Деформация при поперечном изгибе балки характеризуется. Прямой изгиб


Для консольной балки, нагруженной распределенной нагрузкой интенсивностью кН/м и сосредоточенным моментом кН·м (рис. 3.12), требуется: построить эпюры перерезывающих сил и изгибающих моментов , подобрать балку круглого поперечного сечения при допускаемом нормальном напряжении кН/см2 и проверить прочность балки по касательным напряжениям при допускаемом касательном напряжении кН/см2. Размеры балки м; м; м.

Расчетная схема для задачи на прямой поперечный изгиб

Рис. 3.12

Решение задачи "прямой поперечный изгиб"

Определяем опорные реакции

Горизонтальная реакция в заделке равна нулю, поскольку внешние нагрузки в направлении оси z на балку не действуют.

Выбираем направления остальных реактивных усилий, возникающих в заделке: вертикальную реакцию направим, например, вниз, а момент – по ходу часовой стрелки. Их значения определяем из уравнений статики:

Составляя эти уравнения, считаем момент положительным при вращении против хода часовой стрелки, а проекцию силы положительной, если ее направление совпадает с положительным направлением оси y.

Из первого уравнения находим момент в заделке :

Из второго уравнения – вертикальную реакцию :

Полученные нами положительные значения для момента и вертикальной реакции в заделке свидетельствуют о том, что мы угадали их направления.

В соответствии с характером закрепления и нагружения балки, разбиваем ее длину на два участка. По границам каждого из этих участков наметим четыре поперечных сечения (см. рис. 3.12), в которых мы и будем методом сечений (РОЗУ) вычислять значения перерезывающих сил и изгибающих моментов.

Сечение 1. Отбросим мысленно правую часть балки. Заменим ее действие на оставшуюся левую часть перерезывающей силой и изгибающим моментом . Для удобства вычисления их значений закроем отброшенную нами правую часть балки листком бумаги, совмещая левый край листка с рассматриваемым сечением.

Напомним, что перерезывающая сила, возникающая в любом поперечном сечении, должна уравновесить все внешние силы (активные и реактивные), которые действуют на рассматриваемую (то есть видимую) нами часть балки. Поэтому перерезывающая сила должна быть равна алгебраической сумме всех сил, которые мы видим.

Приведем и правило знаков для перерезывающей силы: внешняя сила, действующая на рассматриваемую часть балки и стремящаяся «повернуть» эту часть относительно сечения по ходу часовой стрелки, вызывает в сечении положительную перерезывающую силу. Такая внешняя сила входит в алгебраическую сумму для определения со знаком «плюс».

В нашем случае мы видим только реакцию опоры , которая вращает видимую нами часть балки относительно первого сечения (относительно края листка бумаги) против хода часовой стрелки. Поэтому

кН.

Изгибающий момент в любом сечении должен уравновесить момент, создаваемый видимыми нами внешними усилиями, относительно рассматриваемого сечения. Следовательно, он равен алгебраической сумме моментов всех усилий, которые действуют на рассматриваемую нами часть балки, относительно рассматриваемого сечения (иными словами, относительно края листка бумаги). При этом внешняя нагрузка, изгибающая рассматриваемую часть балки выпуклостью вниз, вызывает в сечении положительный изгибающий момент. И момент, создаваемый такой нагрузкой, входит в алгебраическую сумму для определения со знаком «плюс».

Мы видим два усилия: реакцию и момент в заделке . Однако у силы плечо относительно сечения 1 равно нулю. Поэтому

кН·м.

Знак «плюс» нами взят потому, что реактивный момент изгибает видимую нами часть балки выпуклостью вниз.

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь, в отличие от первого сечения, у силы появилось плечо: м. Поэтому

кН; кН·м.

Сечение 3. Закрывая правую часть балки, найдем

кН;

Сечение 4. Закроем листком левую часть балки. Тогда

кН·м.

кН·м.

.

По найденным значениям строим эпюры перерезывающих сил (рис. 3.12, б) и изгибающих моментов (рис. 3.12, в).

Под незагруженными участками эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по наклонной прямой вверх. Под опорной реакцией на эпюре имеется скачок вниз на величину этой реакции, то есть на 40 кН.

На эпюре изгибающих моментов мы видим излом под опорной реакцией . Угол излома направлен навстречу реакции опоры. Под распределенной нагрузкой q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. В сечении 6 на эпюре – экстремум, поскольку эпюра перерезывающей силы в этом месте проходит здесь через нулевое значение.

Определяем требуемый диаметр поперечного сечения балки

Условие прочности по нормальным напряжениям имеет вид:

,

где – момент сопротивления балки при изгибе. Для балки круглого поперечного сечения он равен:

.

Наибольший по абсолютному значению изгибающий момент возникает в третьем сечении балки: кН·см.

Тогда требуемый диаметр балки определяется по формуле

см.

Принимаем мм. Тогда

кН/см2 кН/см2.

«Перенапряжение» составляет

,

что допускается.

Проверяем прочность балки по наибольшим касательным напряжениям

Наибольшие касательные напряжения, возникающие в поперечном сечении балки круглого сечения, вычисляются по формуле

,

где – площадь поперечного сечения.

Согласно эпюре , наибольшее по алгебраической величине значение перерезывающей силы равно кН. Тогда

кН/см2 кН/см2,

то есть условие прочности и по касательным напряжениям выполняется, причем, с большим запасом.

Пример решения задачи "прямой поперечный изгиб" №2

Условие примера задачи на прямой поперечный изгиб

Для шарнирно опертой балки, нагруженной распределенной нагрузкой интенсивностью кН/м, сосредоточенной силой кН и сосредоточенным моментом кН·м (рис. 3.13), требуется построить эпюры перерезывающих сил и изгибающих моментов и подобрать балку двутаврового поперечного сечения при допускаемом нормальном напряжении кН/см2 и допускаемом касательном напряжении кН/см2. Пролет балки м.

Пример задачи на прямой изгиб – расчетная схема


Рис. 3.13

Решение примера задачи на прямой изгиб

Определяем опорные реакции

Для заданной шарнирно опертой балки необходимо найти три опорные реакции: , и . Поскольку на балку действуют только вертикальные нагрузки, перпендикулярные к ее оси, горизонтальная реакция неподвижной шарнирной опоры A равна нулю: .

Направления вертикальных реакций и выбираем произвольно. Направим, например, обе вертикальные реакции вверх. Для вычисления их значений составим два уравнения статики:

Напомним, что равнодействующая погонной нагрузки , равномерно распределенной на участке длиной l, равна , то есть равна площади эпюры этой нагрузки и приложена она в центре тяжести этой эпюры, то есть посредине длины.

;

кН.

Делаем проверку: .

Напомним, что силы, направление которых совпадает с положительным направлением оси y, проектируются (проецируются) на эту ось со знаком плюс:

то есть верно.

Строим эпюры перерезывающих сил и изгибающих моментов

Разбиваем длину балки на отдельные участки. Границами этих участков являются точки приложения сосредоточенных усилий (активных и/или реактивных), а также точки, соответствующие началу и окончанию действия распределенной нагрузки. Таких участков в нашей задаче получается три. По границам этих участков наметим шесть поперечных сечений, в которых мы и будем вычислять значения перерезывающих сил и изгибающих моментов (рис. 3.13, а).

Сечение 1. Отбросим мысленно правую часть балки. Для удобства вычисления перерезывающей силы и изгибающего момента , возникающих в этом сечении, закроем отброшенную нами часть балки листком бумаги, совмещая левый край листка бумаги с самим сечением.

Перерезывающая сила в сечении балки равна алгебраической сумме всех внешних сил (активных и реактивных), которые мы видим. В данном случае мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН.

Знак «плюс» взят потому, что сила вращает видимую нами часть балки относительно первого сечения (края листка бумаги) по ходу часовой стрелки.

Изгибающий момент в сечении балки равен алгебраической сумме моментов всех усилий, которые мы видим, относительно рассматриваемого сечения (то есть относительно края листка бумаги). Мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Однако у силы плечо равно нулю. Равнодействующая погонной нагрузки также равна нулю. Поэтому

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь мы видим реакцию и нагрузку q, действующую на участке длиной . Равнодействующая погонной нагрузки равна . Она приложена посредине участка длиной . Поэтому

Напомним, что при определении знака изгибающего момента мы мысленно освобождаем видимую нами часть балки от всех фактических опорных закреплений и представляем ее как бы защемленной в рассматриваемом сечении (то есть левый край листка бумаги нами мысленно представляется жесткой заделкой).

Сечение 3. Закроем правую часть. Получим

Сечение 4. Закрываем листком правую часть балки. Тогда

Теперь, для контроля правильности вычислений, закроем листком бумаги левую часть балки. Мы видим сосредоточенную силу P, реакцию правой опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН·м.

То есть все верно.

Сечение 5. По-прежнему закроем левую часть балки. Будем иметь

кН;

кН·м.

Сечение 6. Опять закроем левую часть балки. Получим

кН;

По найденным значениям строим эпюры перерезывающих сил (рис. 3.13, б) и изгибающих моментов (рис. 3.13, в).

Убеждаемся в том, что под незагруженным участком эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по прямой, имеющей наклон вниз. На эпюре имеется три скачка: под реакцией – вверх на 37,5 кН, под реакцией – вверх на 132,5 кН и под силой P – вниз на 50 кН.

На эпюре изгибающих моментов мы видим изломы под сосредоточенной силой P и под опорными реакциями. Углы изломов направлены навстречу этим силам. Под распределенной нагрузкой интенсивностью q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. Под сосредоточенным моментом – скачок на 60 кН ·м, то есть на величину самого момента. В сечении 7 на эпюре – экстремум, поскольку эпюра перерезывающей силы для этого сечения проходит через нулевое значение (). Определим расстояние от сечения 7 до левой опоры.

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1). Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а), то при чистом изгибе она деформируется следующим образом (рис. 6.1, б):

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. 6.1

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называетсянейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. 6.2

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной
. До деформации сечения, ограничивающие элемент
, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол
. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется
. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна
, отстоящего на расстоянииот нейтрального слоя.

Длина этого волокна после деформации (длина дуги
) равна
. Учитывая, что до деформации все волокна имели одинаковую длину
, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что
, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки
получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором
. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента
в поперечном сечении (6.1)

.

Вспомним, что интеграл
представляет собой момент инерции сечения относительно оси

.

