

Продолжение

промежу­точные (D

Цефамандол <8 >32
Цефотаксим <8 16-32 >64
Цефтриаксон <8 16-32 >64
Цефоперазон <16 >64
Цефтазидим <8 >32
Цефепим Новые бета <8 -лактамы >32
Имипенем <4 >16
Меропенем <4 >16
Хинолоны
Налидиксовая кислота SI6 - >32
Ципрофлоксацин <1 >4
Офлоксацин <2 >8
Норфлоксацин <4 юзиды >16
Аминогли
Канамицин <16 >64
Гентамицин <4 >16
Тобрамицин <4 >16
Амикацин <16 >64
Нетилмицин <8 >32
Тетрациклины,макролиды, линкозамиды
Тетрациклин <2 4-8 >16
Доксициклин <4 >16
Эритромицин 50,5 1-4 >8
Азитромицин <2 >8
Кларитромицин <2 >8
Алеандомицин <2 >8
Линкомицин <2 >8
Клиндамицин <0,25 0,5 >1
Антибиотики других групп
Хлорамфеникол (лев омицетин) <8 >32
Фузидиевая кислота <2 4-8 >16
Рифампицин <2 >8
Полимиксин <50 ЕД/мл >50 ЕД/мл
Ванкомицин <4 8-16 S32
Фурадонин <32 >128

Микротест-системы для определения чувствительности к ан­тимикробным препаратам. Микротест-системы предназначены для быстрого определения клинической чувствительности к антибиотикам бактерий определенных видов или родственных групп. Тестируемые препараты в стандартных концентрациях находятся в лунках готовых пластиковых планшетов. Опреде­ляют чувствительность исследуемой культуры к двум концент­рациям каждого антибиотика: средней терапевтической и мак­симальной. Материал из изолированной колонии с помощью мерной бактериологической петли (объем 1 мкл) вносят в 5 мл стандартной питательной среды, содержащей индикатор, и го­товят суспензию. Готовую бактериальную суспензию разлива­ют в лунки планшета по 0,1 мл и инкубируют при оптимальных для данного вида бактерий условиях температуры и газового состава среды. О росте бактерий судят по изменению цвета индикатора, что позволяет существенно сократить сроки ис­следования. Если бактерии сохраняют жизнеспособность в при­сутствии антибиотика, выделение продуктов метаболизма при­водит к изменению цвета индикатора. Отсутствие изменения цвета свидетельствует о полном подавлении жизнедеятельнос­ти микроба. Результаты определяют через 4 ч инкубации с помощью спектрофотометра.

Определение клинической чувствительности бактерий к анти­микробным препаратам методом дисков (диффузионный тест). Метод основан на подавлении роста бактерий на плотной питательной среде под действием антибиотика, содержащегося в бумажном диске. В результате диффузии препарата в агар вокруг диска образуется градиент концентрации антибиотика. Размер зоны подавления роста зависит от чувствительности бактерии и свойств препарата (в частности, скорости диффузии в агаре). Для определения чувствительности в клинической практике применяют готовые стандартные диски со строго определенным содержанием антибиотиков. Содержание пре­парата определяется исходя из терапевтических концентраций каждого антибиотика и средних значений МПК для патоген­ных бактерий. Название препарата и его количество обозначе­но на каждом диске. Для определения чувствительности из исследуемой бактериальной культуры готовят взвесь, содержа­щую стандартное количество жизнеспособных клеток, и засе­вают газоном в чашки Петри (диаметр 100 мм) на среды Мюллера-Хинтон или АГВ (специальные среды, не препятст­вующие диффузии антимикробных веществ и не оказывающие на них негативного воздействия). Диски на засеянную поверх­ность накладывают с помощью аппликатора на расстоянии 2,5 см от центра чашки по кругу (рис. 7.2.1). На чашку поме­щают не более 5 дисков. Посевы инкубируют 18-20 ч при 35 С. При корректном выполнении процедуры на фоне рав­номерного бактериального газона вокруг дисков образуются


Зоны подавления роста, имеющие круглую форму. Учет резуль­татов осуществляют путем измерения диаметра зоны подавле­ния роста. За зону, подлежащую измерению, принимают тот участок, на котором рост бактерий отсутствует полностью. Интерпретацию полученных результатов (вывод о чувствитель­ности) осуществляют на основании критериев, приведенных в табл. 7.2.2.

Таблица 7.2.2. Интерпретация результатов определения чувствитель­ности бактерий к антибиотикам методом дисков (на среде АГВ)

Пенициллины

Бензилпенициллин:
при испытании стафилококков £20 21- -28 >29
при испытании других бактерий £10 11- -16 £17
Ампициллин:
при испытании стафилококков <20 21- -28 £29
при испытании грамотрицатель-
ных бактерий и энтерококков <9 10- -13 >14
Карбенициллин (25 мкг) £14 15- -18 >19
Карбенициллин (100 мкг) при
испытании P. aeruginosa £11 12- -14 £15
Метициллин £13 14- -18 >19
Оксациллин (10 мкг) $15 16- -19 £20
Азлоциллин (для P.aeruginosa) £13 14- -16 £16
Пиперациллин (для P.aeruginosa) <17 >18
Азтреонам <15 16- -21 £22

Цефалоспорины


Продолжение

Антибиотик Диаметр зоны задержки роста
(мм)
чувстви- промежу- устой-
тельные точные чивые
(S) (D (R)
Новые бета-лактамы
Имипенем* <13 14-15 >16
Меропенем* <13 14-15 >16
Хинолоны
Ципрофлоксацин <15 16-20 >21
Офлоксацин <12 13-16 >17
Налидиксовая кислота* <12 13-17 >18
Аминогликозиды
Стрептомицин <16 17-19 >20
Канамицин <14 15-18 >19
Гентамицин £15 - >16
Сизомицин <15 - >16
Тобрамицин <14 - >15
Амикацин <14 15-16 >17
Нетилмицин <12 13-14 >15
Тетрациклины, макролиды, линкозамиды
Тетрациклин <16 17-20 >22
Доксициклин <15 16-19 >20
Эритромицин <17 18-21 >22
Азитромицин <13 14-17 >18
Рокситромицин* <14 15-18 >19
Кларитромицин* £13 14-17 >18
Линкомицин <19 20-23 £24
Клиндамицин £14 15-20 >21
Олеандомицин £16 17-20 >21
Антибиотики других групп
Хлорамфеникол <15 16-18 >19
Фузидиевая кислота <16 17-20 >21
Рифампицин <12 13-15 >16
Полимиксин <11 12-14 >15
Ванкомицин:
для стафилококков <11 - >12
для энтерококков <14 15-16 >17
Ристомицин <9 10-11 >12
Фурадонин £15 16-18 >19
Фурагин £15 16-18 >19

*Предварительные данные.


