Методы санитарно бактериологического исследования воздуха. Планирование и создание безопасных продуктов


Большая группа приборов и устройств предназначается для концентрирования микроорганизмов в пробах из объектов внешней среды (вода, воздух), а также в пробах патологического материала от больных.

Как известно, объекты внешней среды могут быть источником массовых заражений человека и животных, в случае загрязнения их патогенными микроорганизмами. Для суждения о наличии в объектах внешней среды патогенных микроорганизмов, наиболее надежным критерием является их прямое обнаружение. Однако используемые в микробиологической практике методы не всегда позволяют делать это. Патогенные микроорганизмы трудно выявить в объектах внешней среды, так как их гораздо меньше, чем сапрофитов. Поэтому в силу антагонистических действий на питательных средах рост патогенной флоры зачастую подавляется ростом сапрофитов. Первоочередной задачей при исследовании такого объекта внешней среды, как воздух, является концентрация взвешенных в нем микроорганизмов в небольшом количестве жидкости (питательной среды).

Одним из ведущих показателей бактериальной обсемененности объектов внешней среды является показатель микробного числа. Эти данные санитарной микробиологии регистрируются подсчетом колоний, выросших на чашках Петри, с последующим пересчетом.

Значительное количество работ посвящено методам забора проб воздуха. Предложено большое количество всевозможных приборов, улавливающих бактериальные аэрозоли.

Одним из первых приборов для исследования аэромикрофлоры, который был внедрен в серийное производство в нашей стране, был прибор Кротова . Несмотря на сравнительно большое количество времени с начала его серийного выпуска (пятидесятые годы), прибор не потерял своей значимости при исследовании санитарно-бактериологического состояния воздуха закрытых помещений и до сегодняшнего дня широко используется в практике санитарно-бактериологических лабораторий.

Прибор для бактериологического анализа воздуха (прибор Кротова) (рис. 58) представляет собой цилиндр, закрывающийся крышкой, под которой имеется столик для установки чашки Петри с плотной питательной средой. Внутри цилиндра находится электрический мотор, вращающий столик с чашкой и турбинку, засасывающую воздух внутрь прибора через щель, находящуюся в крышке. Количество воздуха, просасываемого в минуту, определяется по поплавковому расходомеру и регулируется при помощи вентиля. Прибор питается от сети переменного тока напряжением 220 В. Габариты прибора в футляре -229X200X280 мм. Масса - 8 кг.

Рис. 58. Прибор для бактериологического анализа воздуха.
1 - вентиль ротаметра, 2 - ротаметр; 3 - накидные замки; 4 - диск вращающийся; 5 - крышка; 6 - диск; 7 - клиновидная щель; 8 - корпус; 9 - основание.

Подготовка прибора к работе сводится к отбору стандартных чашек Петри диаметром 100 мм и высотой 20 мм и заблаговременному заполнению их питательной средой в количестве 15 мл. Розлив и охлаждение питательных сред производится на строго горизонтальной поверхности, подсушивание в обычных условиях.

Другим прибором аналогичного назначения является пробоотборник воздуха ПОВ-1 (рис.59).

Рис. 59. Пробоотборник воздуха ПОВ-1

Забор проб воздуха производится в жидкую питательную среду, что позволяет применять специфические элективные среды и проводить специальные (направленные) бактериологические исследования.

Техническая характеристика прибора ПОВ-1
Производительность............ 20 л/мин
Питание от сети переменного тока..... 127/220 В
Потребляемая мощность..........не более 18 В А
Габариты прибора..........................170x255x285 мм
» укладки..........................170X270X350 »
Масса (с укладкой)..........................не более 15 кг

Аспиратор для отбора проб воздуха, модель 822 , выпускаемый объединением «Красногвардеец» предназначен для анализа содержащихся в воздухе примесей. На передней панели прибора (рис. 60) расположены: колодка для подключения прибора к сети 1, тумблер для включения и выключения аппарата 2, гнездо предохранителя 3, разгрузочный клапан, предохраняющий от перегрузки электродвигатель при отборе проб воздуха с малыми скоростями 4, ротаметры (конусные стеклянные трубки с поплавками) для определения скорости прохождения воздуха 5, ручки вентилей ротаметров для регулировки скорости отбора проб 6, винты крепления панели к кожуху прибора 7, штуцеры для присоединения резиновых трубок с фильтрами 8 и клемма для заземления прибора 9.


Рис. 60. Аспиратор для отбора проб воздуха. Пояснения в тексте.

На рис. 61 показан общий вид аспиратора с держателем фильтров.

Отбор проб производится при просасывании воздуха через специальные фильтры с определенной скоростью. Воздух, проходя через фильтры, оставляет на них содержащиеся в нем примеси. Зная скорость прохождения воздуха и время прохождения, можно определить объем воздуха, прошедшего через фильтр. Определив количество примесей на фильтре, можно рассчитать количество примесей в единице объема воздуха.

Аспиратор для забора проб воздуха выпускает французская фирма «Baudard» . Аспиратор представляет собой герметичный аппарат с приспособлением для укрепления мелкопористых фильтров, которые легко могут быть извлечены после просасывания через аспиратор заданного объема воздуха и, в зависимости от цели исследования, изучаться либо бактериологически (инкубирование фильтра с имеющимися на нем микроорганизмами на питательных средах), либо микроскопически (определение природы частиц, задержанных фильтром, их подсчет и т. п.).

Используемые мелкопористые фильтры могут быть либо бумажными, либо изготовленными из стекловолокна. Диаметр фильтров составляет 110 мм.

Вентилятор центрифужного принципа действия имеет две скорости и рассчитан на питание от электросети напряжением 220 В; мощность мотора - 50 Вт; производительность аспиратора - от 360 до 1000 л/мин в зависимости от сопротивления используемого мелкопористого фильтра.

При исследовании воды и других объектов внешней среды (почва), а также биологических жидкостей человека и животных (мокрота, эксудаты и транссудаты) на наличие патогенной флоры, как и при исследовании воздуха, необходима предварительная концентрация микроорганизмов в небольшом объеме питательной среды, которая в дальнейшем подвергается бактериологическому исследованию (микроскопия, посев, постановка биохимических и серологических реакций и т. д.).