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя
) с действующим в сечении моментом. Произведение
носит название жесткости сечения при изгибе, Н·м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы
и изгибающего момента

Поскольку
,

;

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и- главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Прямой изгиб. Плоский поперечный изгиб 1.1. Построение эпюр внутренних силовых факторов для балок 1.2. Построение эпюр Q и М по уравнениям 1.3. Построение эпюр Q и М по характерным сечениям (точкам) 1.4. Расчёты на прочность при прямом изгибе балок 1.5. Главные напряжения при изгибе. Полная проверка прочности балок 1.6. Понятие о центре изгиба 1.7. Определение перемещений в балках при изгибе. Понятия деформации балок и условия их жёсткости 1.8. Дифференциальное уравнение изогнутой оси балки 1.9. Метод непосредственного интегрирования 1.10. Примеры определения перемещений в балках методом непосредственного интегрирования 1.11. Физический смысл постоянных интегрирования 1.12. Метод начальных параметров (универсальное уравнение изогнутой оси балки) 1.13. Примеры определения перемещений в балке по методу начальных параметров 1.14. Определение перемещений по методу Мора. Правило А.К. Верещагина 1.15. Вычисление интеграла Мора по правилу А.К. Верещагина 1.16. Примеры определения перемещений посредством интеграла Мора Библиографический список 4 1. Прямой изгиб. Плоский поперечный изгиб. 1.1. Построение эпюр внутренних силовых факторов для балок Прямым изгибом называется такой вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила. В частном случае, поперечная сила может быть равна нулю, тогда изгиб называется чистым. При плоском поперечном изгибе все силы расположены в одной из главных плоскостей инерции стержня и перпендикулярны его продольной оси, в той же плоскости расположены моменты (рис. 1.1, а,б). Рис. 1.1 Поперечная сила в произвольном поперечном сечении балки численно равна алгебраической сумме проекций на нормаль к оси балки всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Поперечная сила в сечении m-n балки (рис. 1.2, а) считается положительной, если равнодействующая внешних сил слева от сечения направлена вверх, а справа – вниз, и отрицательной – в противоположном случае (рис. 1.2, б). Рис. 1.2 Вычисляя поперечную силу в данном сечении, внешние силы, лежащие слева от сечения, берут со знаком плюс, если они направлены вверх, и со знаком минус, если вниз. Для правой части балки – наоборот. 5 Изгибающий момент в произвольном поперечном сечении балки численно равен алгебраической сумме моментов относительно центральной оси z сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Изгибающий момент в сечении m-n балки (рис. 1.3, а) считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по стрелке часов, а справа – против часовой стрелки, и отрицательным – в противоположном случае (рис. 1.3, б). Рис. 1.3 При вычислении изгибающего момента в данном сечении моменты внешних сил, лежащие слева от сечения, считаются положительными, если они направлены по ходу часовой стрелки. Для правой части балки – наоборот. Удобно определять знак изгибающего момента по характеру деформации балки. Изгибающий момент считается положительным, если в рассматриваемом сечении отсечённая часть балки изгибается выпуклостью вниз, т. е. растягиваются нижние волокна. В противоположном случае изгибающий момент в сечении отрицательный. Между изгибающим моментом М, поперечной силой Q и интенсивностью нагрузки q существуют дифференциальные зависимости. 1. Первая производная от поперечной силы по абсциссе сечения равна интенсивности распределенной нагрузки, т.е. . (1.1) 2. Первая производная от изгибающего момента по абсциссе сечения равна поперечной силе, т. е. (1.2) 3. Вторая производная по абсциссе сечения равна интенсивности распределённой нагрузки, т. е. (1.3) Распределенную нагрузку, направленную вверх, считаем положительной. Из дифференциальных зависимостей между М, Q, q вытекает ряд важных выводов: 1. Если на участке балки: а) поперечная сила положительна, то изгибающий момент возрастает; б) поперечная сила отрицательна, то изгибающий момент убывает; в) поперечная сила равна нулю, то изгибающий момент имеет постоянное значение (чистый изгиб); 6 г) поперечная сила проходит через нуль, меняя знак с плюса на минус, max M M, в противоположном случае M Mmin. 2. Если на участке балки распределенная нагрузка отсутствует, то поперечная сила постоянна, а изгибающий момент изменяется по линейному закону. 3. Если на участке балки имеется равномерно распределенная нагрузка, то поперечная сила изменяется по линейному закону, а изгибающий момент – по закону квадратной параболы, обращенной выпуклостью в сторону действия нагрузки (в случае построения эпюры М со стороны растянутых волокон). 4. В сечении под сосредоточенной силой эпюра Q имеет скачок (на величину силы), эпюра М - излом в сторону действия силы. 5. В сечении, где приложен сосредоточенный момент, эпюра М имеет скачок, равный значению этого момента. На эпюре Q это не отражается. При сложном нагружении балки строят эпюры поперечных сил Q и изгибающих моментов М. Эпюрой Q(M) называется график, показывающий закон изменения поперечной силы (изгибающего момента) по длине балки. На основе анализа эпюр М и Q устанавливают опасные сечения балки. Положительные ординаты эпюры Q откладываются вверх, а отрицательные – вниз от базисной линии, проводимой параллельно продольной оси балки. Положительные ординаты эпюры М откладываются вниз, а отрицательные – вверх, т. е. эпюра М строится со стороны растянутых волокон. Построение эпюр Q и М для балок следует начинать с определения опорных реакций. Для балки с одним защемленным и другим свободным концами построение эпюр Q и М можно начинать от свободного конца, не определяя реакций в заделке. 1.2. Построение эпюр Q и М по уравнениям Балка разбивается на участки, в пределах которых функции для изгибающего момента и поперечной силы остаются постоянными (не имеют разрывов). Границами участков служат точки приложения сосредоточенных сил, пар сил и места изменения интенсивности распределенной нагрузки. На каждом участке берется произвольное сечение на расстоянии х от начала координат, и для этого сечения составляются уравнения для Q и М. По этим уравнениям строятся эпюры Q и M. Пример 1.1 Построить эпюры поперечных сил Q и изгибающих моментов М для заданной балки (рис. 1.4,а). Решение: 1. Определение реакций опор. Составляем уравнения равновесия: из которых получаем Реакции опор определены правильно. Балка имеет четыре участка Рис. 1.4 нагружения: СА, AD, DB, BE. 2. Построение эпюры Q. Участок СА. На участке СА 1проводим произвольное сечение 1-1 на расстоянии x1 от левого конца балки. Определяем Q как алгебраическую сумму всех внешних сил, действующих слева от сечения 1-1: 1 Q 3 0 кН. Знак минус взят потому, что сила, действующая слева от сечения, направлена вниз. Выражение для Q не зависит от переменной x1. Эпюра Q на этом участке изобразится прямой, параллельной оси абсцисс. Участок AD. На участке проводим произвольное сечение 2-2 на расстоянии x2 от левого конца балки. Определяем Q2 как алгебраическую сумму всех внешних сил, действующих слева от сечения 2-2: Величина Q постоянна на участке (не зависит от переменной x2). Эпюра Q на участке представляет собой прямую, параллельную оси абсцисс. Участок DB. На участке проводим произвольное сечение 3-3 на расстоянии x3 от правого конца балки. Определяем Q3 как алгебраическую сумму всех внешних сил, действующих справа от сечения 3-3: . Полученное выражение есть уравнение наклонной прямой линии. Участок BE. На участке проводим сечение 4-4 на расстоянии x4 от правого конца балки. Определяем Q как алгебраическую сумму всех внешних сил, действующих справа от сечения 4-4: Здесь знак плюс взят потому, что равнодействующая нагрузка справа от сечения 4-4 направлена вниз. По полученным значениям строим эпюры Q (рис. 1.4, б). 3. Построение эпюры М. Участок СА м1. Определяем изгибающий момент в сечении 1-1 как алгебраическую сумму моментов сил, действующих слева от сечения 1-1. – уравнение прямой. Участок. 3Определяем изгибающий момент в сечении 2-2 как алгебраическую сумму моментов сил, действующих слева от сечения 2-2. – уравнение прямой. Участок. 4Определяем изгибающий момент в сечении 3-3 как алгебраическую сумму моментов сил, действующих справа от сечения 3-3. – уравнение квадратной параболы. 9 Находим три значения на концах участка и в точке с координатой xk , где так как здесь имеем кНм. Участок. 1Определяем изгибающий момент в сечении 4-4 как алгебраическую сумму моментов сил, действующих справа от сечения 4-4. – уравнение квадратной параболы находим три значения M4: По полученным значениям строим эпюру М (рис. 1.4, в). На участках CA и AD эпюра Q ограничена прямыми, параллельными оси абсцисс, а на участках DB и BE – наклонными прямыми. В сечениях C, A и B на эпюре Q имеют место скачки на величину соответствующих сил, что служит проверкой правильности построения эпюры Q. На участках, где Q 0, моменты возрастают слева направо. На участках, гдеQ 0, моменты убывают. Под сосредоточенными силами имеются изломы в сторону действия сил. Под сосредоточенным моментом имеет место скачок на величину момента. Это указывает на правильность построения эпюры М. Пример 1.2 Построить эпюры Q и М для балки на двух опорах, нагруженной распределенной нагрузкой, интенсивность которой меняется по линейному закону (рис. 1.5, а). Решение Определение реакций опор. Равнодействующая распределенной нагрузки равна площади треугольника, представляющего собой эпюру нагрузки и приложена в центре тяжести этого треугольника. Составляем суммы моментов всех сил относительно точек А и В: Построение эпюры Q. Проведем произвольное сечение на расстоянии x от левой опоры. Ордината эпюры нагрузки, соответствующая сечению, определяется из подобия треугольников Равнодействующая той части нагрузки, которая распложена слева от сечения Поперечная сила в сечении равна Поперечная сила изменяется по закону квадратной параболы Приравнивая уравнение поперечной силы нулю, находим абсциссу того сечения, в котором эпюра Q переходит через нуль: Эпюра Q представлена на рис. 1.5, б. Изгибающий момент в произвольном сечении равен Изгибающий момент изменяется по закону кубической параболы: Максимальное значение изгибающий момент имеет в сечении, где Q 0, т. е. при Эпюра М представлена на рис. 1.5, в. 1.3. Построение эпюр Q и M по характерным сечениям (точкам) Используя дифференциальные зависимости между М, Q, q и выводы, вытекающие из них, целесообразно строить эпюры Q и М по характерным сечениям (без составления уравнений). Применяя этот способ, вычисляют значения Q и М в характерных сечениях. Характерными сечениями являются граничные сечения участков, а также сечения, где данный внутренний силовой фактор имеет экстремальное значение. В пределах между характерными сечениями очертание 12 эпюры устанавливается на основе дифференциальных зависимостей между М, Q, q и выводами, вытекающими из них. Пример 1.3 Построить эпюры Q и М для балки, изображенной на рис. 1.6, а. Построение эпюр Q и М начинаем от свободного конца балки, при этом реакции в заделке можно не определять. Балка имеет три участка нагружения: АВ, ВС, CD. На участках АВ и ВС распределенная нагрузка отсутствует. Поперечные силы постоянны. Эпюра Q ограничена прямыми, параллельными оси абсцисс. Изгибающие моменты изменяются по линейному закону. Эпюра М ограничена прямыми, наклонными к оси абсцисс. На участке CD имеется равномерно распределенная нагрузка. Поперечные силы изменяются по линейному закону, а изгибающие моменты – по закону квадратной параболы с выпуклостью в сторону действия распределенной нагрузки. На границе участков АВ и ВС поперечная сила изменяется скачкообразно. На границе участков ВС и CD скачкообразно изменяется изгибающий момент. 1. Построение эпюры Q. Вычисляем значения поперечных сил Q в граничных сечениях участков: По результатам расчетов строим эпюру Q для балки (рис. 1, б). Из эпюры Q следует, что поперечная сила на участке CD равна нулю в сечении, отстоящем на расстоянии qa a q  от начала этого участка. В этом сечении изгибающий момент имеет максимальное значение. 