Применение метода дисков имеет ряд ограничений. Метод пригоден только для определения чувствительности быстрорас­тущих бактерий, образующих в течение 24 ч гомогенный газон на стандартной плотной питательной среде достаточно просто­го состава (Мюллера-Хинтон или АГВ), не содержащей ве­ществ, способных снижать активность антибиотиков или пре­пятствовать их диффузии. В противном случае полученная информация будет недостоверной.

Таким образом, метод дисков не может быть использован для определения чувствительности к антибиотикам всех мед­ленно растущих и большинства прихотливых бактерий, к числу которых относятся многие возбудители болезней человека (My­cobacterium spp., Helicobacter spp., Bacteroides spp., Prevotella spp., Brucella spp., Mycoplasma spp. и многие другие). При определе­нии чувствительности некоторых прихотливых бактерий, для которых разработаны стандартные тесты {Haemophilus spp., Ne­isseria spp., определенные виды стрептококков), следует исполь­зовать специальные питательные среды и дополнительные кри­терии при интерпретации полученных результатов.

Метод дисков не дает надежных результатов также при определении чувствительности бактерий к препаратам, плохо диффундирующим в агар, например, полипептидным антибио­тикам (полимиксин, ристомицин).

Количественное определение чувствительности бактерий к ан­тимикробным препаратам с помощью Е-теста. Е-тест представ­ляет собой вариант диффузионного метода, позволяющий оп­ределять МПК антибиотика. Вместо дисков используют стан­дартные полимерные полоски, приготовленные по специаль­ной технологии (АВ BIODISK) и содержащие иммобилизован­ные антимикробные препараты, нанесенные в виде непрерыв­ного градиента концентрации. На другой стороне полоски

Таблица 7.2.3. Определение МПК антимикробных препаратов мето­дом серийных разведений


Е-теста нанесена шкала значений МПК. При помещении по­лоски на поверхность агара регулируемый процесс диффузии обеспечивает создание в питательной среде вокруг полоски стабильного градиента концентрации препарата, соответствую­щего шкале. Процедура определения чувствительности с помо­щью Е-теста осуществляется аналогично тестированию мето­дом дисков. После инкубации посева вокруг полоски образу­ется зона задержки роста, имеющая форму эллипса. Значение МПК соответствует месту пересечения эллипсовидной зоны с полоской Е-теста. Для интерпретации результатов (оценки клинической чувствительности) используют стандартные кри­терии (табл. 7.2.3).

ЭКОЛОГИЯ МИКРООРГАНИЗМОВ

Введение. Экология микроорганизмов является разделом об­щей микробиологии и изучает взаимоотношения микро- и макроорганизмов, совместно обитающих в определенных био­топах. В естественных средах обитания (почве, воде, воздухе, живых организмах) микробы входят в состав различных био­ценозов. Экология микробов, вызывающих заболевания чело­века, определяется их способностью выживать во внешней среде, менять хозяев, сохраняться в организме хозяина на фоне действия иммунной системы, а также связана со способами их распространения, передачи и рядом других факторов. Оценка ряда экологических условий является одной из главных задач санитарной микробиологии.

Санитарно-бактериологические исследования лежат в осно­ве практической работы санитарных врачей и эпидемиологов при санитарно-гигиенической оценке объектов окружающей среды, пищевых продуктов, напитков и т.д. и играют ведущую роль в профилактике инфекционных болезней. Важным объ­ектом изучения медицинской микробиологии является нор­мальная микрофлора организма человека, которая включает микробы, обитающие на кожных покровах, слизистых оболоч­ках различных органов (полости рта, зева, носоглотки, верхних участков дыхательных путей, кишечника, особенно толстой кишки, и т.д.). Одни из них являются постоянными (облигат-ными) обитателями организма человека, другие - временными (факультативными или транзиторными). Нормальная микро­флора - это жизненно важная система организма, которая обеспечивает защиту от многих патогенных микробов, созре­вание и стимуляцию иммунной системы, продукцию ряда ви­таминов и ферментов, участвующих в пищеварении, и др.

Качественный и количественный состав микрофлоры человека меняется в течение жизни и зависит от пола, возраста, харак­тера питания и др. Кроме того, колебания в составе микро­флоры человека могут быть обусловлены возникновением заболеваний и применением лекарственных препаратов, преж­де всего антибиотиков и иммуномодуляторов. Оценка ка­чественного и количественного состава микрофлоры орга­низма человека по определенным показателям позволяет вы­явить его нарушение (дисбактериоз) и связанные с ним по­следствия.

Тема 8.1. МИКРОФЛОРА ВОДЫ, ВОЗДУХА И ПОЧВЫ. МЕТОДЫ САНИТАРНО-БАКТЕРИОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ ВОДЫ, ВОЗДУХА И ПОЧВЫ

ж Программа

1. Микрофлора воды, воздуха и почвы.

2. Санитарно-показательные микроорганизмы и их зна­чение.

3. Методы определения коли-индекса, коли-титра и микробного числа воды.

4. Методы определения микробного числа воздуха.

5. Методы определения перфрингенс-титра, коли-титра и микробного числа почвы.

А Демонстрация

1. Санитарно-бактериологическое исследование воды методом мембранных фильтров.

2. Санитарно-бактериологическое исследование воздуха. Аппарат Кротова. Рост микроорганизмов на МПА в чашке Петри. Рост гемолитических стрептококков на кровяном агаре.

3. Санитарно-бактериологическое исследование почвы. Рост Proteus vulgaris (по Шукевичу).