Рис. 61. Аспиратор с держателем фильтров.

Однако прогресс в области методов концентрирования микроорганизмов из объектов внешней среды невелик, и большей частью приходится ограничиваться старыми методиками, представляющими различные способы накопления:
- осаждением механическими способами - фильтрация, центрифугирование, выпаривание воды;
- осаждением микробов физико-химическими методами при помощи различных коагулянтов;
- концентрированием микробов методом флотации;
- осаждением микробов специфическими агглютинирующими сыворотками;
- применением комбинированных методов концентрирования микроорганизмов, заключающихся в сочетании методов осаждения с последующим высевом на питательные среды или заражением восприимчивого лабораторного животного.

Новые методы концентрирования микроорганизмов основаны на применении некоторых физических принципов . Одним из таких физических принципов является электрофорез. Применение этого метода обеспечивает движение микробной клетки к одному из электродов, расположенных в жидкой среде, под воздействием приложенной к электродам внешней электродвижущей силы (ЭДС). Этот принцип положен в основу прибора ЭФМ-1 (рис. 62). Прибор позволяет концентрировать микробные клетки, имеющие положительный или отрицательный поверхностный заряд в малом объеме изолированной жидкости (0,01-0,02 мл).

Рис. 62. Прибор для электрофореза микобактерий ЭФМ-1.

Кроме исследований воды, прибор может быть использован для бактериологических исследований водных суспензий пищевых продуктов, различных смывов и т. п. Прибор также может быть использован и для обнаружения микроорганизмов в различных материалах, полученных от больных, в частности для обнаружения микобактерий туберкулеза в таких материалах, как спинномозговая жидкость, промывные воды бронхов и желудка, всевозможные пунктаты, моча. В мазках, приготовленных из взвеси микобактерий туберкулеза в физиологическом растворе и подвергнутых электрофоретической концентрации, количество микробных клеток увеличивается в 10-15 раз по сравнению с мазками из нативного материала.

Прибор снабжен комплектом принадлежностей, куда входят 20 небьющихся кювет емкостью по 12 мл, электроды, пипетки. Прибор питается от сети переменного тока напряжением 220 В± 10%, 50 Гц. Потребляемая мощность - не более 20 Вт. Габариты- 405X165X205 мм. Масса прибора с комплектом принадлежностей - 6 кг.

Принцип работы прибора . В специальные кюветы, из комплекта к прибору, наливают по 10 мл исследуемого материала. Над каждой кюветой с помощью зажима-держателя укрепляют пипетку, в которую помещен графитовый электрод. Часть исследуемой жидкости поднимается на 4-5 мм по капилляру пипетки и касается электрода. В зависимости от цели исследования устанавливают полярность приложенной ЭДС. Электрофорез рекомендуется проводить в течение 1-3 ч.

После выключения тока жидкость из капилляра с помощью резинового баллончика выдавливают в каплю сыворотки (нормальная лошадиная или кроличья сыворотка в разведении 1:10), предварительно нанесенную на поверхность предметного стекла, и тщательно перемешивают запаянной пастеровской пипеткой, препарат высушивают, фиксируют над пламенем горелки и окрашивают по Граму, Циль - Нильсену или другим способом.

Чтобы исключить возможность диагностических ошибок, все манипуляции проводят с тщательно обработанными кюветами, пипетками и предметными стеклами. Графитовые электроды после каждого исследования необходимо менять.

Растворы красок и кислоты должны быть тщательно проверены бактериологически.

Для увеличения точности подсчета выросших микробных колоний Киевским заводом медицинского оборудования выпускается прибор для счета колоний бактерий . Для подсчета колоний электропером на дно чашки наносятся точки в месте "нахождения каждой колонии, при этом контакты электропера замыкаются и поступающий к счетчику электрический импульс производит отсчет. Внешний вид прибора приведен на рис. 63.

Рис. 63. Прибор для счета колоний.

Для подсчета числа колоний на закрытой чашке используется карандаш или ручка, которыми ставят отметки на оборотной стороне чашки, что исключает возможность повторного учета одной и той же колонии.

Универсальный счетчик для подсчета колоний на питательной среде «Бактроник» укомплектован электронным наконечником для подсчета числа колоний на открытых чашках. При контакте с любой агаризированной средой наконечник включает электромагнитный счетный механизм и оставляет след на поверхности среды.

Такое устройство устраняет электроразряды, которые имеют место при использовании других систем.

При подсчете числа колоний на чашках с редким ростом можно использовать кнопку на панели прибора, а если необходимо- дистанционный кнопочный выключатель, что облегчает работу.

Фирма «Millipore» выпускает специальную чемодан-укладку для микробиологических исследований . Чемодан, являющийся по существу портативной лабораторией (рис. 64), обеспечивает всеми необходимыми материалами и оборудованием для исследований бактериального загрязнения воды, обнаружения микроорганизмов в воздухе и в почве, контроль температуры и роста бактерий, выявление дрожжевых грибов в окружающей среде, образование газа дрожжами, определение эффективности дезинфектантов и т. д.

Рис. 64. Чемодан-укладка для микробиологических исследований.

Для определения качества пищевых продуктов выпускается люминоскоп ЛПК-1 . С его помощью можно определять видовую принадлежность мяса, раннюю порчу свинины и свиного жира, соотношение составных частей фарша, экспертизу пищевых масел, жиров, меда и других продуктов (рис. 65).

В приборе использован принцип визуального люминесцентного анализа. Под действием ультрафиолетовых лучей пищевые продукты в зависимости от их свойства и качества начинают светиться различным цветом, а светофильтры выделяют соответствующие участки спектра. При работе с прибором не требуется затемнения помещения, исследователь огражден от воздействия ультрафиолетовых лучей.

Режим работы прибора повторнократковременный. Время работы-1 ч, пауза - 25 мин. На исследование продукта затрачивается не более 1 мин. Питание прибора от сети переменного тока - 220 В±10%. Потребляемая мощность - не более 350 Вт. Габаритные размеры - 366X185X240 мм. Масса - 6 кг.