2. Построение эпюры М. Вычисляем значения изгибающих моментов в граничных сечениях участков: При Kx3 мaаксимальный момент на участке По результатам расчетов строим эпюру М (рис. 5.6, в). Пример 1.4 По заданной эпюре изгибающих моментов (рис. 1.7, а) для балки (рис. 1.7, б) определить действующие нагрузки и построить эпюру Q. Кружком обозначена вершина квадратной параболы. Решение: Определим нагрузки, действующие на балку. Участок АС загружен равномерно распределённой нагрузкой, так как эпюра М на этом участке – квадратная парабола. В опорном сечении В к балке приложен сосредоточенный момент, действующий по часовой стрелке, так как на эпюре М имеем скачок вверх на величину момента. На участке СВ балка не нагружена, т. к. эпюра М на этом участке ограничена наклонной прямой. Реакция опоры В определяется из условия, что изгибающий момент в сечении С равен нулю, т. е. Для определения интенсивности распределенной нагрузки составим выражение для изгибающего момента в сечении А как сумму моментов сил справа и приравняем к нулю Теперь определим реакцию опоры А. Для этого составим выражение для изгибающих моментов в сечении как сумму моментов сил слева откуда Рис. 1.7 Проверка Расчетная схема балки с нагрузкой показана на рис. 1.7, в. Начиная с левого конца балки, вычисляем значения поперечных сил в граничных сечениях участков: Эпюра Q представлена на рис. 1.7, г. Рассмотренная задача может быть решена путем составления функциональных зависимостей для М, Q на каждом участке. Выберем начало координат на левом конце балки. На участке АС эпюра М выражается квадратной параболой, уравнение которой имеет вид Постоянные а, b, с находим из условия, что парабола проходит через три точки с известными координатами: Подставляя координаты точек в уравнение параболы, получим: Выражение для изгибающего момента будет Дифференцируя функцию М1, получим зависимость для поперечной cилы После дифференцирования функции Q получим выражение для интенсивности распределённой нагрузки На участке СВ выражение для изгибающего момента представляется в виде линейной функции Для определения постоянных а и b используем условия, что данная прямая проходит через две точки, координаты которых известны Получим два уравнения: из которых имеем a 10, b  20. Уравнение для изгибающего момента на участке СВ будет После двукратного дифференцирования М2 найдём По найденным значениям М и Q строим эпюры изгибающих моментов и поперечных сил для балки. Помимо распределённой нагрузки к балке прикладываются сосредоточенные силы в трех сечениях, где на эпюре Q имеются скачки и сосредоточенные моменты в том сечении, где на эпюре М имеется скачок. Пример 1.5 Для балки (рис. 1.8, а) определить рациональное положение шарнира С, при котором наибольший изгибающий момент в пролете равен изгибающему моменту в заделке (по абсолютной величине). Построить эпюры Q и М. Решение Определение реакций опор. Несмотря на то, что общее число опорных связей равно четырем, балка статически определима. Изгибающий момент в шарнире С равен нулю, что позволяет составить дополнительное уравнение: сумма моментов относительно шарнира всех внешних сил, действующих по одну сторону от этого шарнира, равна нулю. Составим сумму моментов всех сил справа от шарнира С. Эпюра Q для балки ограничена наклонной прямой, так как q = const. Определяем значения поперечных сил в граничных сечениях балки: Абсцисса xK сечения, где Q = 0, определяется из уравнения откуда Эпюра М для балки ограничена квадратной параболой. Выражения для изгибающих моментов в сечениях, где Q = 0, и в заделке записываются соответственно так: Из условия равенства моментов получаем квадратное уравнение относительно искомого параметра х: Реальное значение. Определяем численные значения поперечных сил и изгибающих моментов в характерных сечениях балки На рис.1.8, б показана эпюра Q, а на рис. 1.8, в – эпюра М. Рассмотренную задачу можно было решить способом расчленения шарнирной балки на составляющие ее элементы, как это показано на рис. 1.8, г. В начале определяются реакции опор VC и VB . Строятся эпюры Q и М для подвесной балки СВ от действия приложенной к ней нагрузки. Затем переходят к основной балке АС, нагрузив ее дополнительной силой VC , являющейся силой давления балки СВ на балку АС. После чего строят эпюры Q и М для балки АС. 1.4. Расчеты на прочность при прямом изгибе балок Расчет на прочность по нормальным и касательным напряжениям. При прямом изгибе балки в поперечных сечениях ее возникают нормальные и касательные напряжения (рис. 1.9). Нормальные напряжения связаны с изгибающим моментом, касательные напряжения связаны с поперечной силой. При прямом чистом изгибе касательные напряжения равны нулю. Нормальные напряжения в произвольной точке поперечного сечения балки определяются по формуле (1.4) где M – изгибающий момент в данном сечении; Iz – момент инерции сечения относительно нейтральной оси z; y – расстояние от точки, где определяется нормальное напряжение, до нейтральной оси z. Нормальные напряжения по высоте сечения изменяются по линейному закону и достигают наибольшей величины в точках, наиболее удалённых от нейтральной оси Если сечение симметрично относительно нейтральной оси (рис. 1.11), то Рис. 1.11 наибольшие растягивающие и сжимающие напряжения одинаковы и определяются по формуле – осевой момент сопротивления сечения при изгибе. Для прямоугольного сечения шириной b высотой h: (1.7) Для круглого сечения диаметра d: (1.8) Для кольцевого сечения (1.9) где d0 и d – соответственно внутренний и наружный диаметры кольца. Для балок из пластичных материалов наиболее рациональными являются симметричные 20 формы сечений (двутавровое, коробчатое, кольцевое). Для балок из хрупких материалов, не одинаково сопротивляющихся растяжению и сжатию, рациональными являются сечения, несимметричные относительно нейтральной оси z (тавр., П-образное, несимметричный двутавр). Для балок постоянного сечения из пластичных материалов при симметричных формах сечений условие прочности записывается так: (1.10) где Mmax – максимальный изгибающий момент по модулю; – допускаемое напряжение для материала. Для балок постоянного сечения из пластичных материалов при несимметричных формах сечений условие прочности записывается в следующем виде: Для балок из хрупких материалов с сечениями, несимметричными относительно нейтральной оси, в случае, если эпюра М однозначна (рис. 1.12), нужно записать два условия прочности где yP,max , yC,max – расстояния от нейтральной оси до наиболее удалённых точек соответственно растянутой и сжатой зон опасного сечения; – допускаемые напряжения соответственно на растяжение и сжатие. Рис.1.12. 21 Если эпюра изгибающих моментов имеет участки разных знаков (рис. 1.13), то помимо проверки сечения 1-1, где действуетMmax, необходимо произвести расчет по наибольшим растягивающим напряжениям для сечения 2-2 (с наибольшим моментом противоположного знака). Рис. 1.13 Наряду с основным расчетом по нормальным напряжениям в ряде случаев приходится делать проверку прочности балки по касательным напряжениям. Касательные напряжения в балки вычисляются по формуле Д. И. Журавского (1.13) где Q – поперечная сила в рассматриваемом поперечном сечении балки; Szотс – статический момент относительно нейтральной оси площади части сечения, расположенной по одну сторону прямой, проведенной через данную точку и параллельной оси z; b – ширина сечения на уровне рассматриваемой точки; Iz – момент инерции всего сечения относительно нейтральной оси z. Во многих случаях максимальные касательные напряжения возникают на уровне нейтрального слоя балки (прямоугольник, двутавр, круг). В таких случаях условие прочности по касательным напряжениям записывается в виде, (1.14) где Qmax – наибольшая по модулю поперечная сила; – допускаемое касательное напряжение для материала. Для прямоугольного сечения балки условие прочности имеет вид 22 (1.15) А – площадь поперечного сечения балки. Для круглого сечения условие прочности представляется в виде (1.16) Для двутаврового сечения условие прочности записывается так: (1.17) где Szо,тmсax – статический момент полусечения относительно нейтральной оси; d – толщина стенки двутавра. Обычно размеры поперечного сечения балки определяются из условия прочности по нормальным напряжениям. Проверка прочности балок по касательным напряжениям производится в обязательном порядке для коротких балок и балок любой длинны, если вблизи опор имеются сосредоточенные силы большой величины, а также для деревянных, клёпанных и сварных балок. Пример 1.6 Проверить прочность балки коробчатого сечения (рис. 1.14) по нормальным и касательным напряжениям, если 0 МПа. Построить эпюры в опасном сечении балки. Рис. 1.14 Решение 23 1. Построение эпюр Q и М по характерным сечениям. Рассматривая левую часть балки, получим Эпюра поперечных сил представлена на рис. 1.14,в. . Эпюра изгибающих моментов показана на рис. 5.14, г. 2. Геометрические характеристики поперечного сечения 3. Наибольшие нормальные напряжения в сечение С, где действует Mmax (по модулю): Максимальные нормальные напряжения в балке практически равны допускаемым. 4. Наибольшие касательные напряжения в сечении С (или А), где действует – статический момент площади полусечения относительно нейтральной оси; b2 см – ширина сечения на уровне нейтральной оси. 5. Касательные напряжения в точке (в стенке) в сечении С: Здесь – статический момент площади части сечения, расположенной выше линии, проходящей через точку K1; b2 см – толщина стенки на уровне точки K1. Эпюры для сечения С балки показаны рис. 1.15. Пример 1.7 Для балки, показанной на рис. 1.16, а, требуется: 1. Построить эпюры поперечных сил и изгибающих моментов по характерным сечениям (точкам). 2. Определить размеры поперечного сечения в виде круга, прямоугольника и двутавра из условия прочности по нормальным напряжениям, сравнить площади сечений. 3. Проверить подобранные размеры сечений балок по касательным напряжения. Решение: 1. Определяем реакции опор балки откуда Проверка: 2. Построение эпюр Q и М. Значения поперечных сил в характерных сечениях балки На участках CA и AD интенсивность нагрузки q = const. Следовательно, на этих участках эпюра Q ограничивается прямыми, наклонными к оси. На участке DB интенсивность распределенной нагрузки q = 0, следовательно, на этом участке эпюра Q ограничивается прямой, параллельной оси х. Эпюра Q для балки показана на рис. 1.16,б. Значения изгибающих моментов в характерных сечениях балки: На втором участке определяем абсциссу x2 сечения, в котором Q = 0: Максимальный момент на втором участке Эпюра М для балки показана на рис. 1.16, в. 2. Составляем условие прочности по нормальным напряжениям откуда определяем требуемый осевой момент сопротивления сечения из выражения определяемый требуемый диаметр d балки круглого сечения Площадь круглого сечения Для балки прямоугольного сечения Требуемая высота сечения Площадь прямоугольного сечения Определяем требуемый номер двутавровой балки. По таблицам ГОСТ 8239-89 находим ближайшее большее значение осевого момента сопротивления которое соответствует двутавру № 33 с характеристиками: Проверка на допуск: (недогрузка на 1 % от допустимого 5 %) ближайший двутавр № 30 (W  472 см3) приводит к значительной перегрузке (более 5%). Окончательно принимаем двутавр № 33. Сравниваем площади круглого и прямоугольного сечений с наименьшей площадью А двутавра: Из трех рассмотренных сечений наиболее экономичным является двутавровое сечение. 3. Вычисляем наибольшие нормальные напряжения в опасном сечении 27 двутавровой балки (рис. 1.17, а): Нормальные напряжения в стенке около полки двутаврового сечения балки Эпюра нормальных напряжений в опасном сечении балки показана на рис. 1.17, б. 5. Определяем наибольшие касательные напряжения для подобранных сечений балки. а) прямоугольное сечение балки: б) круглое сечение балки: в) двутавровое сечение балки: Касательные напряжения в стенке около полки двутавра в опасном сечении А (справа) (в точке 2): Эпюра касательных напряжений в опасных сечениях двутавра показана на рис. 1.17,в. Максимальные касательные напряжения в балке не превышают допускаемых напряжений. Пример 1.8 Определить допускаемую нагрузку на балку (рис. 1.18, а), если размеры поперечного сечения заданы (рис. 1.19, а). Построить эпюру нормальных напряжений в опасном сечении балки при допускаемой нагрузке. Рис 1.18 1. Определение реакций опор балки. Ввиду симметрии системы VVB A8qa . 29 2. Построение эпюр Q и M по характерным сечениям. Поперечные силы в характерных сечениях балки: Эпюра Q для балки показана на рис. 5.18, б. Изгибающие моменты в характерных сечениях балки Для второй половины балки ординаты М – по осям симметрии. Эпюра М для балки показана на рис. 1.18, б. 3.Геометрические характеристики сечения (рис. 1.19). Разбиваем фигуру на два простейших элемента: двутавр – 1 и прямоугольник – 2. Рис. 1.19 По сортаменту для двутавра № 20 имеем Для прямоугольника: Статический момент площади сечения относительно оси z1 Расстояние от оси z1 до центра тяжести сечения Момент инерции сечения относительно главной центральной оси z всего сечения по формулам перехода к параллельным осям 4. Условие прочности по нормальным напряжениям для опасной точки «а» (рис. 1.19) в опасном сечении I (рис. 1.18): После подстановки числовых данных 5. При допускаемой нагрузке q в опасном сечении нормальные напряжения в точках «а» и «b» будут равны: Эпюра нормальных напряжений для опасного сечения 1-1 показана на рис. 1.19, б. Пример 1.9 Определить требуемые размеры поперечного сечения чугунной балки (рис. 1.20.), предварительно выбрав рациональное расположение сечения. Принять Решение 1. Определение реакций опор балки. 2. Построение эпюр Q и М. Эпюры представлены на рис. 1.20, в,г. Наибольший (по модулю) изгибающий момент возникает в сечении «b». В этом сечении растянутые волокна расположены вверху. Большая часть материала должна располагаться в растянутой зоне. Следовательно, рационально расположить сечение балки так, как показано на рис. 1.20, б. 3. Определение положения центра тяжести сечения (по аналогии с предыдущим примером): 4. Определение момента инерции сечения относительно нейтральной оси: 5. Определение требуемых размеров сечения балки из условия прочности по нормальным напряжениям. Обозначим y соответственно расстояния от нейтральной оси до наиболее удаленных точек в зонах растяжения и сжатия (для сечения В): , то опасными являются точки растянутой зоны, наиболее удаленные от нейтральной оси. Составляем условие прочности для точки m в сечении В: или после подстановки числовых значений При этом напряжения в точке n, наиболее удалённой от нейтральной оси в сжатой зоне (в сечении В), будут, МПа. Эпюра M неоднозначна. Необходимо проверить прочность балки в сечении С. Здесь момент, Bно растягиваются нижние волокна. Опасной точкой будет точка n: При этом напряжения в точке m будут Из расчётов окончательно принимаем Эпюра нормальных напряжений для опасного сечения С показана на рис. 1.21. Рис. 1.21 1.5. Главные напряжения при изгибе. Полная проверка прочности балок Выше рассмотрены примеры расчета балок на прочность по нормальным и касательным напряжениям. В подавляющем большинстве случаев этого расчета достаточно. Однако в тонкостенных балках двутаврового, таврового, швеллерного и коробчатого сечений в месте соединения стенки с полкой возникают значительные касательные напряжения. Это имеет место в тех случаях, когда к балке приложена значительная поперечная сила и есть сечения, в которых M и Q одновременно велики. Одно из таких сечений будет опасным и проверяется 34 по главным напряжениям с применением одной из теорий прочности. Проверка прочности балок по нормальным, касательным и главным напряжениям носит название полной проверки прочности балок. Такой расчет рассматривается ниже. Основным является расчет балки по нормальным напряжениям. Условие прочности для балок, материал которых одинаково сопротивляется растяжению и сжатию имеет вид где Mmax─ максимальный изгибающий момент (по модулю), взятый из эпюры M , Wz ─ осевой момент сопротивления сечения относительно нейтральной оси балки; [ ]─ допускаемое нормальное напряжение для материала. Из условия прочности (1) определяют необходимые размеры поперечного сечения балки. Подобранные размеры сечения балки проверяются по касательным напряжениям. Условие прочности по касательным напряжениям имеет вид (формула Д. И. Журавского): где Qmax ─ максимальная поперечная сила, взятая из эпюры Q ; Szотс.