а Задание студентам

1. Провести оценку санитарно-бактериологического со­стояния воды по результатам определения микробного числа, коли-индекса и коли-титра.

2. Провести оценку санитарно-бактериологического со­стояния воздуха по результатам определения микроб­ного числа.

3. Провести оценку санитарно-бактериологического со­стояния почвы по результатам определения микроб­ного числа, коли-титра, перфрингенс-титра и титра термофильных бактерий.


4. Сделать посев смыва с кожи рук на глюкозопептон-ную среду.

▲ Методические указания

Микробиологические методы исследования окружающей среды

Для оценки санитарно-гигиенического состояния различ­ных объектов окружающей среды, воды, пищевых продуктов и др. проводят санитарно-бактериологические исследования, це­левое назначение которых состоит в определении эпидемичес­кой опасности. Однако прямое обнаружение патогенных мик­робов связано с рядом трудностей, обусловленных прежде все­го низкой концентрацией данных микробов, которые, как пра­вило, не могут размножаться в воздухе, воде, почве. Поэтому в санитарно-микробиологической практике применяют косвен­ные методы, основанные на определении общей микробной обсемененности того или другого объекта и на обнаружении в нем так называемых санитарно-показателъных бактерий (табл. 8.1.1).

Таблица 8.1.1. Санитарно-показательные бактерии окружающей среды и пищевых продуктов

Объект Характер загрязнения Санитарно-показательные бактерии
Вода Фекальное Бактерии группы кишечных па­лочек Escherichia coli, Citrobacter freundii, Enterobacter aerogenes, Enterococ-cus faecalis
Почва То же Те же бактерии и клостридии {Clostridium perfringens, CI. sporo-genes и др.)
Промышленно-быто- Термофильные бактерии, Proteus
вые (разлагающиеся отбросы) vulgaris
Пищевые Фекальное
продукты лочек S. faecalis, P. vulgaris
Орально-капельное Staphylococcus aureus
Предметы Фекальное Бактерии группы кишечных па-
обихода лочек, P. vulgaris, E. faecalis
Орально-капельное S. aureus
Воздух То же S. aureus, S. pyogenes
Вода, Промышленное Производственные штаммы мик-
почва, робов
воздух

Санитарно-показательными микробами, свидетельствующи­ми о фекальном загрязнении окружающей среды, являются бак­терии группы кишечной палочки (БГКП). Они принадлежат к разным родам семейства Enterobacteriaceae. Дифференциально-диагностические признаки БГКП представлены в табл. 8.1.2. Обнаружение E.coli в каких-либо объектах окружающей среды или пищевых продуктах считается наиболее достоверным по­казателем свежего фекального загрязнения. Наличие бактерий родов Citrobacter и Enterobacter указывает на относительно дав­нее фекальное загрязнение. Присутствие Clostridium perfrin-gens, С. sporogens и других клостридий в почве свидетельствует о ее фекальном загрязнении, причем как свежем, так и давнем, поскольку эти бактерии образуют споры, что позволяет им длительно сохраняться в окружающей среде (в частности, в почве). Обнаружение в объектах окружающей среды Enterococ-cusfaecalis также свидетельствует об их фекальном загрязнении. К группе термофильных бактерий относятся неродственные бактерии, представители различных семейств, способных раз­множаться при температуре 60 °С и выше {Lactobacillus lactis, Streptococcus thermophilus и др.). Они не являются постоянными обитателями кишечника человека и не служат критериями фекального загрязнения окружающей среды. Резкое увеличе­ние количества этих бактерий может свидетельствовать о за­грязнении почвы разлагающимися отбросами, поскольку они размножаются в саморазогревающемся навозе и компостах.


Таблица 8.1.2. Дифференциально-диагностические признаки БГКП

Escherichia Смесь + - +

coli кислот

Citrobacter То же + - р + +

freundii

Enterobacter Бутан- - + - + +

aerogenes диол

Условные обозначения: (+) - положительная реакция, (-) - от­рицательная реакция, р - различные реакции.

Бактерии, принадлежащие к роду Proteus {P.vulgaris и др.) семейства Enterobacterceae, широко распространены в природе. Эти гнилостные бактерии в большом количестве встречаются на разлагающихся останках животных и растений. Обнаруже­ние этих бактерий в каких-либо пищевых продуктах свидетель­ствует о гнилостном распаде.

Гемолитические стрептококки (S.pyogenes), являясь транзит­ными обитателями носоглотки и зева, выделяются с капелька­ми слизи воздушно-капельным путем. Сроки выживания гемо­литических стрептококков в окружающей среде практически не отличаются от сроков, характерных для большинства других возбудителей воздушно-капельных инфекций. Обнаружение гемолитических стрептококков в воздухе помещений указывает на возможное его загрязнение микробами, содержащимися в зеве, носоглотке, верхних дыхательных путях человека и явля­ющимися возбудителями воздушно-капельных инфекций. Sta­phylococcus aureus является факультативным обитателем носо­глотки, зева, а также кожных покровов человека. Его присут­ствие в воздухе помещений или на находящихся там предметах является показателем воздушно-капельного загрязнения. Одно­временное обнаружение золотистого стафилококка и гемоли­тических стрептококков свидетельствует о высокой степени загрязнения воздуха.

Санитарно-бактериологическое исследование воды

Определение микробного числа воды. Водопроводную воду засевают в объеме 1 мл, воду открытых водоемов - в объемах 1,0; 0,1 и 0,01 мл. Все пробы вносят в стерильные чашки Петри, после чего их заливают 10-12 мл расплавленного и остуженного до 45-50 °С питательного агара, который тща-

Тельно перемешивают с водой. Посевы инкубируют при 37 °С в течение 1-2 сут. Воду из открытых водоемов засевают па­раллельно на две серии чашек, одну из которых инкубируют при 37 °С в течение 1 сут, а другую - 2 сут при 20 °С. Затем подсчитывают количество выросших на поверхности и в глу­бине среды колоний и вычисляют микробное число воды - количество микроорганизмов в 1 мл.

Определение коли-титра и коли-индекса воды. Коли-титр воды - минимальное количество воды (мл), в котором обна­руживаются БГКП. Коли-индекс - количество БГКП в 1 л во­ды. Эти показатели определяют титрационным (бродильным) методом или методом мембранных фильтров.