Рис. 65. Прибор для определения качества продуктов ЛПК-1.

1.1 Общие положения.
Организация должна планировать и разрабатывать процессы, необходимые для создания безопасных продуктов.
Организация должна внедрять, осуществлять и обеспечить результативность запланированных видов деятельности и любых их изменений. Это включает БПР, а также операционные БПР и/или HACCP план.
1.2 Базовые программы (БПР).
1.2.1 Организация должна установить, внедрить и выполнять базовые программы (БПР), обеспечивающие управление:
а) вероятностью внесения факторов, вызывающих опасность продукта питания, в продукт через рабочую среду,
b) биологической, химической и физической контаминацией продукта(ов), включая перекрестную контаминацию между продуктами, и
с) уровнями опасных факторов в продукте и в среде его обработки.
1.2.2 БПР должны:
а) соответствовать потребностям организации по отношению к безопасности продуктов питания,
b) соответствовать масштабу и типу производства и характеру производимых и/или обрабатываемых продуктов,
с) внедряться в сети внутренней системы производства, как программы, применяемые повсеместно, или как программы, применяемые к конкретному продукту или производственной линии, и
d) быть одобрены группой по безопасности продуктов питания.
Организация должна идентифицировать установленные и законодательные требования, относящиеся к указанному выше.
1.2.3 При выборе и/или установлении БПР организация должна принять во внимание и использовать соответствующую информацию [например, установленные и законодательные требования, требования потребителей, признанные руководства, принципы Комиссии Codex Alimentarius (Кодекс), своды правил, национальные, международные или отраслевые стандарты].
ПРИМЕЧАНИЕ. В приложении С приведен список соответствующих публикаций Кодекса.
При установлении этих программ организация должна принять во внимание следующее:
а) конструкцию и планировку зданий и связанных с ними служб;
d) планировку помещений, включая рабочие места и вспомогательные помещения для работников;
с) подводы воздуха, воды, электричества и другие коммунальные услуги;
d) вспомогательные службы, включая устранение отходов и сточных вод;
е) пригодность оборудования и его доступность для чистки, обслуживания и профилактики;
f) управление закупленными материалами (например: сырьем, ингредиентами, химикатами и упаковкой), подачей (например: воды, воздуха, пара и льда), утилизацией (например: отходов и сточных вод) и обращением с продуктами (например: хранение и транспортировка);
g) меры для предотвращения перекрестной контаминации;
h) уборку и санацию;
i) борьбу с вредителями;
j) гигиену персонала;
k) другие соответствующие аспекты.
Верификация БПР должна планироваться (см. 1.8) и БПР должны модифицироваться при необходимости (см. 1.1). Должны вестись записи по верификациям и модификациям.
Документы должны описывать, как управляют видами деятельности, включенными в БПР.
1.3 Предварительные шаги для анализа опасных факторов.
1.3.1 Общие положения.
Вся информация, необходимая для проведения анализа опасных факторов, должна собираться поддерживаться, обновляться и документально оформляться. Должны вестись записи.
1.3.2 Группа по безопасности продуктов питания.
Должна быть назначена группа по безопасности продуктов питания.
Группа по безопасности продуктов питания должна иметь многопрофильные знания и опыт по разработке и внедрению системы безопасности продуктов питания. Они включают знания (но не ограничиваются ими) продукта организации, процессов, оборудования и факторов, вызывающих опасность продуктов питания в рамках области распространения системы безопасности продуктов питания.
Должны вестись записи, подтверждающие, что группа обладает требуемыми знаниями и опытом (см. п. 6.2.2).
1.3.3 Характеристики продуктов.
1.3.3.1 Сырье, ингредиенты и материалы, контактирующие с продуктами.
Все сырье, ингредиенты и материалы, контактирующие с продуктами, должны быть описаны в документах в объеме, необходимом для проведения анализа опасных факторов (см. 1.4), включая следующее, если применимо:
а) биологические, химические и физические характеристики,
b) состав рецептурных ингредиентов, включая добавки и технологические средства,
с) происхождение,
d) метод производства,
е) методы упаковки и доставки,
f) условия хранения и срок годности,
g) подготовку и/или обращение перед использованием или обработкой,
h) критерии приемлемости, связанные с безопасностью продуктов питания, или спецификации закупленных материалов и ингредиентов согласно использованию их по назначению.
Организация должна идентифицировать установленные и законодательные требования к безопасности продуктов питания, относящиеся к указанному выше.