─ статический момент (относительно нейтральной оси) отсеченной части поперечного сечения, расположенной по одну сторону от уровня, на котором определяются касательные напряжения; I z ─ момент инерции всего поперечного сечения относительно нейтральной оси; b─ ширина сечения балки на том уровне, где определяются касательные напряжения; ─ допускаемое касательное напряжение материала при изгибе. Проверка прочности по нормальным напряжениям относится к точке, наиболее удаленной от нейтральной оси в сечении, где действует Mmax. Проверка прочности по касательным напряжениям относится к точке, расположенной на нейтральной оси в сечении, где действует Qmax . В балках с тонкостенным сечением (двутавр и др.) опасной может оказаться точка, расположенная в стенке в сечении, где одновременно велики M и Q . В этом случае проверка прочности производится по главным напряжениям. Главные и экстремальные касательные напряжения определяются по аналитическим зависимостям, полученным из теории плоского напряженного состояния тел: Угол наклона главных площадок определяется по формуле (1.22) Имея величины главных напряжений, составляют условия прочности по той или иной теории прочности. Например По третьей теории наибольших касательных напряжений имеем После подстановки значений главных напряжений окончательно получаем (1.23) По четвертой энергетической теории прочности условие прочности имеет вид (1.24) Из формул (1.6) и (1.7) видно, что расчетное напряжение Экв зависит от. Следовательно, проверке подлежит элемент материала балки, для которого будут одновременно велики. Это осуществляется в таких случаях: 1) изгибающий момент и поперечная сила достигают наибольшего значения в одном и том же сечении; 2) ширина балки резко меняется вблизи краев сечения (двутавр и др.). Если указанные условия не имеют места, то необходимо рассмотреть несколько сечений, в которых могут возникнуть наиболее высокие значения экв. Пример 1.10 Сварная балка двутаврового поперечного сечения пролетом l=5 м, свободно опертая по концам, нагружена равномерно распределенной нагрузкой интенсивности q и сосредоточенной силой P 5qa, приложенной на расстоянии а =1 м от правой опоры (рис. 1.22). Определить допускаемую нагрузку на балку из условия прочности по нормальным напряжениям и проверить по касательным и главным напряжениям по 36 4-й (энергетической) теории прочности. Построить эпюры в опасном сечении по главным напряжениям и исследовать напряженное состояние элемента, выделенного в стенке около полки в указанном сечении. Допускаемое напряжение на растяжение и сжатие: при изгибе160 МПа; и на сдвиг 100 МПа. Рис. 1.22 Решение 1. Определение реакций опор балки: 2. Построение эпюр M и Q по характерным сечениям (точкам): 3. Вычисление геометрических характеристик сечения балки. а) осевой момент инерции сечения относительно нейтральной оси z: 37 б) Осевой момент сопротивления относительно нейтральной оси z: 4. Определение допускаемой нагрузки на балку из условия прочности по нормальным напряжениям: Допускаемая нагрузка на балку 5. Проверка прочности балки по касательным напряжениям по формуле Д.И.Журавского Статический момент полусечения двутавра относительно нейтральной оси z: Ширина сечения на уровне точки 3: Максимальная поперечная сила Максимальные касательные напряжения в балке 6. Проверка прочности балки по главным напряжениям. Опасным по главным напряжениям является сечение D , в котором одновременно велики M и Q , а опасными точками в этом сечении являются точки 2 и 4, где одновременно велики  и  (рис. 1.23). Для точек 2 и 4 производим проверку прочности по главным напряжениям, используя 4-ю теорию прочности где (2) и (2)─ нормальные и касательные напряжения в точке 2(4) соответственно (рис. 1.2). Рис. 1.23 расстояние от нейтральной оси до точки 2. где Sz по(лки ─) статический момент полки относительно нейтральной оси z . см ─ ширина сечения по линии, проходящей через точку 3. Эквивалентные напряжения по 4-й теории прочности в точке 2 сечения D: Условие прочности по 4-й теории прочности удовлетворяется. 7. Построение эпюр нормальных, касательных, главных и экстремальных касательных напряжений в опасном сечении D (по главным напряжениям). а) вычисляем напряжения точках (1-5) сечения D по соответствующим формулам. Точка 2 (в стенке) Ранее были вычислены значения нормальных и касательных напряжений в точке 2. Находим главные и экстремальные касательные напряжения в этой же точке 2: Точка 3. Нормальные и касательные напряжения в точке 3: Главные и экстремальные касательные напряжения в точке 3: Аналогично находятся напряжения в точках 4 и 5. По получаемым данным строим эпюры, max . 8. Напряженное состояние элемента, выделенного в окрестности точки 2 в сечении D , представлено на рис. 1.24, угол наклона главных площадок 1.6. Понятие о центре изгиба Как было указано выше, касательные напряжения в поперечных сечениях тонкостенных стержней при изгибе (например, двутавра или швеллера) определяются по формуле На рис. 194 изображены эпюры касательных напряжений в двутавровом сечении. Используя методику, описанную в параграфе 63, можно построить эпюру 41 также для швеллера. Рассмотрим случай, когда швеллер заделан в стену, а на другом конце загружен силой Р, приложенной в центре тяжести сечения. Рис. 1.25 Общий вид эпюры τ в каком – либо сечении показан на рис. 1.25, а. В вертикальной стенке возникают касательные напряжения τу. В результате действия напряжений τу возникает суммарная сдвигающая сила Т2 (рис. 1.25, б). Если пренебречь касательными напряжениями τу в полках, то можно записать приближённое равенство В горизонтальных полках возникают касательные напряжения τх, которые направлены по горизонтали. Наибольшее касательное напряжение в полке τx max равно Здесь S1ОТС – статический момент площади полки относительно оси Ох: Следовательно, Суммарная сдвигающая сила в полке определится как площадь эпюры касательных напряжений, умноженная на толщину полки На нижнюю полку действует точно такая же сдвигающая сила, как и на верхнюю, но она направлена в обратную сторону. Две силы Т1 образуют пару с моментом (1.25) Таким образом, вследствие касательных напряжений τу и τх возникают три внутренние касательные силы, которые показаны на рис. 1.25, б. Из этого рисунка видно, что силы Т1 и Т2 стремятся повернуть сечение швеллера относительно центра тяжести в одну и ту же сторону. Рис. 1.25 Следовательно, в сечении швеллера возникает внутренний крутящий момент, направленный по ходу часовой стрелки. Итак, при изгибе швеллерной балки силой, приложенной в центре тяжести сечения, балка одновременно и закручивается. Три касательные силы можно привести к главному вектору и главному моменту. Величина главного момента зависит от положения точки, к которой приводятся силы. Оказывается, что можно выбрать такую точку А, относительно которой главный момент равен нулю. Эта точка называется центром изгиба. Приравнивания момент касательных сил нулю: получим Учтя выражение (1.25), окончательно найдем расстояние от оси вертикальной стенки до центра изгиба: Если внешнюю силу приложить не в центре тяжести сечения, а в центре изгиба, то она создаст относительно центра тяжести такой же момент, какой создают внутренние касательные силы, но только противоположного знака. При таком загружении (рис. 1.25, в) швеллер закручиваться не будет, а будет только изгибаться. Именно поэтому точка А названа центром изгиба. Подробное изложение расчета тонкостенных стержней дано в гл. XIII . 1.7. Определение перемещений в балках при изгибе. Понятия деформации балок и условия их жесткости Под действием внешней нагрузки балка деформируется и ее ось искривляется. Кривая, в которую обращается ось балки после приложения нагрузки, называется упругой линией при условии, если напряжения балки не превосходят предела пропорциональности. В зависимости от направления нагрузки, расположения эпюр упругая линия может иметь выпуклость вверх (рис. 1.26, а), вниз (рис. 1.26, б) либо совокупность (рис. 1.26, в). При этом центры тяжести поперечных сечений перемещаются соответственно либо вверх, либо вниз, а сами сечения поворачиваются относительно нейтральной оси, оставаясь перпендикулярными изогнутой оси балки (рис. 1.26, а). Строго говоря, центры тяжести поперечных сечений перемещаются ещё и в направлении продольной оси балки. Однако в виду малости этих перемещений для балок ими пренебрегают, т. е. считают, что центр тяжести сечения перемещается перпендикулярно оси балки. Обозначим это перемещение через y , и в дальнейшем будем понимать под ним прогиб балки (см. рис. 1.26). Прогибом балки в данном сечении называется перемещение центра тяжести сечения по направлению, перпендикулярному оси балки. Рис. 1.26 Прогибы в различных сечениях балки зависят от положения сечений и являются величиной переменной. Так, для балки (рис. 1.26, а) в точке B прогиб будет иметь максимальное значение, а в точке D он равен нулю. Как уже отмечалось, наряду с перемещением центра тяжести сечения происходит поворот сечений относительно нейтральной оси сечения. Угол, на который сечение поворачивается по отношению к своему первоначальному положению, называется углом поворота сечения. Будем обозначать угол поворота через (рис. 1.26, а). Так как при изгибе балки поперечное сечение всегда остается перпендикулярно изогнутой её оси, то угол поворота можно представить как угол, заключенный между касательной к изогнутой оси в данной точке и первоначальной осью балки (рис. 1.26, а) или перпендикуляром к первоначальной и изогнутой осей балки в рассматриваемой точке. Угол поворота сечения для балок также является величиной переменной. Например, для балки (рис. 1.26, б) максимальное значение он имеет в шарнирных опорах, а минимальное значение 0 для сечения, в котором прогиб имеет максимальное значение. Для консольной балки (рис. 1.26, а) максимальный угол поворота будет на свободном её конце, т. е. в точке B . Для обеспечения нормальной работы балок оказывается недостаточно, чтобы они удовлетворяли условию прочности. Необходимо еще, чтобы балки обладали достаточной жесткостью, т. е. чтобы максимальные прогиб и угол поворота не превосходили допускаемых величин, определяемых эксплуатационными условиями балок. Это положение носит название условие жесткости балок при изгибе. В краткой математической форме записи условия жесткости имеют вид: где [y] и соответственно допускаемые прогиб и угол поворота. 45 Допускаемый прогиб обычно задается как часть расстояния между опорами балки (длиной пролёта l), т. е. где m─ коэффициент, зависящий от значения и условий работы системы, в которой используется данная балка. В каждой отрасли машиностроения эта величина определяется нормами проектирования и изменяется в широких пределах. Следующим образом: - для подкрановых балок m = 400 - 700; - для железнодорожных мостов m = 1000; - для шпинделей токарных станков m= 1000-2000. Допускаемые углы поворота для балок обычно не превосходят величин 0,001рад. В левую часть уравнений (1.26) входят максимальные прогиб ymax и угол поворота max , которые определяются расчетным путем на основании известных способов: аналитических, графических и графоаналитических, некоторые из которых рассматриваются ниже. 1.8. Дифференциальное уравнение изогнутой оси балки Под действием внешних сил ось балки искривляется (см. рис. 1.26, а). Тогда уравнение изогнутой оси балки можно записать в виде а угол поворота  для любого сечения будет равен углу наклона касательной к изогнутой оси в данной точке. Тангенс этого угла численно равен производной от прогиба по абсциссе текущего сечения x , т. е. Так как прогибы балки малы по сравнению с её длиной l (см. выше), то можно принять, что угол поворота (1.27) При выводе формулы нормальных напряжений при изгибе было установлено, что между кривизной нейтрального слоя и изгибающим моментом существует следующая связь: Эта формула показывает, что кривизна изменяется по длине балки по тому же закону, по которому изменяется величина Mz . Если балка постоянного сечения испытывает чистый изгиб (рис. 5.27), при котором момент по длине не меняется, ее кривизна: Следовательно, для такой балки радиус кривизны – также величина постоянная и балка в этом случае будет изгибаться по дуге окружности. Однако в общем случае непосредственно применять закон изменения кривизны для определения прогибов не удается. Для аналитического решения задачи используем известное из математики выражение кривизны. (1.29) Подставляя (1.28) в (1.29), получим точное дифференциальное уравнение изогнутой оси балки: . (1.30) Уравнение (1.30) является нелинейным, и его интегрирование связано с большими трудностями. Учитывая, что прогибы и углы поворота для реальных балок, используемых в машиностроении, строительстве и т.д. малы, то величиной можно пренебречь. С учетом этого, а также того, что для правой системы координат изгибающий момент и кривизна имеют один и тот же знак (рис. 1.26), то для правой системы координат знак минус в уравнении (1.26) можно опустить. Тогда приближенное дифференциальное уравнение будет иметь вид 1.9. Метод непосредственного интегрирования Этот метод основан на интегрировании уравнения (1.31) и позволяет получить уравнение упругой оси балки в форме прогибов y f (x)и уравнение углов поворота Проинтегрировав уравнение (1.31) первый раз, получим уравнение углов поворота (1.32) где C ─ постоянная интегрирования. Интегрируя второй раз, получаем уравнение прогибов где D ─ вторая постоянная интегрирования. Постоянные C и D определяются из краевых условий опирания балки и граничных условий её участков. Так для балки (рис. 1.26, а), в месте заделки (x l)прогиб и угол поворота сечения равны нулю, а для балки (см. рис. 1.26, б) прогиб y и прогиб yD 0, при x .l Для шарнирно опертой балки с консолями (рис. 1.28) при совмещении начала координат с концом левой опоры и выбором правой системы координат граничные условия имеют вид С учетом граничных условий определяются постоянные интегрирования. После подстановки постоянных интегрирования в уравнения углов поворота (1.32) и прогибов (1.33) вычисляются углы поворота и прогибы данного сечения. 