Метод титрования. Производят посев различных объ­емов воды в глюкозопептонную среду (1 % пептонная вода, 0,5 % раствор глюкозы, 0,5 % раствор хлорида натрия, инди­катор Андреде и поплавок), причем для посевов больших ко­личеств (100 и 10 мл) используют концентрированную среду, содержащую 10-кратные количества указанных веществ.

Воду открытых поверхностных водоемов исследуют в объ­емах 100; 10; 1,0 и 0,1 мл. Для исследования водопроводной воды делают посевы трех объемов по 100 мл, трех объемов по 10 мл и трех объемов по 1 мл. Посевы инкубируют в течение 1 сут при 37 °С. О брожении судят по наличию пузырьков газа в поплавке. Из забродивших или помутневших проб произво­дят посевы на среду Эндо. Из выросших колоний делают мазки, окрашивают по методу Грама и ставят оксидазный тест, позволяющий дифференцировать бактерии родов Escherichia, Citrobacter и Enterobacter от грамотрицательных бактерий семей­ства Pseudomonadaceae и других оксидазоположительных бак­терий, обитающих в воде. С этой целью стеклянной палочкой снимают 2-3 изолированные колонии с поверхности среды, наносят штрихом на фильтровальную бумагу, смоченную ди-метил-п-фенилендиамином. При отрицательном оксидазном тесте цвет бумаги не изменяется, при положительном она окрашивается в синий цвет в течение 1 мин. Грамотрицатель-ные палочки, не образующие оксидазу, вновь исследуют в бродильном тесте - вносят в полужидкий питательный агар с 0,5 % раствором глюкозы и инкубируют при 37 °С в течение 1 сут. При положительном результате определяют коли-титр и коли-индекс по статистической табл. 8.1.3.

Метод мембранных фильтров. Мембранный фильтр № 3 помещают в воронку Зейтца, вмонтированную в колбу Бунзена, которая присоединяется к вакуумному насосу. Мем­бранные фильтры предварительно стерилизуют кипячением в дистиллированной воде. Воду из водопроводной сети и воду артезианских скважин фильтруют в объеме 333 мл. Чистую воду открытого водоема фильтруют в объеме 100, 10, 1,0 и 0,1 мл, более загрязненную перед фильтрованием разводят стерильной


Таблица 8.1.3. Определение индекса бактерий группы кишечных палочек при исследовании воды

Коли-титр

из 3 объ­емов по 100 мл

водой. Затем фильтры помещают на поверхность среды Эндо в чашки Петри и после инкубации при 37 °С в течение 1 сут подсчитывают количество выросших колоний, типичных для БГКП. Из 2-3 колоний красного цвета готовят мазки, окра­шивают по методу Грама и определяют оксидазную активность. Для этого фильтр с выросшими на нем колониями бактерий переносят пинцетом, не переворачивая, на кружок фильтро­вальной бумаги, смоченной диметил-п-фенилендиамином. При наличии оксидазы индикатор окрашивает колонию в синий цвет. 2-3 колонии, не изменившие первоначальную окраску, засевают в полужидкую среду с 0,5 % раствором глюкозы. Посевы инкубируют в течение суток при 37 °С. При наличии газообразования подсчитывают число красных колоний на фильтре и определяют коли-индекс. Нормативные показатели для питьевой воды приведены в табл. 8.1.4.

Таблица 8.1.4. Нормативы для питьевой воды (ГОСТ 2874-82)

Норматив

Показатель

Число микробов в 1 мл воды, не более 100

Число бактерий группы кишечных палочек в 1 л воды 3

(коли-индекс), не более

Для определения титра Enterococcus faecalis готовят 10-крат­ные разведения воды. Цельную воду и ее разведения в объеме 1 мл засевают в одну из жидких элективных сред (КФ, поли-

Миксиновая и др.), инкубируют при 37 "С в течение 2 сут, через 24 и 48 ч производят высевы на плотные элективно-дифферен­циальные среды: агар КФ, агар ТТХ (среда с трифенилтетра-золий-хлоридом), полимиксинтеллуритный агар. Идентифици­руют стрептококки по виду колоний, морфологии клеток и окраске по методу Грама. На среде с ТТХ стрептококки обра­зуют колонии темно-красного цвета, на агаре с теллуритом - черного цвета.

Состав сред. Среда КФ:2% питательного агара, 1 % дрожжевого экстракта, 2 % лактозы, 0,4 % азида натрия, 0,06 % карбоната натрия, индикатор бромкрезоловый красный.

Полимиксиновая среда: 2 % питательного агара, 1 % дрожжевого экстракта, 1 % глюкозы, полимиксин М 200 ЕД/мл, индикатор бромтимоловый синий.

Полимиксинтеллуритный агар: 2 % питательного агара, 1 % дрожжевого экстракта, 1 % глюкозы, кристалличес­кий фиолетовый 1:800 000, полимиксин М 200 ЕД/мл, 0,01 % теллурита калия.

Агар трифенилтетразолий-хлорид (ТТХ): 2 % пита­тельного агара, 1 % дрожжевого экстракта, 1 % глюкозы, кристаллический фиолетовый 1:800 000, 0,01 % ТТХ.

При определении индекса E.faecalis пользуются статистичес­кими таблицами, применяемыми при установлении коли-ин-декса. Кроме того, с этой целью используют метод мембранных фильтров. Для обнаружения патогенных бактерий воду пропус­кают через мембранные фильтры, которые затем помещают в жидкие элективные среды или на поверхность плотных диф­ференциально-диагностических сред.

Санитарно-бактериологическое исследование воздуха

Определение микробного числа воздуха. Количественные ми­кробиологические методы исследования воздуха основаны на принципах осаждения (седиментации), аспирации или фильт­рации.

Седиментационный метод. Две чашки Петри с пита­тельным агаром оставляют открытыми в течение 60 мин, после чего посевы инкубируют в термостате при 37 "С. Результаты оценивают по суммарному числу колоний, выросших на обеих чашках: при наличии менее 250 колоний воздух считается чис­тым; 250-500 колоний свидетельствует о загрязнении средней степени, при количестве колоний более 500 - загрязненным.