1.3.3.2 Характеристики конечного продукта.
Характеристики конечных продуктов должны быть описаны в документах в объеме, необходимом для проведения анализа опасных факторов (см. 1.4), включая следующую информацию, если применимо:
а) название продукта или иная идентификация,
b) состав,
с) биологические, химические и физические характеристики, имеющие отношение к безопасности продуктов питания,
d) установленные срок годности и условия хранения,
е) упаковка,
f) маркировка в отношении к безопасности продукта питания, и/или инструкции по обращению, подготовке и использованию,
g) способ(ы) дистрибуции.
Организация должна идентифицировать установленные и законодательные требования по безопасности продуктов питания, относящиеся к указанному выше.
Описания должны обновляться, включая, если требуется, положения пункта 1.1.
1.3.4 Использование по назначению.
Использование по назначению, обоснованное ожидаемое обращение с конечным продуктом и любое непреднамеренное, но обосновано ожидаемое неправильное обращение и использование конечного продукта не по назначению, должно быть рассмотрено и описано в документах в объеме, позволяющем проводить анализ опасных факторов (см. п. 1.4.).
Группы пользователей, и там где уместно, группы потребителей, должны быть определены для каждого продукта, и особо уязвимые группы потребителей в отношении особых опасных факторов должны быть учтены.
Описания должны обновляться, включая, если требуется, положения пункта 1.1.
1.3.5 Диаграммы последовательности операций, этапы процесса и меры управления.
1.3.5.1 Диаграммы последовательности операций.
Диаграммы последовательности операций должны готовиться для категорий продуктов или процессов, охваченных системой менеджмента безопасности продуктов питания. Диаграммы последовательности операций должны составлять основу для оценки возможного появления, увеличения или внесения факторов, вызывающих опасность продуктов питания.
Диаграммы последовательности операций должны быть четкими, точными и достаточно подробными.
Диаграммы последовательности операций должны включать следующее, если применимо:
а) последовательность и взаимодействие всех этапов в производстве,
b) любые процессы, выполняемые сторонними исполнителями, и работы субподряду,
с) где поступают в производство сырье, ингредиенты и промежуточные продукты,
d) где происходят переделка и повторное использование,
е) где выходят или удаляются конечные или промежуточные продукты, а также побочные продукты и отходы,
В соответствии с п. 1.8, группа по безопасности продуктов питания должна на месте проверить точность текущей диаграммы. Проверенные диаграммы последовательности операций должны вестись как записи.
1.3.5.2 Описание этапов процесса и мер управления.
Существующие меры управления, параметры процесса и/или точность, с которой они выполняются, или процедуры, влияющие на безопасность продуктов питания, должны быть описаны в объеме, необходимом для анализа опасных факторов (см. п. 1.4).
Должны быть описаны также внешние требования (например, законодательных органов или заказчиков), которые могут повлиять на выбор и на точность мер управления.
Описания должны обновляться, включая, если требуется, положения пункта 1.1.
1.4 Анализ опасных факторов.
1.4.1 Общие положения.
Группа по безопасности продуктов питания должна проводить анализ опасных факторов для определения тех опасных факторов, которыми нужно управлять, степени управления для обеспечения безопасности продуктов питания и того, какой комплекс мер управления необходим.
1.4.2 Идентификация опасных факторов и установление приемлемых уровней.
1.4.2.1 Все опасные факторы, которые обоснованно могут возникнуть в зависимости от типа продукта, типа процесса и реальных производственных помещений, должны быть идентифицированы и зарегистрированы. Идентификация должна основываться на:
а) предварительной информации и данных, собранных согласно п. 1.3.,
b) опыте,
с) внешней информации, включающей как можно больше эпидемиологических и других исторических данных, и
d) информации о безопасности продуктов питания, полученной по всей цепи производства продуктов питания, которая может иметь отношение к безопасности конечных или промежуточных продуктов, и пищи при потреблении.
Каждый этап (от сырья, производства и до дистрибуции), на котором может быть внесен любой из факторов, вызывающих опасность продуктов питания, должен быть указан.
1.4.2.2 При идентификации опасных факторов требуется принять во внимание следующее:
а) этапы, предшествующие и следующие за рассматриваемой операцией,
b) технологическое оборудование, службы/услуги и среду, и
с) предшествующие и последующие звенья в цепи производства продуктов питания.
1.4.2.3 Для каждого идентифицированного фактора, вызывающего опасность продуктов питания, должен быть установлен приемлемый уровень опасного фактора в конечном продукте, когда это возможно.
При установлении данного уровня должны учитываться установленные и законодательные требования, требования заказчика к безопасности продуктов питания, использование по назначению заказчиком и другие соответствующие данные.
Обоснованность и результаты установления должны быть зарегистрированы.
1.4.3 Оценка опасных факторов.
Оценка опасных факторов должна быть проведена для того, чтобы определить для каждого фактора, вызывающего опасность продуктов питания (см. п. 1.4.2), является ли существенным для производства безопасных продуктов питания его ликвидация или сокращение до приемлемых уровней, и, если управление им необходимо, обеспечить достижение идентифицированных приемлемых уровней.
Каждый фактор, вызывающий опасность продуктов питания, должен быть оценен согласно возможной серьезности вредного воздействия на здоровье и вероятности его возникновения.
Используемая методология должна быть описана, и результаты оценки опасного фактора должны быть зарегистрированы.
1.4.4 Выбор и оценка мер управления.
На основании оценки опасных факторов по п. 1.4.3, должен быть выбран соответствующий комплекс мер управления, который будет способен предупреждать, ликвидировать или снижать факторы, вызывающие опасность продуктов питания, до определенных приемлемых уровней.
При этом выборе каждая мера управления по п. 1.3.5.2 должна быть проанализирована с учетом результативности относительно идентифицированных опасных факторов.
Выбранные меры управления должны быть ранжированы (оценены) относительно необходимости управления ими с помощью или операционных БПР, или HACCP плана.
Выбор и ранжирование мер должны быть выполнены с использованием логического подхода, включающего в себя оценку с учетом следующего:
а) ее влияния на идентифицированные опасные факторы в отношении установленной точности,
b) выполнимости ее мониторинга (например, возможности регулярного мониторинга для обеспечения немедленной коррекции);