1.10. Примеры определения перемещений в балках методом непосредственного интегрирования Пример 1.11 Определить максимальный прогиб и угол поворота для консольной балки (рис. 1.26, а). Решение Начало координат совмещаем с левым концом балки. Изгибающий момент в произвольном сечении на расстоянии х от левого конца балки вычисляется по формуле С учетом момента приближенное дифференциальное уравнение имеет вид Интегрируя первый раз, имеем (1.34) Интегрируя второй раз Граничные условия С учетом второго условия, откуда Аналогично из первого условия будем иметь С учетом найденных постоянных интегрирования C и D уравнение углов поворота и прогибов будут иметь вид: При (см. рис. 1.26, а) угол поворота и прогиб имеют максимальные значения: Положительное значение угла  указывает, что сечение при изгибе балки поворачивается в направлении, противоположном движению часовой стрелки. Отрицательное значение y говорит о том, что центр тяжести сечения перемещается вниз. 1.11. Физический смысл постоянных интегрирования Если обратиться к уравнениям (1.32), (1.33) и (1.34), (1.35), рассмотренных выше примеров, то нетрудно заметить, что при x 0 из них следует Таким образом, можно сделать вывод, что постоянные интегрирования C и D представляют собой произведение жесткости балки соответственно на угол: поворота 0 и прогиб y0 в начале координат. Зависимости (1.36) и (1.37) оказываются справедливыми всегда для балок, имеющих один участок нагружения, если вычислять изгибающий момент от сил, расположенных между сечением и началом координат. Это же остается в силе и для балок с любым числом участков нагружения, если применять специальные приемы интегрирования дифференциального уравнения изогнутой оси балки, о которых будет сказано ниже. 1.12. Метод начальных параметров (универсальное уравнение изогнутой оси балки) При определении прогибов и углов поворота методом непосредственного интегрирования требуется нахождение двух постоянных интегрирования C и D даже в тех случаях, когда балка имеет один участок нагружения. На практике применяются балки, имеющие несколько участков нагружения. В этих случаях на разных участках нагружения закон изгибающего момента будет различен. Тогда дифференциальное уравнение изогнутой оси необходимо будет составлять для каждого из участков балки и для каждого из них отыскивать свои постоянные интегрирования C и D . Очевидно, что если балка имеет n участков нагружения, то число постоянных интегрирования будет равно удвоенному числу участков. Для их 50 определения необходимо будет решить 2 уравнения. Эта задача трудоемкая. Для решения задач, имеющих не один участок нагружения, широкое распространение получил метод начальных параметров, представляющий собой развитие метода непосредственного интегрирования. Оказывается, что, соблюдая некоторые условия, приемы составления и интегрирования уравнений по участкам, можно уменьшить число постоянных интегрирования, независимо от числа участков нагружения, до двух, представляющих собой прогиб и угол поворота в начале координат. Рассмотрим сущность этого метода на примере консольной балки (рис. 1.28), нагруженной произвольной нагрузкой, но создающей положительный момент в любом сечении балки. Пусть дана балка постоянного сечения, при этом сечение имеет ось симметрии, совпадающую с осью y , и вся нагрузка расположена в одной плоскости, проходящей через эту ось. Поставим задачу установить зависимости, определяющие угол поворота и прогиб произвольного сечения балки. Рис. 1.29 При решении задач условимся: 1. Начало координат будем связывать с левым концом балки, и оно является общим для всех участков. 2. Изгибающий момент в произвольном сечении будем всегда вычислять для участка балки, расположенного слева от сечения, т. е. между началом координат и сечением. 3. Интегрирование дифференциального уравнения изогнутой оси на всех участках будем производить, не раскрывая скобок некоторых выражений, 51 содержащих скобки. Так, например, интегрирование выражения вида P x(b) производится без раскрытия скобок, а именно по следующей формуле Интегрирование по этой формуле отличается от интегрирования с предварительным открытием скобок только величиной произвольной постоянной. 4. При составлении выражения для изгибающего момента в произвольном сечении, вызванного внешним сосредоточенным моментом М, будем добавлять множитель (x)a0 1. Придерживаясь этих правил, составим и проинтегрируем приближенное дифференциальное уравнение для каждого из пяти участков балки, обозначенных на рис. 1.28 римскими цифрами. Приближенное дифференциальное уравнение для указанных участков имеет один и тот же вид: (1.38) но для каждого участка изгибающий момент имеет свой закон изменения. Изгибающие моменты для участков имеют вид: Подставив выражения изгибающего момента в уравнение (1.38), для каждого из участков после интегрирования получим по два уравнения: уравнение углов поворота и уравнение прогибов, в которые войдут свои две постоянные интегрирования Ci и Di . В виду того, что балка имеет пять участков, то таких постоянных интегрирования будет десять. Однако, принимая во внимание, что изогнутая ось балки является непрерывной и упругой линией, то на границах соседних участков прогиб и угол поворота имеют одни и те же значения, т. е. при т. д. В силу этого из сравнения уравнений углов поворота и прогибов соседних участков получим, что постоянные интегрирования Таким образом, вместо десяти постоянных интегрирования для решения поставленной задачи необходимо определить только две постоянных интегрирования C и D . Из рассмотрения интегральных уравнений первого участка следует, что при x 0: т.е. они представляют собой те же зависимости (1.36) и (1.37). Начальные параметры 0 и y0 о определяются из граничных условий, о которых было сказано в предыдущем разделе. Анализируя полученные выражения для углов поворота и прогибов y , видим, что наиболее общий вид уравнений соответствует пятому участку. С учетом постоянных интегрирования эти уравнения имеют вид: Первое из этих уравнений представляет уравнение углов поворота, а второе - прогибов. Так как на балку может действовать не одна сосредоточенная сила, момент или балка может иметь не один участок с распределенной нагрузкой, то для общего случая уравнения (1.38),(1.39) запишутся в виде: Уравнения (1.41), (1.42) называются универсальными уравнениями изогнутой оси балки. Первое из этих уравнений является уравнением углов поворота, а второе – уравнением прогибов. С помощью этих уравнений можно определить прогибы и углы поворота сечений для любых статически определимых балок, у которых жесткость по их длине постоянна EI  const . В уравнениях (1.41), (1.42): M , P , q , qx ─ внешняя нагрузка, расположенная между началом координат и сечением, в котором определяются перемещения (угол поворота и прогиб); a , b, c , d ─ расстояния от начала координат до точек приложения соответственно момента М, сосредоточенной силы P , начало равномерно распределяемой нагрузки и начало неравномерно распределенной нагрузки. Необходимо обратить внимание: 53 1. При противоположном направлении внешней нагрузки, что принято при выводе универсальных уравнений, перед соответствующим членом уравнений знак меняется на противоположный, т. е. на минус. 2. Последние два члена уравнений (1.41), (1.42) справедливы только в том случае, если распределенная нагрузка не обрывается ранее того сечения, в котором определяются прогиб и угол поворота. Если нагрузка не доходит до этого сечения, то ее необходимо продолжить до данного сечения и одновременно добавить на продленном участке такую же распределенную нагрузку, но противоположную по знаку, эта мысль пояснена на рис. 1.30. Пунктиром показана добавленная распределенная нагрузка на продленном участке. Рис. 1.30 При определении углов поворота  и прогибов y начало координат следует помещать в левом конце балки, направляя ось y вверх, а ось x ─ вправо. В составляемое уравнение углов поворота и прогибов включаются только те силы, которые расположены левее сечения, т.е. на участке балки между началом координат и сечением, в котором определяются прогиб и угол поворота (включая и силы, действующие в сечении совпадающим с началом координат). 1.13. Примеры определения перемещений в балке по методу начальных параметров Пример 1.12 Для балки (рис. 1.31), защемленной левым концом и нагруженной сосредоточенной силой P , определить угол поворота и прогиб в точке приложения силы, а также свободного конца (сечение D). Жесткость балки Рис. 1.31 Решение уравнения равновесия статики: 1) Обратим внимание, что реактивный момент направлен против часовой стрелки, поэтому в уравнение изогнутой оси он войдёт со знаком минус. 2. Совмещаем начало координат с точкой B и устанавливаем начальные параметры. В защемлении ()B прогиб и угол поворота отсутствуют, т.е. 0 0. Записываем уравнение углов поворота и прогибов для произвольного сечения второго участка, т.е. расположенное на расстоянии x от начало координат С учетом реактивных сил, а также равенства нулю начальных параметров эти уравнения имеют вид При x lимеем угол поворота и прогиб сечения C соответственно 55 Для сеченияD , x1l 12(1)2 Пример 1.13 Определить максимальный прогиб и угол поворота на правой опоре балки, нагруженной посередине пролёта сосредоточенной силой (рис. 1.32). Решение 1. Определяем опорные реакции Из уравнений статики имеем B 2. Помещаем начало координат на левом конце балки (точка B). Рис. 1.32 3. Устанавливаем начальные параметры. Прогиб в начале координат By0, так как опора не позволяет вертикальное перемещение. Необходимо заметить, что если опора была бы подпружинена, то прогиб в начале координат был бы равен осадке деформации пружины. Угол поворота в начале координат не равен нулю, т. е. 4. Определяем угол поворота в начале координат 0 . Для этого используем условие, что при x lпрогиб равен нулю yD 0: 3 Так как балка относительно нагрузки P симметрична, то угол поворота на правой опоре равен углу поворота на левой опоре. 2 BD 16z Pl EI . Максимальный прогиб будет посередине балки при x . Следовательно, Пример 1.14 Определить прогиб посередине пролёта и на правом конце балки (рис. 1.33), если балка изготовлена из двутавра № 10 (момент инерции Iz 198 ссмм4), нагруженной распределенной нагрузкой q 2,Н/м, сосредоточенными моментом M силой. P ккНН Рис. 1.33 Решение 1 . Определяем опорные реакции Откуда Проверка правильности определения реакций 2. Совмещаем начало координат с точкой B и устанавливаем начальные параметры. Из рис. 1.33 следует, что в начале координат прогиб y0 0 и угол поворота. 57 3. Определяем начальные параметры y0 и 0 . Для этого используем граничные условия, что при: Для реализации граничных условий составляем уравнение изогнутой оси. для двух участков: участок BC 0 мм1: При записи этого уравнения учтено, что распределенная нагрузка оборвалась в точке C , поэтому согласно сказанному выше, ее продолжили и на продолженном участке ввели компенсирующую нагрузку такой же величины, но обратного направления. С учетом граничных условий (пункт 3) и нагрузки уравнения (1.43) и (1.44) имеют вид: Из совместного решения этих уравнений имеем 4. Определяем прогиб в сечениях К и E . Для сечения K при x 2 мм имеем 1.14. Определение перемещений по методу Мора Правило А.К. Верещагина Метод Мора является общим методом определения перемещений в стержневых линейно-деформируемых системах. Определение перемещений (линейных, угловых) в расчетных сечениях производится по формуле (интегралу) Мора, которую нетрудно получить, базируясь на теоремы о взаимности работ (теорема Бетти) и теорему о взаимности перемещений (теорема Максвелла). Пусть, например, задана плоская упругая система в виде балки (рис. 1.34), загруженная плоской уравновешенной произвольной нагрузкой. Заданное сос- тояние системы будем называть грузовым и обозначим буквой P . Под действием внешней нагрузки произойдет деформация, и в точке K возникнут перемещения, в частности, в направлении, перпендикулярном оси – прогиб кр. Введем новое (вспомогательное) состояние этой же системы, но нагруженной в точке K по направлению искомого перемещения (кр)единичной безразмерной силой (рис.1.34). Такое состояние системы обозначим буквой i , и будем называть единичным состоянием. 59 Рис. 1.34 На основании теоремы Бетти возможная работа сил грузового состояния pi A и силы единичного состояния pi A равны (1.45) Возможная работа сил грузового состояния, выраженная через внутренние силы, определяется по формуле а силы единичного состояния - по формуле (1.47) С учетом (1.46), (1.47) из (1.45) имеем (1.48) где M p , Qp, Np ─ соответственно изгибающий момент, поперечная и продольная силы, возникающие в системе от внешней нагрузки; Mi, Qi , Ni ─ соответственно изгибающий момент, поперечная и продольная силы, возникающие в системе от единичной нагрузки, приложенной по направлению определяемого перемещения; k ─ коэффициент, учитывающий неравномерность касательных напряжений по сечению; I ─ осевой момент инерции относительно главной центральной оси; A─ площадь поперечного сечения стержня на участке; 60 E , G ─ модули упругости материала. Неравномерность распределения касательных напряжений в сечении зависит от формы сечения . Для прямоугольного и треугольного сечений k 1,2, круглого сечения k 1,11, круглого кольцевого сечения k 2. Формула (1.48) позволяет определить перемещение в любой точке плоской упругой системы. При определении в сечении (K) прогиба прикладываем в этой точке единичную силу (безразмерную). В случае определения угла поворота сечения в точке K необходимо приложить единичный безразмерный момен