Аспирационный метод. Это более точный количест­венный метод определения микробного числа воздуха. Посев воздуха осуществляют с помощью приборов. Аппарат Кротова (рис. 8.1.1) устроен таким образом, что воздух с заданной скоростью засасывается через узкую щель плексигласовой пластины, закрывающей чашку Петри с питательным агаром.


Рис.8.1.1. Аппарат Кротова для бактериологического исследования

При этом частицы аэрозоля с содержащимися на них микро­организмами равномерно фиксируются на всей поверхности среды благодаря постоянному вращению чашки под входной щелью. После инкубации посева в термостате проводят расчет микробного числа по формуле:

а х 1000 х ~ у

где а - количество выросших на чашке колоний; V - объем пропущенного через прибор воздуха, дм 3 ; 1000 - стандартный объем воздуха, дм 3 .

При определении микробного числа воздуха используют питательный агар для выделения гемолитических стрептокок­ков - кровяной агар с добавлением генцианового фиолетового с последующим контрольным микроскопированием и выбо­рочным пересевом подозрительных колоний на кровяной агар.

Состав сред. Кровяной агар с генциановым фиолето­вым: 2 % питательного агара, 5-10 % дефибринированной крови лошади, кролика или барана, генциановый фиолето­вый (1:50 000).

Желточно-солевой агар (ЖСА): 2 % питательного ага-ра, 10 % хлорида натрия, 20 % (по объему) желточной взвеси (1 желток куриного яйца на 200 мл изотонического раствора хлорида натрия).

Для исследования воздуха могут применяться и другие при­боры (Дьякова, Речменского, Киктенко, ПАБ-1 - пробоотбор-


Ник аэрозольный бактериологический, ПОВ-1 - прибор для отбора воздуха), с помощью которых определенный объем воз­духа пропускают через жидкости или фильтры, а затем делают мерные посевы на питательные среды. Использование ПАБ-1 и ПОВ-1 позволяет исследовать большие объемы воздуха и обнаруживать патогенные бактерии и вирусы.

При исследовании воздуха стационаров (хирургических, аку-шерско-гинекологических и др.) осуществляют непосредствен­ное выделение патогенных и условно-патогенных бактерий - возбудителей внутрибольничных инфекций (стафилококков, синегнойной палочки и др.). При возникновении внутриболь­ничных инфекций стафилококковой этиологии проводят ис­следования, направленные на выявление источников и путей распространения инфекций: путем фаготипирования определя­ют идентичность стафилококков, выделенных из объектов ок­ружающей среды, а также от больных и обслуживающего пер­сонала. Нормативные показатели микробного числа и содер­жания Staphylococcus aureus, Глава 2. Государственная социальная помощь, оказываемая в виде предоставления гражданам набора социальных услуг 10 страница

  • Глава 2. Государственная социальная помощь, оказываемая в виде предоставления гражданам набора социальных услуг 17 страница
  • Глава 2. Государственная социальная помощь, оказываемая в виде предоставления гражданам набора социальных услуг 18 страница

  • К физическим методам стерилизации относится воздействие высокой температуры на стерилизуемые объекты (тепловая стерилизация).

    А также воздействие ультрафиолетовым, излучением, токами высокой частоты, ультразвуковыми колебаниями, радиоактивным из­лучением, инфракрасными лучами, и т. д.

    В аптечной практике для стерилизации посуды и лекарств пользуются исключительно способами, основанными на воз­действии высоких температур. Ультрафиолетовое облучение находит применение главным образом для обеззараживания воздуха аптечных помещений, тары и поступающих в аптеку рецептов.

    Использование высокой температуры для стерилизации основано на необратимой коагуляции протоплазмы, пирогенетическом ее разрушении и на повреждении ферментных си­стем микробной клетки. Температура и длительность нагре­вания, необходимые для достижения стерильности, могут изменяться в зависимости от вида микрофлоры и других условий.

    Большинство патогенных микроорганизмов погибают при температуре около 60°, но их споры выдерживают значитель­но более высокую температуру. Текучий пар и кипящая вода убивают микроорганизмы значительно быстрее, но многие споры и в этих условиях сохраняются в течение нескольких часов (особенно в вязких средах). Чистый водяной пар дейст­вует сильнее, чем в смеси с воздухом.

    Пар под давлением (при температуре выше 100°) убивает микроорганизмы быст­рее. Сухой горячий воздух убивает бактерии и их споры при более высокой температуре по сравнению с водяным паром. Выбор метода зависит от свойств стерилизуемого объекта. Выбирая метод стерилизации, стремятся к полной ликвидации живой микрофлоры и спор, сохраняя в то же время в неизмен­ности лекарственное вещество.

    В практике находят применение следующие физические методы стерилизации.

    Прокаливание является одним из наиболее надеж­ных видов стерилизации. Осуществляется в муфельных или тигельных печах нагреванием объекта до 500-800° или же его прокаливанием на голом огне. Применяется для стерили­зации платиновых игл для шприцев, фарфоровых фильтров и других фарфоровых предметов. Стальные предметы стерили­зовать этим способом не рекомендуется, так как они ржавеют и теряют закалку.

    Стерилизация сухим жаром. Стерилизуемый объект нагревают в сушильном шкафу при температуре 180° в течение 20-40 мин или при 200° в течение 10-20 мин. Сухим жаром стерилизуют стеклянную и фарфоровую посуду, жиры, вазелин, глицерин, термоустойчивые порошки (каолин, стрептоцид, тальк, кальция сульфат, цинка окись и др.).

    В сушильных шкафах нельзя стерилизовать водные рас­творы в склянках, так как вода при высоких температурах превращается в пар и склянка может быть разорвана.

    Стерилизация влажным жаром. При ис­пользовании этого способа стерилизации комбинируются воз­действие высокой температуры и влажности. Если сухой жар вызывает главным образом пирогенетическое разрушение микроорганизмов, то влажный жар - коагуляцию белка, тре­бующую участия воды.

    На практике стерилизация влажным жаром проводится при температуре 50-150° и осуществляется следующими пу­тями.