с) ее места в пределах системы относительно других мер управления;
d) вероятности отказа в функционировании меры управления или существенной изменчивости технологического процесса;
е) серьезности последствий в случае отказа в ее функционировании;
f) установлена ли мера управления и применяется ли она специально для ликвидации или значительного уменьшения уровня опасного фактора(ов);
g) синергические эффекты (то есть взаимодействие, которое возникаем между двумя или более мерами управления, в результате которого итоговый результат превышает сумму их индивидуальных результатов).
Меры управления, ранжированные как относящиеся к HACCP плану, должны быть внедрены согласно п. 1.6. Другие меры управления должны быть внедрены как операционные БПР согласно п. 1.5.
Методология и параметры, используемые для данного ранжирования, должны быть описаны в документах, и результаты оценок должны регистрироваться.
1.5 Установление операционных базовых программ (БПР).
Операционные БПР должны быть документально оформлены и должны включать для каждой программы следующую информацию:
а) фактор(ы), вызывающие опасность продуктов питания, управляемые программой (см. п. 1.4.4.),
b) меры управления (см. п. 1.4.4.),
с) процедуры по мониторингу, демонстрирующие внедрение операционной БПР;
d) коррекции и корректирующие действия, предпринимаемые в случае выявления потери управления в процессе мониторинга операционной БПР (см. п. 1.10.1 и п. 1.10.2. соответственно),
е) ответственности и полномочия,
f) записи по мониторингу.
1.6 Установление HACCP плана .
1.6.1 HACCP план.
HACCP план должен быть документально оформлен и должен включать следующую информацию для каждой критической точки управления (КТУ):
а) факторы, вызывающие опасность продуктов питания, должны управляться в КТУ (см. п. 1.4.4.),
b) меры управления (см. п. 1.4.4.),
с) критические пределы (см. п. 1.6.3.)
d) процедур(ы) мониторинга (см. п. 1.6.4),
е) коррекции и корректирующие действия, которые должны быть предприняты, если превышаются критические пределы (см. п. 1.6.5);
f) ответственности и полномочия;
g) записи по мониторингу.
1.6.2 Идентификация критических точек управления (КТУ).
Для каждого опасного фактора, которым управляют согласно HACCP плану, должны быть идентифицированы КТУ для идентифицированных мер управления (см. п. 1.4.4.).
1.6.3 Определение критических пределов для критических точек управления.
Критические пределы должны быть определены для мониторинга, установленного для каждой КТУ.
Критические пределы должны быть установлены для обеспечения того, что идентифицированный приемлемый уровень опасного фактора в конечном продукте (см. п. 1.4.2.) не будет превышен.
Критические пределы должны быть измеримыми.
Обоснование выбранных критических пределов должно быть документально оформлено.
Критические пределы, основанные на субъективных данных (таких как визуальное инспектирование продукта, процесса, обработки и т.д.), должны быть подтверждены инструкциями или спецификациями и/или образованием и обучением.
1.6.4 Система мониторинга критических точек управления.
Система мониторинга должна быть установлена для каждой КТУ для демонстрации того, что КТУ находится под управлением. Данная система должна включать все запланированные измерения или наблюдения, связанные с критическими пределами.
Система мониторинга должна состоять из соответственных процедур, инструкций и записей, охватывающих нижеследующее:
а) измерения или наблюдения, предоставляющие результаты в пределах адекватной временной рамки,
b) используемые устройств для мониторинга,
с) применяемые методы калибровки (см. п. 8.3);
d) периодичность мониторинга;
е) ответственность и полномочия, относящиеся к мониторингу и оценке результатов мониторинга;
f) требования к записям и методы ведения записей
Методы и периодичность мониторинга должны быть в состоянии определить вовремя превышение критических уровней, для того, чтобы изолировать продукт, прежде чем он будет использован или употреблен.
1.6.5 Действия, осуществляемые, при превышении критических пределов по результатам мониторинга.
Запланированные коррекции и корректирующие действия, предпринимаемые в случае превышения критических пределов, должны быть описаны в HACCP плане. Данные действия должны гарантировать, что причина несоответствий выявлена, что параметры, которыми управляют в КТУ, возвращены под управление, и что повторение несоответствия предупреждено (см. п. 1.10.2).
Документально оформленные процедуры должны быть установлены и выполняться для обеспечения соответствующего обращения с потенциально опасными продуктами и гарантировать, что их выпуск не произойдет без их предварительной оценки (см. п.1.10.3).
1.7 Обновление предварительной информации и документов, описывающих БПР и HACCP план.
После утверждения операционных БПР (см. п. 1.5) и/или HACCP плана (см. п. 1.6), организация должна обновить следующую информацию, если необходимо:
а) характеристики продуктов (см. п. 1.3.3);
b) использование по назначению (см. п. 1.3.4);
с) диаграммы последовательности операций (см. п. 1.5.5.1);
d) этапы процессов (см. п. 1.3.5.2);
е) меры управления (см. п.1.3.5.2).
При необходимости должны быть внесены изменения в HACCP план (см. п.1.6.1), и в процедуры и инструкции, описывающие БПР (см. п. 1.2).
1.8 Планирование верификации.
При планировании верификации должны быть определены цели, методы, периодичность и ответственности для проведения верификации. Деятельность по верификации должна подтверждать, что:
а) БПР выполняются (см. п. 1.2),
b) входные данные для анализа опасных факторов (см. п. 1.3) непрерывно обновляются,
с) операционные БПР (см.п. 1.5) и элементы в рамках HACCP плана (см. п. 1.6.1) внедрены и результативны,
d) уровни опасных факторов находятся в пределах приемлемых уровней (см. п. 1.4.2), и
е) другие процедуры, необходимые организации, внедрены и результативны.
Выходные данные данного планирования должны быть в форме, адекватной методам функционирования организации.
Результаты верификации должны быть зарегистрированы и должны быть сообщены группе по безопасности продуктов питания.
Результаты верификации должны быть предоставлены для обеспечения анализа результатов деятельности по верификации (см. п. 8.4.3).
Если система верификации базируется на тестировании образцов конечного продукта и если такое тестирование образцов выявило несоответствие приемлемому уровню опасного фактора (см. п. 1.4.2), с соответствующими партиями продукта требуется обращаться как с потенциально опасными в соответствии с п. 1.10.3.
1.9 Система прослеживаемости.
Организация должна установить и применить систему прослеживемости, которая обеспечивает идентификацию партий продукта по отношению к партиям сырья, записям по производству и поставкам.