Гипотезу плоских сечений при изгибе можно объяснить на примере: нанесем на боковой поверхности недеформированной балки сетку, состоящую из продольных и поперечных (перпендикулярных к оси) прямых линий. В результате изгиба балки продольные линии примут криволинейное очертание, а поперечные практически останутся прямыми и перпендикулярными к изогнутой оси балки.

Формулировка гипотезы плоских сечения : поперечные сечения, плоские и перпендикулярные к оси балки до , остаются плоскими и перпендикулярными к изогнутой оси после ее деформации.

Это обстоятельство свидетельствует: при выполняется гипотеза плоских сечений , как при и

Помимо гипотезы плоских сечений принимается допущение : продольные волокна балки при ее изгибе не надавливают друг на друга.

Гипотезу плоских сечений и допущение называют гипотезой Бернулли .

Рассмотрим балку прямоугольного поперечного сечения, испытывающую чистый изгиб (). Выделим элемент балки длиной (рис. 7.8. а). В результате изгиба поперечные сечения балки повернутся, образовав угол . Верхние волокна испытывают сжатие, а нижние растяжение. Радиус кривизны нейтрального волокна обозначим .

Условно считаем, что волокна изменяют свою длину, оставаясь при этом прямыми (рис. 7.8. б). Тогда абсолютное и относительное удлинения волокна, отстоящего на расстоянии y от нейтрального волокна:

Покажем, что продольные волокна, не испытывающие при изгибе балки ни растяжения, ни сжатия, проходят через главную центральную ось x.

Поскольку длина балки при изгибе не изменяется, продольное усилие (N), возникающее в поперечном сечении, должно равняться нулю. Элементарное продольное усилие .

С учетом выражения :

Множитель можно вынести за знак интеграла (не зависит от переменной интегрирования).

Выражение представляет поперечного сечения балки относительно нейтральной оси x. Он равен нулю, когда нейтральная ось проходит через центр тяжести поперечного сечения. Следовательно, нейтральная ось (нулевая линия) при изгибе балки проходит через центр тяжести поперечного сечения.

Очевидно: изгибающий момент связан с нормальными напряжениями, возникающими в точках поперечного сечения стержня. Элементарный изгибающий момент, создаваемый элементарной силой :

,

где – осевой момент инерции поперечного сечения относительно нейтральной оси x, а отношение - кривизна оси балки.

Жесткость балки при изгибе (чем больше, тем меньше радиус кривизны ).

Полученная формула представляет собой закон Гука при изгибе для стержня : изгибающий момент, возникающий в поперечном сечении, пропорционален кривизне оси балки.

Выражая из формулы закона Гука для стержня при изгибе радиус кривизны () и подставляя его значение в формулу , получим формулу для нормальных напряжений () в произвольной точке поперечного сечения балки, отстоящей на расстоянии y от нейтральной оси x : .

В формулу для нормальных напряжений () в произвольной точке поперечного сечения балки следует подставлять абсолютные значения изгибающего момента () и расстояния от точки до нейтральной оси (координаты y). Будет ли напряжение в данной точке растягивающим или сжимающим легко установить по характеру деформации балки или по эпюре изгибающих моментов, ординаты которой откладываются со стороны сжатых волокон балки.

Из формулы видно: нормальные напряжения () изменяются по высоте поперечного сечения балки по линейному закону. На рис. 7.8, в показана эпюра . Наибольшие напряжения при изгибе балки возникают в точках, наиболее удаленных от нейтральной оси. Если в поперечном сечении балки провести линию, параллельную нейтральной оси x, то во всех ее точках возникают одинаковые нормальные напряжения.

Несложный анализ эпюры нормальных напряжений показывает, при изгибе балки материал, расположенный вблизи нейтральной оси, практически не работает. Поэтому в целях снижения веса балки рекомендуется выбирать такие формы поперечного сечения, у которых большая часть материала удалена от нейтральной оси, как, например, у двутаврового профиля.

29-10-2012: Андрей

Допущена опечатка в формуле изгибающего момента для балки с жестким защемлением на опорах(3-я снизу): длина должна быть в квадрате. Допущена опечатка в формуле максимального прогиба для балки с жестким защемлением на опорах (3-я снизу): должно быть без "5".

29-10-2012: Доктор Лом

Да, действительно, были допущены ошибки при редактировании после копирования. На данный момент ошибки исправлены, спасибо за внимательность.

01-11-2012: Вик

опечатка в формуле в пятом сверху примере (перепутаны степени рядом с иксом и эль)

01-11-2012: Доктор Лом

И это правда. Исправил. Спасибо за внимательность.

10-04-2013: flicker

В формуле Т.1 2.2 Mmax, похоже, не хватает квадрата после a.

11-04-2013: Доктор Лом

Верно. Эту формулу я скопировал из "Справочника по сопротивлению материалов" (под ред. С.П. Фесика, 1982г, стр. 80) и даже не обратил внимания, что при такой записи даже размерность не соблюдается. Сейчас пересчитал все лично, действительно расстояние "а" будет в квадрате. Таким образом получается, что наборщик пропустил маленькую двоечку, а я повелся на эту пшенку. Исправил. Спасибо за внимательность.

02-05-2013: Timko

Добрый день хотел бы спросить у вас в таблице 2, схема 2.4, интересует формула "момент в пролете" где не ясен индекс Х -? не могли бы вы ответить)

02-05-2013: Доктор Лом

Для консольных балок таблицы 2 уравнение статического равновесия составлялось слева направо, т.е. началом координат считалась точка на жесткой опоре. Однако если рассматривать зеркальную консольную балку, у которой жесткая опора будет справа, то для такой балки уравнение момента в пролете будет намного проще, например, для 2.4 Мх = qx2/6, точнее -qx2/6, так как сейчас считается, что если эпюра моментов расположена сверху, то момент при этом отрицательный.
С точки зрения сопромата знак момента - достаточно условное понятие, так как в поперечном сечении, для которого определяется изгибающий момент все равно действуют как сжимающие, так и растягивающие напряжения. Главное понимать, что если эпюра расположена сверху, то и растягивающие напряжения будут действовать в верхней части сечения и наоборот.
В таблице минус для моментов на жесткой опоре не проставлен, однако направление действия момента учитывалось при составлении формул.

25-05-2013: Дмитрий

Скажите пожалуйста, при каком соотношении длины балки к ее диаметру справедливы сии формулы?
Я хочу узнать или это подкодит только для длинных балок, которые в строительстве зданий, или можна применять также для расчета прогибов валов, длиной до 2 м. Пожалуйста ответте так l/D>...

25-05-2013: Доктор Лом

Дмитрий, я вам уже говорил, для вращающихся валов расчетные схемы будут другие. Тем не менее, если вал в неподвижном состоянии, то его можно рассматривать как балку, причем не важно, какое у нее сечение: круглое, квадратное, прямоугольное или какое-то еще. Данные расчетные схемы наиболее точно отражают состояние балки при l/D>10, при соотношении 5

25-05-2013: Дмитрий

Спасибо за ответ. Можете еще назвать литературу, на которую я могу сослаться, в своей работе?
Вы имеете в виду, что для вращающихся валов схемы будут другие из-за вращательного момента? Не знаю на сколько это важно, так как в книге по техмашу написано, что в случае токарной обработки, прогиб, вносимый вращательным моментом на валу, очень мал по сравнению с прогибом от радиальной составляющей силы резания. Что думаете?