    Кипячение. Этим способом стерилизуют резиновые предметы, хирургический инструментарий, стеклянную посу­ду. Применять кипячение для стерилизации инъекционных растворов не рекомендуется, так как по эффективности оно значительно уступает стерилизации паром.

    Стерилизация текучим паром. Текучим назы­вается насыщенный водяной пар (без примеси воздуха), имеющий давление 760 мм рт. ст. и температуру 100°. Стери­лизацию текучим паром осуществляют в паровом стерилиза­торе или автоклаве при 100° в течение 15-60 мин в зависимо­сти от объема раствора. Это один из распространен­ных методов стерилизации инъекционных растворов в ап­теках.

    Стерилизация паром под давлением (автоклавирование). Осуществляется в различной конструкции автоклавах. Автоклав представляет собой герметически за­крывающийся сосуд, состоящий из толстостенной стерилизационной камеры и кожуха. На автоклаве имеется предохранительный клапан, обеспечивающий выход пара при избыточном давлении, и манометр. При каждом автоклаве должны быть инструкция по его эксплуатации и уходу, а также паспорт котлонадзора.

    Стерилизуемый объект помещают внутрь паровой камеры. Водяную камеру подвергают нагреванию. Вначале автоклав нагревают при открытом кране до тех пор, пока пар не пой­дет сильной сплошной струей и не вытеснит находящийся в автоклаве воздух, который значительно снижает теплопровод­ность водяного пара (при содержании в водяном паре 5%- воздуха она уменьшается на 50%).

    Во время нагревания автоклава после закрывания крана необходимо следить за давлением, параллельно с возраста­нием которого увеличивается температура пара.

    Автоклавирование является наиболее надежным способом стерилизации. Обычно стерилизация в автоклаве производит­ся при 119-121° в течение 5-30 мин в зависимости от объ­ема раствора. Этим гарантируется достаточно полная стери­лизация независимо от вида микроорганизма. Таким образом, стерилизуют посуду, бумажные и стеклянные фильтры, ин­струменты, водные растворы устойчивых к воздействию высо­кой температуры лекарственных веществ, перевязочный мате­риал.

    Дробная стерилизация. При дробной стерилиза­ции объект (обычно водный раствор) нагревают текучим па­ром при 100° в течение 30 мин, затем раствор выдерживают при комнатной температуре в течение 24 ч, после чего снова стерилизуют в тех же условиях (30 мин при 100°). Описанный цикл повторяют 3-5 раз. При первом нагревании погибают вегетативные формы микроорганизмов, при последующих - вновь появившиеся вегетативные формы. Вследствие длитель­ности этот способ в аптеках применяется редко.

    Пастеризация - однократное нагревание объек­та при температуре 60° в течение 1 ч или при температуре 70-80° в течение 30 мин. Позволяет уничтожить вегетатив­ные формы микробов (кроме термофильных), но не споры.

    Тиндализация (дробная пастеризация). При тиндализации объект нагревают при температуре 60-65° по 1 ч ежедневно в течение 5 дней или при 70-80° в течение 3 дней. Это надежный и бережный способ стерилизации термолабиль­ных лекарственных веществ. Однако вследствие длительности он мало пригоден для аптек и в последних почти не исполь­зуется.

    Стерилизация I Стерилиза́ция (лат. sterilis бесплодный)

    полноте уничтожение всех видов микроорганизмов и их спор на поверхности и внутри различных предметов, а также в жидкостях и воздухе. Применяется в медицине, микробиологии, гнотобиологии, пищевой промышленности и в других областях. С. является основой асептики (Асептика), имеет большое значение в борьбе с госпитальной инфекцией, а также в профилактике возникновения послеоперационных гнойных осложнений, гепатита В, ВИЧ-инфекции и гнойных заболеваний. Стерилизуются все инструменты, дренажи, перевязочный материал, контактирующие с раневой поверхностью, кровью или инъекционными препаратами, а также медицинские инструменты и приборы, которые в процессе эксплуатации соприкасаются со слизистой оболочкой и могут вызвать ее . Обеззараживаются в операционной (см. Операционный блок), руки хирурга и операционной сестры (см. Обработка рук).

    Современные методы С. подразделяют на физические и химические. К физическим методам относятся паровой, воздушный, радиационный. ультразвуковой. Химическая С. бывает газовой и растворами химических препаратов. С. при высоких температурах (паровая, воздушная) называют термической, а при температуре ниже 100° (радиационная, ультразвуковая и др.) - холодной. Стерилизация радиационным, ультразвуковым и некоторыми другими методами технически сложна и может осуществляться только в особых условиях. Выбор того или иного метода С. зависит особенностей стерилизуемого объекта и самого метода. При этом в течение установленного времени (стерилизационной выдержки) обязательно должны погибнуть все , как патогенные, так и , в т.ч. спороносные формы. Кроме того, выбранные методы, средства и режимы С. не должны вызывать изменений внешнего вида, прочности, эксплуатационных качеств и других свойств стерилизуемых изделий. После С. химическим методом изделия не должны становиться токсичными для организма. Термонестойкие изделия стерилизуют холодными методами, а портящиеся под действием влаги - газовым или воздушным. При всех равных условиях предпочтение обычно отдают термическим методам стерилизации. При паровом методе выдержка короче, а температура ниже, чем при стерилизации сухим горячим воздухом.

    Эффективность С. зависит не только от того, насколько правильно применен избранный метод, но и от степени чистоты стерилизуемых изделий, массивности их микробного обсеменения. Инструменты, использованные при гнойных операциях, диагностических и лечебных манипуляциях у инфекционных больных, перенесших в прошлом В или гепатит, которого не уточнен, а также являющихся носителем НВ-антигена, подлежат предварительной дезинфекции (Дезинфекция). Она осуществляется кипячением, а также воздействием водяного насыщенного под избыточным давлением, сухого горячего воздуха, растворами хлорамина, перекиси водорода, формалина, дезоксона-1, хлоргексидина биглюконата, дихлора-1, сульфолхлорантина и др. После дезинфекции химическим способом изделие должно быть промыто в проточной воде до полного удаления запаха дезинфицирующего средства.