Система прослеживаемости должна быть способной идентифицировать поступающий материал от непосредственного поставщика и начальный путь дистрибуции конечного продукта.
Записи прослеживаемости должны вестись в течение определенного периода для оценки системы с целью обеспечения обращения с потенциально опасными продуктами и в случае изъятия продукта. Записи должны вестись в соответствии с установленными и законодательными требованиями и требованиями заказчика, и могут, например, основываться на идентификации партии конечного продукта.
1.10 Управление несоответствиями.
1.10.1 Коррекции.
Организация должна обеспечить в случае превышения критического предела для КТУ (см. п. 1.6.5), или потери управления операционными БПР, идентификацию и управление продуктами, на которые это повлияло, с учетом их использования и выпуска.
Оформленная документально процедура должна быть установлена и выполняться. Она должна определять:
а) идентификацию и оценку конечных продуктов, на которые это повлияло, с целью определения надлежащего обращения с ними (см. п. 1.10.3), и
b) анализ выполненных коррекций.
Продукты, произведенные в условиях превышения критических уровней, являются потенциально опасными, и с ними требуется обращаться в соответствии п. 1.10.3. Продукты, произведенные при несоблюдении условий операционных БПР, требуется оценить относительно причин несоответствий и их последствий в рамках безопасности продуктов питания, и где это необходимо, с ними требуется обращаться в соответствии п. 1.10.3. Оценка должна быть зарегистрирована.
Все коррекции должны быть одобрены ответственным лицом (лицами) и должны быть зарегистрированы вместе с информацией касательно природы несоответствий, их причин и последствий, включая информацию, необходимую в целях прослеживаемости в отношении несоответствующих партий.
1.10.2 Корректирующие действия.
Данные, полученные в результате мониторинга операционных БПР и КТУ, должны быть оценены назначенным лицом (лицами) с достаточными знаниями (см. п. 6.2) и полномочиями (см. п. 5.4) для инициации корректирующих действий.
Корректирующие действия должны проводиться при превышении критических пределов (см. п. 1.6.5) или при недостатке соответствия с операционной БПР.
Организация должна установить и выполнять документально оформленные процедуры, которые определяют соответствующие действия для идентификации и устранения причин обнаруженных несоответствий, для предупреждения их повторения и возвращения процесса или системы под управление после обнаружения несоответствия.
Данные действия включают:
а) анализ несоответствий (включая жалобы заказчиков);
b) анализ тенденций по результатам мониторинга, которые могут указывать на развитие в сторону потери управления;
с) определение причин несоответствий,
d) оценку действий, необходимых для предотвращения повторения несоответствий;
е) определение и внедрение необходимых действий;
f) регистрацию результатов предпринятых корректирующих действий, и
g) анализ предпринятых корректирующих действий для подтверждения их результативности.
Корректирующие действия должны быть зарегистрированы.
1.10.3 Обращение с потенциально опасными продуктами.
1.10.3.1 Общие положения.
Организация должна обращаться с несоответствующими продуктами, принимая меры для предотвращения попадания несоответствующей продукции в цепь производства продуктов питания, пока не будет уверенности в том, что:
а) факторы, вызывающие опасность продуктов питания были снижены до идентифицированных приемлемых уровней,
b) рассматриваемые факторы, вызывающие опасность продуктов питания, будут снижены до идентифицированных приемлемых уровней (см. п. 1.4.2) до поступления в цепь производства продуктов питания, или
с) продукты соответствуют приемлемому уровню рассматриваемого фактора, вызывающего опасность продуктов питания, несмотря на несоответствие.
Все партии продукта, на которые повлияла несоответствующая ситуация, должны находиться под управлением организации до тех пор, пока не будут оценены.
Если продукты, которые потеряли управление со стороны организации, были определены как опасные, организация должна уведомить соответствующие заинтересованные стороны и начать изъятие (см. п. 1.10.4).
ПРИМЕЧАНИЕ. Термин «изъятие» включает отзыв продуктов питания.
Меры управления и соответствующее реагирование и санкционирование обращения с потенциально опасными продуктами должны быть документально оформлены.
1.10.3.2 Оценка для выпуска продуктов.
Каждая партия продуктов, на которую повлияло несоответствие, должна быть выпущена как безопасная только тогда, когда соблюдено одно из следующих условий:
а) доказательства, отличные от системы мониторинга, показывают, что меры управления были результативны,
b) подтверждено, что комбинированный результат мер управления для данного продукта соответствует намеченному критерию (то есть идентифицированным приемлемым уровням в соответствии с п. 1.4.2);
с) результаты испытаний образцов, анализ и/или другие действия по верификации демонстрируют, что партия продуктов, на которую повлияло несоответствие, соответствует идентифицированным приемлемым уровням рассматриваемых опасных факторов.
1.10.3.3 Обращение с несоответствующей продукцией.
Если партия продукта не приемлема к выпуску, то одно из следующих действий должно быть произведено с ней:
а) переработка или дальнейшая обработка в пределах или вне организации, которая обеспечивает устранение или снижение опасного фактора до приемлемых уровней;
b) уничтожение и/или устранение как отхода.
1.10.4 Изъятие.
Для того чтобы обеспечить и облегчить полное и своевременное изъятие партий конечного продукта, которые были идентифицированы как опасные:
а) высшее руководство должно назначить персонал, имеющий полномочия для инициации изъятия и назначить ответственный персонал для выполнения данного изъятия, и
b) организация должна установить и выполнять документированную процедуру для:
1) уведомления соответствующих заинтересованных сторон (например: законодательных и регулятивных органов, заказчиков и/или потребителей),
2) обращения с изъятыми продуктами, а также с опасными партиями продуктов, которые еще на складе, и
3) установления последовательности необходимых действий.
Изъятие продуктов должно быть обеспечено защитой или проведено под наблюдением до их уничтожения, использования в целях, отличных от первоначального назначения, определения как безопасных согласно исходному назначению (или иному), или такой переработки, которая гарантирует, что они стали безопасными.
Информация о причине, степени и результате изъятия должна быть зарегистрирована и доложена высшему руководству в качестве входных данных к анализу со стороны руководства (см.п. 5.8.2).
Организация должна проверить и зарегистрировать результативность программы изъятия посредством использования соответствующих методов (например, имитирование изъятия или практическое изъятие).