25-05-2013: Доктор Лом

Не знаю, какую именно задачу вы решаете, и потому вести предметный разговор трудно. Попробую объяснить свою мысль по другому.
Расчет строительных конструкций, деталей машин и т.п., как правило состоит из двух этапов: 1. расчет по предельным состояниям первой группы - так называемый расчет на прочность, 2. расчет по предельным состояниям второй группы. Одним из видов расчета по предельным состояниям второй группы является расчет на прогиб.
В вашем случае на мой взгляд более важным будет расчет на прочность. Более того на сегодняшний день существуют 4 теории прочности и расчет по каждой из этих теорий - разный, но во всех теориях при расчете учитывается влияние как изгибающего так и крутящего момента.
Прогиб при действии крутящего момента происходит в другой плоскости, но все равно при расчетах учитывается. А уж малый этот прогиб или большой - расчет покажет.
Я не специализируюсь на расчетах деталей машин и механизмов и потому авторитетную литературу по этому вопросу указать не смогу. Впрочем, в любом справочнике инженера-конструктора узлов и деталей машин эта тема должна быть должным образом раскрыта.

25-05-2013: Дмитрий

Можно тогда с вами пообщаться через mail или Skype? Я вам расскажу что за работу я делаю и для чего были предыдущие вопросы.
mail: [email protected]
Skype: dmytrocx75

25-05-2013: Доктор Лом

Можете написать мне, адреса электронной почты на сайте найти не трудно. Но сразу предупрежу, никакими расчетами я не занимаюсь и партнерские контракты не подписываю.

08-06-2013: Виталий

Вопрос по таблице 2, вариант 1.1, формула прогиба. Просьба уточнить размерность.
Q - в килограммах.
l - в сантиметрах.
E - в кгс/см2.
I - см4.
Все верно? Что-то странные результаты получаются.

09-06-2013: Доктор Лом

Все верно, на выходе получаются сантиметры.

20-06-2013: Евгений Борисович

Здравствуйте. Помогите прикинуть. У нас возле ДК стоит сцена летняя деревянная, размер 12,5 х 5.5 метров, по углам стойки - металлические трубы диаметром 100 мм. Заставляют делать крышу типа фермы (жаль что нельзя рисунок прикрепить) покрытие поликарбонад, фермы изготавливать из профильной трубы (квадрат или прямоугольник) стоит вопрос о моей работе. Не будешь делать уволим. Я говорю что не пойдет, а администрация вместе с моим начальником говорят все пойдет. Как быть?

20-06-2013: Доктор Лом

22-08-2013: Дмитрий

Если балка (подушка под колонной) лежит на плотном грунте (точнее закопана ниже глубины промерзания), то какой схемой следует воспользоваться для расчета такой балки? Интуиция подсказывает, что вариант "на двух опорах" не подходит и что изгибающий момент должен быть существенно меньше.

22-08-2013: Доктор Лом

Расчет фундаментов - отдельная большая тема. К тому же не совсем понятно о какой балке идет речь. Если имеется в виду подушка под колонну столбчатого фундамента, то основой расчета такой подушки является прочность грунта. Задача подушки - перераспределить нагрузку от колонны на основание. Чем меньше прочность, тем больше площадь подушки. Или чем больше нагрузка, тем больше площадь подушки при той же прочности грунта.
Если речь идет о ростверке, то в зависимости от способа его устойства, он может рассчитываться как балка на двух опорах, или как балка на упругом основании.
Вообще при расчете столбчатых фундаментов следует руководствоваться требованиями СНиП 2.03.01-84.

23-08-2013: Дмитрий

Имеется в виду подушка под колонну столбчатого фундамента. Длина и ширина подушки уже определены исходя из нагрузки и прочности грунта. Но вот высота подушки и количество арматуры в ней под вопросом. Хотел посчитать по аналогии со статьей "Расчет железобетонной балки", но полагаю, что считать изгибающий момент в подушке, лежащей на грунте, как в балке на двух шарнирных опорах будет не совсем верно. Вопрос - по какой расчетной схеме считать изгибающий момент в подушке.

24-08-2013: Доктор Лом

Высота и сечение арматуры в вашем случае определяются как для консольных балок (по ширине и по длине подушки). Схема 2.1. Только в вашем случае опорная реакция - это нагрузка на колонну, точнее часть нагрузки на колонну, а равномерно распределенная нагрузка - это отпор грунта. Другими словами, указанную расчетную схему нужно перевернуть.
Кроме того, если нагрузка на фундамент передается от внецентренно нагруженной колонны или не только от колонны, то на подушку будет действовать дополнительный момент. При расчетах это следует учитывать.
Но еще раз повторю, не занимайтесь самолечением, руководствуйтесь требованиями указанного СНиПа.

10-10-2013: Ярослав

Добрый вечер.Помогите пожалуста,подобрать метал. балку для прольота 4.2 метра.Жилой дом в два етажа,цоколь перекрыт пустотелыми плитами длиной 4.8 метра,сверху несущая стена в 1.5 кирпича длиной в 3.35 м высотой 2.8м.дальше дверной пройом.Сверху на етой стене плиты перекрытия с одной стороны длиной 4.8м. с другой 2.8 метра на плитах опять несущая стена как етажом ниже и сверху деревяные балки 20 на 20см длиной 5м.6 штук и длиной 3 метра 6 штук пол из досок 40мм.25м2. Других нагрузок нету.Прозьба подскозать какую двутавру брать чтобы спать спокойно. Пока всьо ето стоит уже 5 лет.

10-10-2013: Доктор Лом

Посмотрите в разделе: "Расчет металлических конструкций" статью "Расчет металлической перемычки для несущих стен" в ней достаточно подробно описан процесс подбора сечения балки в зависимости от действующей нагрузки.

04-12-2013: Кирилл

Подскажите, пожалуйста, где можно ознакомиться с выводом формул максимального прогиба балки для п.п. 1.2-1.4 в Табл.1

04-12-2013: Доктор Лом

Вывод формул для различных вариантов приложения нагрузок на моем сайте не приводится. Общие принципы, на которых основан вывод подобных уравнений, вы можете посмотреть в статьях "Основы сопромата, расчетные формулы" и "Основы сопромата, определение прогиба балки".
Однако в указанных вами случаях (кроме 1.3) максимальный прогиб может быть не посредине балки, потому определение расстояния от начала балки до сечения, где будет максимальный прогиб - отдельная задача. Недавно подобный вопрос обсуждался в теме "Расчетные схемы для статически неопределимых балок", посмотрите там.

24-03-2014: Сергей

допущена ошибка в 2.4 табл 1. не соблюдается даже размерность

24-03-2014: Доктор Лом

Никаких ошибок, а тем более несоблюдения размерности в указанной вами расчетной схеме не вижу. Уточните, в чем именно ошибка.

09-10-2014: Саныч

Добрый день. А у М и Мmax разные единицы измерения?

09-10-2014: Саныч

Таблица 1. Расчет 2.1. Если l возводится в квадрат, значит Мmax будет в кг*м2 ?

09-10-2014: Доктор Лом

Нет, у М и Mmax единая единица измерения кгм или Нм. Так как распределенная нагрузка измеряется в кг/м (или Н/м), то значение момента будет кгм или Нм.

12-10-2014: Павел

Вечер добрый. Работаю я на производстве мягкой мебели и директор подкинул мне задачку. Прошу вашей помощи, т.к. не хочется решать ее "на глазок".
Суть проблемы такова: в основании дивана планируется металлическая рама из профилированной трубы 40х40 или 40х60, лежащая на двух опорах расстояние между которыми 2200 мм. ВОПРОС: хватит ли сечения профиля при нагрузках от собственного веса дивана + возьмем 3 человека по 100 кг???

12-10-2014: Доктор Лом

Это зависит от множества факторов. К тому же толщину трубы вы не указали. Например, при толщине 2 мм момент сопротивления трубы W = 3.47 см^3. Соответственно максимальный изгибающий момент, который может выдержать труба, M = WR = 3.47x2000 = 6940 кгсм или 69.4 кгм, тогда максимально допустимая нагрузка для 2 труб q = 2х8M/l^2 = 2х8х69.4/2.2^2 = 229.4 кг/м (при шарнирных опорах и без учета крутящего момента, который может возникнуть при передаче нагрузки не по центру тяжести сечения). И это при статической нагрузке, а нагрузка скорее всего будет динамической, а то и ударной (в зависимости от конструкции дивана и активности детей, мои по диванам прыгают так, что дух захватывает), так что считайте сами. Статья "Расчетные значения для прямоугольных профильных труб" вам в помощь.

20-10-2014: ученик

Док, помогите пожалуйста.
Жестко закрепленная балка, пролет 4 м, опирание по 0,2 м. Нагрузки: распределенная 100 кг/м по балке, плюс распределенная 100 кг/м на участке 0-2 м, плюс сосредоточенная 300 кг посредине (на 2 м). Определил опорные реакции: А – 0,5 т; В – 0,4 т. Дальше я завис: для определения изгибающего момента под сосредоточенной нагрузкой необходимо посчитать сумму моментов всех сил справа и слева от нее. Плюс появляется момент на опорах.
Как считаются нагрузки в этом случае? Надо привести все распределенные нагрузки к сосредоточенным и суммировать (вычесть из опорной реакции * расстояние) согласно формул расчетной схемы? В Вашей статье про фермы раскладка всех сил понятна, а здесь я не могу въехать в методику определения действующих сил.

21-10-2014: Доктор Лом

Для начала, жестко закрепленная балка и опорные участки - понятия несовместимые, посмотрите статью "Виды опор, какую расчетную схему выбрать". Судя по вашему описанию, у вас либо однопролетная шарнирно опертая балка с консолями (см. таблицу 3), либо трехпролетная жестко защемленная балка с 2 дополнительными опорами и не равными пролетами (в этом случае уравнения трех моментов вам в помощь). Но в любом случае опорные реакции при симметричной нагрузке будут одинаковыми.

21-10-2014: ученик

Я понял. По периметру первого этажа армопояс 200х300h, внешний периметр 4400х4400. В него заанкерено 3 швеллера, с шагом 1 м. Пролет без стоек, на одном из них самый тяжелый вариант, нагрузка несимметричная. Т.Е. считатьбалку как шарнирную?

21-10-2014: Доктор Лом

22-10-2014: ученик

вообще да. Я так понимаю, что прогиб швеллера провернет и сам армопояс в месте крепления, поэтому получится шарнирная балка?
Максимальный момент посредине, получается M=Q+2q+от несимметричной нагрузки по максимуму 1,125q. Т.е. я сложил все 3 нагрузки, это правильно?

22-10-2014: Доктор Лом

Не совсем так, сначала вы определяете момент от действия сосредоточенной нагрузки, затем момент от равномерно распределенной нагрузки по всей длине балки, затем момент, возникающий при действии равномерно распределенной нагрузки действующей на некотором участке балки. И только затем складываете значения моментов. Для каждой из нагрузок будет своя расчетная схема.

07-02-2015: Сергей

А не ошибка ли в формуле Mmax для случая 2.3 в таблице 3? Балка с консолью, наверно плюс вместо минуса должен быть в скобках

07-02-2015: Доктор Лом

Нет, не ошибка. Нагрузка на консоль уменьшает момент в пролете, а не увеличивает. Впрочем, это видно и по эпюре моментов.

17-02-2015: Антон

Здравствуйте, во-первых спасибо за формулы, сохранил в закладках. Подскажите, пожалуйста, есть брус над пролетом, на брус ложатся четыре лаги, расстояния: 180мм, 600мм, 600мм, 600мм, 325мм. С эпюрой, изгибающим моментом разобрался, не могу понять как изменится формула прогиба (таблица 1, схема 1,4), если максимальный момент на третьей лаге.