    Все изделия после дезинфекции, а также изделия, использующиеся впервые или после «чистых» операций, должны пройти предстерилизационную очистку с целью удаления белковых, жировых и механических загрязнений, а также лекарственных препаратов. Разъемные изделия разбирают на составные части. Новые изделия очищают сжатым воздухом от пыли, затем моют. Инструменты и другие изделия, использованные во время операций и различных манипуляций, тщательно промывают проточной водой, освобождают от слизи, крови, гноя и других загрязнений. Когда предстерилизационная очистка инструментов, загрязненных кровью, выполняется не сразу после их использования, то они предварительно должны быть погружены в 1% раствор бензоата натрия, являющегося ингибитором коррозии металла. После промывания водой изделия погружают на 15 мин в 0,5% раствор Биолота, подогретый до 40°, или в комплексный раствор, состоящий из 17 мл 27,5% раствора перекиси водорода, 5 г синтетического моющего средства (Лотос, Прогресс, Айна, Астра) и 978 мл питьевой воды при температуре 50°. Затем каждое изделие моют в том же растворе с помощью ерша или ватного тампона, а затем повторно промывают в проточной воде в течение 5-10 мин при использовании одного из моющих средств. Моющий раствор можно применять многократно до его загрязнения в течение 1 сут. с момента приготовления Предстерилизационная очистка заканчивается сушкой изделий в сушильных шкафах при температуре 85° до полного исчезновения влаги. Качество очистки хирургических инструментов и других изделий от крови определяется путем постановки бензидиновой, ортотолиновой или амидопириновой проб.

    Сухие изделия группируют по назначению и в зависимости от их особенностей и метода стерилизации укладывают в стерилизационные коробки (биксы), упаковочный материал или открытые емкости. С. осуществляется в специально оборудованном помещении - стерилизационной или в центральных стерилизационных отделениях, где изделия стерилизуются для нескольких отделений больницы (поликлиники) или нескольких лечебных учреждений.

    При стерилизации паровым методом стерилизующим агентом является водяной насыщенный под избыточным давлением. С. производят в паровых стерилизаторах (см. Стерилизационное оборудование) в течение 20-22 мин при давлении пара в стерилизационной камере 2 ± 0,2 кгс/см 2 (0,2 ± 0,02 МПа ) и температуре 132 ± 2°. Паровым методом стерилизуют изделия из текстильных материалов, стекла, коррозионно-устойчивого металла, резины. Стерилизуемые объекты укладывают в стерилизационные коробки с фильтром или без него, в качестве упаковки используют также влагопрочную бумагу, например пергамент, и двойной слой бязи. Стерилизационные коробки без фильтра должны быть выстланы изнутри одним слоем хлопчатобумажной ткани. Для эффективности С. и достижения необходимого прогрева необходимо полное удаление воздуха из стерилизационной камеры и стерилизуемых объектов. В паровых стерилизаторах, не имеющих вакуум-насосов и управляемых вручную, необходимо вытеснить воздух паром (продувка) в течение 10 мин . На качество удаления воздуха оказывают влияние плотность и равномерность загрузки стерилизационной камеры, упаковки и плотность расположения в ней стерилизуемых объектов. Достоинствами парового метода являются его высокая надежность, обеспечение стерильности не только на поверхности изделий, но и в их толще, возможность стерилизовать материалы, разрушающиеся под действием горячего сухого воздуха. Однако он не пригоден для С. изделий, неустойчивых к воздействию тепла или влаги. Недостатком метода является также вероятность вторичного инфицирования простерилизованных объектов. Оно происходит непосредственно после окончания С. и обусловлено тем, что при охлаждении вместе с воздухом внутрь упаковки (кроме стерилизационных коробок с фильтром) поступает и . В связи с этим после С. упаковки складывают на специальных столах, покрытых стерильной простыней, и накрывают второй стерильной простыней до полного охлаждения стерилизуемых объектов. Боковые отверстия стерилизационных коробок должны быть закрыты. Категорически запрещается выдавать в отделения стерилизованные изделия до их полного остывания.

    Стерилизация воздушным методом осуществляется сухим горячим воздухом в воздушных стерилизаторах (см. Стерилизационное оборудование) при температуре 180° в течение 60-65 мин или при температуре 160° в течение 150 мин . Стерилизуют изделия из металла, стекла и силиконовой резины, а также разрушающиеся под действием влаги. Их укладывают в пакеты из крафт-бумаги (сильфитно-оберточная бумага) или в открытые емкости. Пакеты склеивают 10% раствором поливинилового спирта или 5% крахмальным клеем. После укладки стерилизуемого материала свободный край пакета трижды перегибают и закрепляют металлической скрепкой. В камере стерилизатора могут образоваться участки со значительной разницей температур. Поэтому лучше использовать стерилизаторы, оборудованные механическими устройствами, усиливающими циркуляцию воздуха в стерилизационной камере. Необходимо следить за тем, чтобы между предметами, а также между ними и стенками камеры оставались промежутки. Воздушный метод нельзя применять при стерилизации термолабильных материалов (изделий из текстиля, полимеров, резины).

    Химические методы позволяют стерилизовать оптические изделия, радио- и электронную аппаратуру, а также изделия из термонестойких материалов, металла, стекла. Стерилизация эффективна в том случае, когда химическое средство поглощается стерилизуемым объектом. Химические вещества в растворенном и особенно в газообразном состоянии обладают незначительной скоростью проникновения в стерилизуемый объект, что требует более длительной стерилизационной выдержки и очень тщательной предстерилизационной очистки пористых материалов. Недостатком метода является также необходимость нейтрализации или дегазации химических веществ, оставшихся в стерилизуемых объектах. Растворами химических препаратов нельзя стерилизовать изделия из влагонестойких материалов.