С санитарно-микробиологической точки зрения воздух представляет собой среду, в которой микроорганизмы не способны размножаться, так как в нем нет питательных веществ и влаги, а солнечные лучи оказывают бактерицидное действие. Тем не менее в воздухе постоянно присутствуют пигментообразующие кокки, споры бактерий, плесеней и актиномицетов. Микробная загрязненность воздуха имеет непостоянный характер и зависит от многих факторов. Так, болезнетворные микробы попадают в воздух с пылью из почвы и с выделениями больных людей и животных. Воздух помещений загрязняется во время сухой уборки, чихания и кашля. При этом капли аэрозоля, находящиеся в воздухе, служат источником аэрогенного заражения окружающих. Скорость оседания капель зависит от диаметра аэрозоля.

Бактериальные аэрозоли делят на три фазы:

1. Крупнокапельная фаза с диаметром частиц аэрозоля более 0,1 мм; длительность пребывания таких частиц в воздухе несколько секунд, капли оседают быстро.

2. Капельно-ядерная фаза , имеющая диаметр частиц 0,1 мм и менее. Частицы находятся в воздухе длительное время и рассеиваются на большие расстояния с потоками воздуха, вместе с которыми распространяются различные микроорганизмы, в том числе и болезнетворные.

3. Фаза бактериальной пыли имеет частицы разного диаметра от 1 до 0,01 мм. Эта фаза имеет наибольшее эпизоотологическое и эпидемиологическое значение, так как она глубоко проникает в дыхательные пути. Аэрогенным способом инфекционные заболевания передаются в основном в закрытых помещениях.

Выживаемость патогенных микроорганизмов, находящихся во взвешенном состоянии, зависит от биологических свойств возбудителя, а также температуры и влажности воздуха. Например, возбудители туберкулеза, сибирской язвы, хорошо переносящие высыхание, длительное время сохраняются в окружающей среде.

Микробиологическое исследование воздуха проводят для определения количества МАФАнМ, т. е. общего микробного числа и количества санитарно_показательных микроорганизмов. Количество МАФАнМ в воздухе определяют посевом на поверхность МПА; количество санитарно-показательных микробов определяют посевом на кровяной агар, желточно-солевой агар. Для определения наличия спор плесеней и дрожжей используют сусло_агар или среду Сабуро, Чапека. Существует много методов бактериологического исследования воздуха, самыми доступными являются методы Коха и Кротова.

Седиментационный метод Коха (лат. sedimentum - осадок). Суть метода заключается в осаждении микробных частиц и капель аэрозоля на поверхность плотной питательной среды под действием силы тяжести.

Методика. Чашки Петри с МПА, средой Сабуро оставляют открытыми на 5–20 мин в исследуемом помещении (классе, в цехах молокозавода, мясокомбината и т. д.). Затем чашки закрывают и помещают в термостат при температуре +30_С, если это МПА или кровяной агар, после чего культивируют в течение 48 ч; если это среда Сабуро - культивируют при температуре +25_С в течение 4–7 суток. Затем проводят подсчет выросших колоний во всей чашке.


После подсчета выросших колоний в чашке Петри определяют количество микроорганизмов в 1 м3 воздуха по формуле Омелянского, согласно которой в чашки с питательной средой площадью 100 см2 в течение 5 мин оседает столько микробных клеток, сколько их содержится в 10 л воздуха:

Х = а*100*1000*5/b*10*Т

где Х - количество микробов в 1 м3 (1000 л) воздуха; а - количество выросших колоний в чашках; b - площадь чашки (80 см2); 5- время экспозиции по правилу Омелянского; Т -время, в течение которого чашка была открыта; 10 - 10 л воздуха по правилу Омелянского; 1000 - 1 м3 воздуха; 100 -100 см2 питательной среды.

Аспирационный метод Кротова является более точным, так как прибор снабжен микроманометром, показывающим количество (объем) литров посеянного воздуха. Аппарат Кротова-это цилиндрический прибор, внутри которого имеется электромотор с центробежным вентилятором. При вращении вентилятора из исследуемого помещения воздух засасывается через узкую клиновидную щель в крышке прибора, под которой находится вращающаяся платформа с чашкой Петри, струя воздуха ударяется о влажную поверхность питательной среды, микроорганизмы из воздуха оседают. Чашки с посевами помещают в термостат на 24–48 ч при температуре +30_С. Подсчет колоний производят так же, как и при седиментационном методе. В дальнейшем число микробов в 1 м3 воздуха определяют по формуле

где Х - число микробов в 1 м3 воздуха; а - число выросших колоний; 1000 л- 1 м3 воздуха; b - количество посеянного воздуха.

Требования, предъявляемые к микробиологическим показателям воздуха, представлены в табл. 19 (исследуют один раз в месяц).

В каждой бактериологической лаборатории имеется бокс для проведения посевов и пересевов, воздух в боксе следует проверять на бактериальную загрязненность не менее двух раз в неделю, к качеству воздуха в боксе предъявляются особые требования. Для проведения исследования чашки Петри с МПА и средой Сабуро оставляют открытыми в боксе на 15 мин, затем чашки со средой МПА выдерживают в термостате 48 ч при температуре +37_С, чашки со средой Сабуро - 96 ч при температуре +25...+27_С. Допускается наличие 5 колоний плесени в чашках.

В начале 60-х годов В. Ф. Кротов разработал новый метод решения вариационых задач, который основан на достаточном условии оптимальности, названном впоследствии принципом оптимальности Кротова . Но прежде чем познакомиться с этим принципом, рассмотрим более общую постановку задачи оптимального управления.

Решение задачи оптимального управления в классе кусочно-непрерывных управлений и кусочно-гладких траекторий не всегда существует. Целесообразно обобщить ее так, чтобы расширить класс задач оптимального управления, обладающих решением.

Пусть объект, ограничения и краевые условия задаются следующим образом:

Здесь при каждом фиксированном является некоторым множеством пространства . Обозначим через множество пар кусочно-непрерывных функций и кусочно-гладких (непрерывных и кусочно-дифференцируемых) функций определенных на и удовлетворяющих уравнению на этом интервале, за исключением конечного числа точек, ограничению на всем интервале и краевым условиям (10.70). Множество называют допустимым

множеством, а его элементы - допустимыми парами, а множестве задан функционал

Требуется найти последовательность допустимых пар на которой функционал (10.71) стремится к своему наименьшему значению на множестве

Такая последовательность называется минимизирующей. Последовательность допустимых пар будем также называть допустимой последовательностью.

Основным обобщающим моментом в новой постановке является то, что в качестве решения задачи оптимального управления принимается минимизирующая последовательность, а не определенная допустимая пара. В частном случае, когда существует допустимая пара доставляющая минимум функционалу (10.71), все члены минимизирующей последовательности равны этой паре: .

Пример 10.12. Рассмотрим несколько видоизмененный пример Больца 11]:

Наименьшее значение (точная нижняя грань) функционала равно нулю и достигается на последовательности

Развитие исследований в области аэробиологии показало, что в воздухе закрытых помещений наряду с большим количеством сапрофитных микроорганизмов могут находиться патогенные бактерии и вирусы; менингококки, патогенные стафилококки, возбудители дифтерии, туберкулеза, коклюша, вирусы гриппа, оспы, аденовирусы и др. Санитарно-бактериологические исследования воздуха проводят в плановом порядке в яслях и детских садах, больницах, операционных, аптеках, школах, кинотеатрах. Исследуют также атмосферный воздух.

При санитарно-бактериологическом исследовании воздуха проводят:

1) определение общей бактериальной обсемененности воздуха (общее число бактерий в 1 м 3);

2) выявление саиитарно-показательных микроорганизмов;

3) по эпидемическим показаниям выделение вирусов и патогенных бактерий из воздуха закрытых помещений;

4) при исследовании атмосферного воздуха дополнительное определение качественного состава микрофлоры с учетом наличия спорообразующих аэробов и анаэробов, которые служат показателем загрязненности воздуха микроорганизмами почвы.

Методы отбора проб воздуха для бактериологического исследования подразделяют на:

1) аспирационные, основанные на активном просасывании воздуха с помощью различных приборов;

2) седиментационные, основанные на принципе механического оседания микробов.

Пробы воздуха берут на уровне сидящего или стоящего человека, выделяя одну точку взятия проб на каждые 20 м 2 площади.

Аспирационные методы используют при исследовании воздуха как закрытых помещений, так и атмосферного. Наиболее широкое применение в последние годы получил аппарат Кротова (рис. 44), который позволяет пропускать от 25 до 50 л воздуха в минуту. В аппарате Кротова воздух засасывается сквозь узкую щель крышки прибора и ударяется о поверхность плотной питательной среды в чашке Петри, которая медленно вращается на подвижном столике. Поверхность питательной среды равномерно обсеменяется микроорганизмами.

Существуют также другие приборы: ПОВ-1, бактериоуловител Речменского, Дьяконова, в которых воздух просасывается с помощью насосов, воздуходувок, аспираторов через материал, задерживающий бактериальный аэрозоль. В качестве такого материала используют стерильную воду, питательные среды, стерильный ватный тампон, пенистые или порошковые фильтры из растворимых материалов. Объем просасываемого воздуха измеряют с помощью газовых часов. После взятия пробы 1 мл жидкости засевают в чашку с мясо-пептонным агаром для определения общего числа бактерий. Через 24 ч инкубации в термостате при 37°С подсчитывают число колоний и делают пересчет на 1 м 3 воздуха. С целью определения санитарно-показательных микроорганизмов и патогенных микробов делают посевы на различные элективные среды.

Седиментационный метод наиболее старый (метод оседания Коха). Его используют только при исследовании воздуха закрытых помещений. Для этого чашки Петри с питательными средами при исследовании общей бактериальной загрязненности воздуха оставляют открытыми в местах отбора проб в течение 5—10 мин. По окончании экспозиции чашки зарывают и помещаю в термостат при 37°С на 24 ч, а затем при комнатной температуре выдерживает еще сутки. О степени загрязненности воздуха судят по количеству выросших колоний. Несмотря на неточность, данный метод пригоден для сравнительных оценок чистоты воздуха.

В настоящее время бактериологическое исследование воздуха проводится в основном в больницах согласно «Инструкции по бактериологическому контролю комплекса санитарно-гигиенических мероприятий в лебечно-профилактических учреждениях: отделениях хирургического профиля, в палатах и отделениях реанимации и интенсивной терапии» (Приложение к приказу № 720 от 31.07.1978 г. МЗ СССР). Определяют общую бактериальную обсемененность и наличие Staph, aureus.

Для установления общей бактериальной обсемененности воздуха закрытых помещений, согласно инструкции, отбирают две пробы воздуха с помощью аппарата Кротова по 100 л каждая.

С целью исследования воздуха на наличие стафилококка берут пробы воздуха на две чашки с желточно-солевым агаром или молочно-желточно-солевым агаром, пропуская 250 л воздуха.

Санитарно-бактериологическое исследование воздуха имеет большое значение в хирургических отделениях больниц, родильных домах, где имеется опасность возникновения внутрибольничной инфекции. Обнаружение Staph, aureus в этих отделениях является недопустимым. Нарастание количества Staph, aureus определенных фаготипов следует рассматривать как грозный предвестник возможного появления госпитальной инфекции.

Выявление вирусов и патогенных бактерий из воздуха закрытых помещений проводят по эпидемиологическим показаниям при оценке эффективности обеззараживания воздуха, при контроле санитарно-микробиологического содержания больничных учреждений и т. д.

Для выявления микобактерий туберкулеза отбор проб производят при помощи прибора ПОВ-І, в котором в качестве улавливающей используют среду Школьниковой. Исследуют 250—500 л воздуха (см. Микробиологическая диагностика туберкулеза).

Эталоном чистоты атмосферного воздуха считают показатель бактериальной обсемененности в зеленой зоне (зеленая зона ВДНХ—350 микробов в 1 м 3). Пример значительного обсеменения воздуха — места скопления людей и транспорта. Воздух операционных до начала операции должен содержать не более 500, а после нее — не более 1000 микробов в 1 м 3 . Staph, aureus не должны обнаруживаться при исследовании 250 л воздуха. В предоперационных и перевязочных до начала работы количество микробов в 1 м 3 не должно превышать 750. В больничных палатах летом число микробов должно быть менее 3500, а зимой — менее 5000 в 1 м 3 . Здесь допускают наличие стафилококков в воздухе: летом — 24, зимой — 52 при исследовании 250 л воздуха.