    Пары окиси этилена обладают высокими бактерицидными свойствами, легко проникают через различные ткани и материалы, не портят их, но являются взрывоопасными. Стерилизация окисью этилена осуществляется в течение 960 ± 5 мин . Взрывоопасность окиси этилена значительно уменьшается в смеси ее с бромистым метилом в весовом соотношении 1:2,5 (смесь ОБ). Бромистый метил не горит, но также обладает высокими бактерицидными свойствами. Смесь ОБ в 5 раз эффективнее каждого из компонентов, входящих в ее состав. Для стерилизации формальдегидом используют 16% раствор формалина (по формальдегиду). С. осуществляют в течение 300 ± 5 мин при температуре 75 ± 5° и относительной влажности воздуха 96 ± 2%. С. окисью этилена и смесью ОБ выполняется в стационарных газовых стерилизаторах и микроанаэростате, формальдегидом - в стационарном формалиновом стерилизаторе. В качестве упаковочного материала используют полиэтиленовую пленку, пергамент, мешочную влагопрочную бумагу. Изделия, простерилизованные газовым методом, применяются после их выдержки в вентилируемом помещении (при скорости воздуха 20 м/с ) в течение 1 сут. (изделия из стекла и металла), 5-13 сут. (изделия из полимерных материалов), 14 сут. (изделия, имеющие длительный, более 30 мин контакт с тканями, слизистой оболочкой и кровью), 21 сут. (изделия из полимерных материалов, используемые у детей). Для нейтрализации формальдегида изделия перед применением погружают на 1 ч в 23-25% раствор аммиака.

    Стерилизация растворамихимических препаратов выполняется в закрытых емкостях, покрытых неповрежденной эмалью, а также сделанных из стекла или пластмассы. Стерилизуемые объекты погружают в раствор при температуре 18 ± 2°. Время стерилизационной выдержки в 6% растворе перекиси водорода - 60 ± 5 мин , дезоксоне-1 - 45-50 мин . После С. изделия промывают стерильной водой в асептических условиях.

    Контроль за качеством С. осуществляют с помощью физических, химических и бактериологических методов. Манометры, термометры, мановакуумметры и др. позволяют наблюдать за температурой, давлением пара или газа, временем стерилизационной выдержки и другими параметрами. Химический метод контроля С. основан на свойстве некоторых веществ плавиться или изменять при определенной температуре. В качестве индикаторов при термических методах С. можно применять бензойную кислоту (t° 122,36°), мочевину (132,7°), тиомочевину (187-182°), аскорбиновую кислоту (187-192°) и др. Используют также термоиндикаторы в виде окрашенных марлевых лент, которые при нагреве изменяют свой цвет и с точностью до 1-2° указывают уровень температуры в пределах от 111 ± 2° до 212 ± 1°. Бактериологический метод контроля эффективности С. является наиболее специфичным и точным, позволяет констатировать достижение необходимой температуры и экспозиции С. на основании гибели спор высокорезистентных тест-микроорганизмов. Однако этот метод трудоемкий. При стерилизации паровым методом в качестве биотеста применяют пробы почвы (садовой земли), содержащей сапрофиты, которые выдерживают воздействие водяного насыщенного пара при температуре 120° в течение 3-5 мин . Для контроля воздушного метода С. используют бактериологические пробирки, инфицированные споровой суспензией сенной палочки, погибающей через 5 мин при температуре не ниже 180°. Контроль С. осуществляется также посевами микрофлоры с простерилизованных изделий.

    Библиогр.: Вашков В.И. Средства и методы стеризации, применяемые в медицине, М., 1973, библиогр.; Тимофеев Н.С. и Тимофеев Н.Н. и антисептика, с. 14, М., 1980.

    II Стерилиза́ция (лат. sterilis бесплодный; . обеспложивание)

    полное освобождение какого-либо вещества или предмета от микроорганизмов путем воздействия на них физическими или химическими факторами.

    Стерилиза́ция лучева́я - С. осуществляемая с помощью ионизирующих излучений.

    Стерилиза́ция холо́дная (s. frigida) - С. без воздействия высокой температурой.

    III Стерилиза́ция

    1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

    Синонимы :

    Смотреть что такое "Стерилизация" в других словарях:

      Обеспложивание, полное освобождение от живых микроорганизмов различных веществ и предметов, напр. пищевых продуктов, питательных сред, хирургического инструмента, посуды и т. д. Осуществляется действием высоких температур, бактериальных фильтров… … Словарь микробиологии

      - (sterilization) Процесс компенсирования инфляционно дефляционных влияний, имеющих место в тех случаях, когда правительство проводит интервенции на валютных рынках. Если курс национальной валюты падает и правительство намерено провести интервенцию … Финансовый словарь

      Один из способов обезвреживать употребляемую для питья жидкость; продолжительным кипячением уничтожаются или обессиливаются вредоносные бактерии так что заражение становится невозможна; в последнее время врачи и ученые предпочитают другой способ… … Словарь иностранных слов русского языка

      - (от лат. sterilis неплодотворный, бесплодный), 1) полное уничтожение (действием высоких температур, химических веществ, ионизирующим излучением и др.) микроорганизмов в пищевых продуктах, предназначенных для хранения, и на предметах спец.… … Экологический словарь

      стерилизация - и, ж. stérilisation f. 1. Уничтожение микроорганизмов кипячением, прогреванием, воздействием химических веществ и т. п.; обеззараживание. Стерилизация молока. Лучевая стерилизация. Стерилизация паром. БАС 1. Стерилизация хирургических… … Исторический словарь галлицизмов русского языка

      СТЕРИЛИЗАЦИЯ - СТЕРИЛИЗАЦИЯ. Стерилизация в хирургии. Для обеззараживания хир. инструментов употребляются металлические стерилизаторы ки Ряе. 1. Рисунок 2. пятильники. Наиболее простыми, удобными для применения в походных условиях (экстренная операция, в… … Большая медицинская энциклопедия

      Стерилизация - Процесс, обеспечивающий удаление или инактивацию соответствующими методами до уровня отсутствия жизнеспособных микроорганизмов в изделии. Источник … Словарь-справочник терминов нормативно-технической документации

      - (от лат. sterilis бесплодный): Стерилизация (микробиология) полное освобождение различных веществ, предметов, пищевых продуктов от живых микроорганизмов. Стерилизация (медицина) лишение способности к деторождению (путём… … Википедия

      - (от лат. sterilis бесплодный) 1) полное освобождение от микроорганизмов различных веществ и предметов, напр. пищевых продуктов, хирургических инструментов, перевязочного материала. Осуществляется действием высоких температур, химических… … Большой Энциклопедический словарь