17-02-2015: Доктор Лом

Я уже отвечал несколько раз на подобные вопросы в комментариях к статье "Расчетные схемы для статически неопределимых балок". Но вам повезло, для наглядности я выполнил расчет по данным из вашего вопроса. Посмотрите статью "Общий случай расчета балки на шарнирных опорах при действии нескольких сосредоточенных нагрузок", возможно со временем я ее дополню.

22-02-2015: Роман

Док, я вообще не могу осилить эти все непонятные для меня формулы. Поэтому прошу у вас помощи. Хочу сделать в доме консольную лестницу (ступеньки из железобетона замуровать при постройке стены). Стена - ширина 20см, кирпич. Длина выступающей ступеньки 1200*300мм Хочу, чтоб ступеньки были правильной формы(не клином). Понимаю интуитивно, что арматура будет "чем-потолще" чтоб ступеньки были чем-потоньше? Но справится ли с железобетон толщиной до 3см нагрузкой в 150кг на краю? Помогите пожалуйста, так не хочется лохануться. Буду очень благодарен, если поможете расчитать...

22-02-2015: Доктор Лом

То, что вы не можете осилить достаточно простые формулы - это ваши проблемы. В разделе "Основы сопромата" все это разжевано достаточно подробно. Здесь же скажу, что ваш проект абсолютно не реален. Во-первых, стена или шириной 25 см или шлакоблочная (впрочем, могу ошибаться). Во-вторых ни кирпичная ни шлакоблочная стена не обеспечат достаточного защемления ступенек при указанной ширине стены. Кроме того, такую стену следует просчитывать на изгибающий момент, возникающий от консольных балок. В-третьих, 3 см - недопустимая толщина для железобетонной конструкции с учетом того что минимальный защитный слой должен составлять в балках не менее 15 мм. И так далее.
Если не готовы все это осилить, то лучше обратитесь к профессиональному проектировщику - дешевле выйдет.

26-02-2015: Роман

02-04-2015: виталий

что означет х во второй таблице, 2.4

02-04-2015: Виталий

Добрый день! Каку схему (алгоритм) нужно подобрать для расчета балконной плиты, консоль, защемленная с одной стороны, как правильно расчитать моменты на опоре и в пролете?Можно ли ее расчитать как консольную балку, по схемам с таблицы 2, а именно пунктам 1,1 и 2,1. Спасибо!

02-04-2015: Доктор Лом

x во всех таблицах означает расстояние от начала отсчета до исследуемой точки, в которой мы собираемся определить изгибающий момент или другие параметры.

Да вашу балконную плиту, если она сплошная и на нее действуют нагрузки, как в указанных схемах, можно по этим схемам рассчитывать. Для консольных балок максимальный момент всегда на опоре, потому большой необходимости определять момент в пролете нет.

03-04-2015: Виталий

Спасибо большое! Еще хотел уточнить. Я так понял если расчитывать по 2 табл. схема 1.1,(нагрузка приложена на конец консоли) тогда у меня х=L, и соответственно в пролете М=0. Как быть если у меня эта нагрузка еще и по торцам плиты? И по схеме 2.1 я считаю момент на опоре, плюсую его к моменту по схеме 1.1 и по правильному для того что бы заармировать мне нужно найти момент в пролете. Если у меня вылет плиты 1,45м(в свету), как мне расчитать "х" что бы найти момент в пролете?

03-04-2015: Доктор Лом

Момент в пролете будет изменяться от Ql на опоре до 0 в точке приложения нагрузки, что видно по эпюре моментов. Если у вас нагрузка приложена в двух точках на концах плиты, то в этом случае более целесообразно предусмотреть балки, воспринимающие нагрузки по краям. При этом плиту уже можно рассчитывать как балку на двух опорах - балках или плиту с опиранием по 3 сторонам.

03-04-2015: Виталий

Спасибо! По моментам я уже понял. Еще один вопрос. Если балконная плита опираеться с двух сторон, буквой "Г". Катой тогда расчетной схемой нужно пользоваться?

04-04-2015: Доктор Лом

В этом случае у вас будет пластина, защемленная по 2 сторонам и на моем сайте примеров расчета подобной плиты нет.

27-04-2015: Сергей

Уважаемый доктор Лом!
Подскажите, пожалуйста, по какой схеме нужно рассчитать прогиб балки вот такого механизма https://yadi.sk/i/MBmS5g9kgGBbF. Или может быть, не вдаваясь в расчеты, подскажите подойдет ли для стрелы 10 или 12 двутавр, максимальный груз 150-200 кг, высота подъема 4-5 метров. Стойка – труба d=150, поворотный механизм или полуось, или передняя ступица Газели. Укос можно сделать жестким из того же двутавра, а не тросом. Спасибо.

27-04-2015: Доктор Лом

Оценивать надежность подобной конструкции без расчетов не стану, а рассчитать вы ее можете по следующим критериям:
1. Стрелу можно рассматривать как двухпролетную неразрезную балку с консолью. Опорами для этой балки будут не только стойка (это средняя опора), но и узлы крепления троса (крайние опоры). Это статически неопределимая балка, но для упрощения расчетов (что приведет к небольшому повышению запаса прочности) стрелу можно рассматривать как просто однопролетную балку с консолью. Первая опора - узел крепления троса, вторая - стойка. Тогда ваши расчетные схемы 1.1 (для груза - временной нагрузки) и 2.3 (собственный вес стрелы - постоянная нагрузка) в таблице 3. А если груз будет посредине пролета, то 1.1 в таблице 1.
2. При этом нельзя забывать, что временная нагрузка у вас будет не статическая, а как минимум динамическая (см. статью "Расчет на ударные нагрузки").
3. Для определения усилий в тросе нужно разделить опорную реакцию в месте крепления троса на синус угла между тросом и балкой.
4. Вашу стойку можно рассматривать как металлическую колонну с одной опорой - жестким защемлением внизу (см. статью "Расчет металлических колонн"). К этой колонне нагрузка будет приложена с очень большим эксцентриситетом, если не будет контргруза.
5. Расчет узлов сопряжений стрелы и стойки и прочие тонкости расчета узлов машин и механизмов на данном сайте пока не рассматриваются.

05-06-2015: ученик

Док, а где Вам можно картинку показать?

05-06-2015: ученик

А у Вас вроде еще форум был?

05-06-2015: Доктор Лом

Был, но времени на разгребание спама в поисках нормальных вопросов у меня совершенно нет. Поэтому пока так.

06-06-2015: ученик

Док, моя ссылка https://yadi.sk/i/GardDCAEh7iuG
какая расчетная схема в итоге получается для балки перекрытия и консольной балки, а также повлияет ли на уменьшение прогиба балки перекрытия (розовая) консольная балка (коричневый цвет)?
стена - пеноблок D500, высота 250 ширина 150, балка армопояса (голубая): 150х300, армирование 2х?12, верх и низ, дополнительно низ в пролете окна и верха в местах опирания балки на проем окна – сетки?5, ячейка 50. В углах бетонные колонны 200х200, пролет балки армопояса 4000 без стен.
перекрытие: швеллер 8П (розовый), для расчета брал 8У, вварен и заанкерен с арматурой балки армопояса, забетонирован, от низа балки до швеллера 190 мм, от верха 30, пролет 4050.
слева от консоли – проем для лестницы, опирание швеллера на трубу?50 (зеленая), пролет до балки 800.
справа от консоли (желтый) – санузел (душ, туалет) 2000х1000, пол – заливка армированной ребристой поперечной плиты, габариты 2000х1000 высота 40 – 100 на несъемной опалубке (профлист, волна 60) + плитка на клее, стены –гипсокартон на профилях. Остальной пол- доска 25, фанера, линолеум.
В точках стрелок опирание стоек бака с водой, 200л.
Стены 2 этажа: обшивка доской 25 с двух сторон, с утеплителем, высота 2000, опирание на армопояс.
крыша: стропила –треугольная арка с затяжкой, вдоль балки перекрытия, с шагом 1000, опирание на стены.
консоль: швеллер 8П, пролет 995, сварена с арматурой с усилением, забетонирована в балку, приварена к швеллеру перекрытия. пролет справа и слева по балке перекрытия – 2005.
Пока варю арматурный каркас, есть возможность сдвинуть консоль вправо-влево, но влево вроде не за чем?

07-06-2015: Доктор Лом

Выбор расчетной схемы будет зависеть от того, чего вы хотите: простоты и надежности или приближения к реальной работе конструкции путем последовательных приближений.
В первом случае балку перекрытия можно рассматривать как шарнирно опертую двухпролетную балку с промежуточной опорой - трубой, а швеллер, который вы называете консольной балкой, вообще не учитывать. Вот собственно и весь расчет.
Далее, чтобы просто перейти к балке с жестким защемлением на крайних опорах, следует сначала рассчитать армопояс на действие крутящего момента и определить угол поворота поперечного сечения армопояса с учетом нагрузки от стен 2 этажа и деформаций материала стен под действием крутящего момента. И таким образом рассчитывать двухпролетную балку с учетом этих деформаций.
Кроме того в этом случае следует учесть возможную просадку опоры - трубы, так как она опирается не на фундамент, а на ж/б плиту (как я понял из рисунка) и эта плита будет деформироваться. Да и сама труба будет испытывать деформацию сжатия.
Во втором случае, если вы хотите учесть возможную работу коричневого швеллера, вам следует рассматривать его как дополнительную опору для балки перекрытия и таким образом сначала рассчитывать 3пролетную балку (опорная реакция на дополнительной опоре и будет нагрузкой на консольную балку), затем определять величину прогиба на конце консольной балки, пересчитывать основную балку с учетом просадки опоры и кроме всего прочего также учитывать угол поворота и прогиб армопояса в месте крепления коричневого швеллера. И это еще далеко не все.

07-06-2015: ученик

Док, спасибо.Мне нужны простота и надежность. Этот участок-самый нагруженный. Я подумывал даже о том, чтобы завязать стойку бака на затяжку стропил, для снижения нагрузки на перекрытие, учитывая, что на зиму вода будет сливаться. В такие дебри расчетов мне не залезть. В общем случае консоль будет снижать прогиб?

07-06-2015: ученик

Док, еще вопрос. консоль получается в середине пролета окна, имеет ли смысл смещение к краю? С уважением

07-06-2015: Доктор Лом

В общем случае консоль будет снижать прогиб, но как я уже говорил на сколько сильно в вашем случае - большой вопрос, да и смещение к центру оконного проема будет уменьшать роль консоли. И еще, если это у вас самый нагруженный участок, то может быть просто усилить балку, например еще одним таким же швеллером? Я ваших нагрузок не знаю, но нагрузка от 100 кг воды и половины веса бака не кажется мне такой уж внушительной, а вот швеллера 8П с точки зрения прогиба при 4 м пролете проходят ли с учетом динамической нагрузки при ходьбе?

08-06-2015: ученик

Док, спасибо за добрый совет. После выходных пересчитаю балку как двухпролетную на шарнирах. Если будет большая динамика при ходьбе, я конструктивно закладываю возможность уменьшения шага балок перекрытия. Домик дачный, поэтому динамика терпима. Большее влияние оказывает поперечное смещение швеллеров, но это лечится установкой поперечных связей или креплением настила. Единственно, не посыпется ли бетонная заливка? предполагаю её опору на верхнюю и нижнюю полки швеллера плюс сварная арматура в ребрах и сетка поверху.
Для расчета консоли и установки лучше взять половину пролета от стойки до балки (4050-800-50=3200/2=1600-40/2=1580) или от края окна (1275-40=1235. Да и нагрузку на балку как оконное перекрытие придется пересчитать, но у Вас есть такие примеры. Единсвенное, нагрузку брать как приложенную на балку сверху? Будет ли перераспределение нагрузки, приложенной почти по оси баки?

08-06-2015: Доктор Лом

Я вам уже говорил, на консоль рассчитывать не стоит.
Вы предполагаете опирание плит перекрытия на нижнюю полку швеллера, но как быть с другой стороной? В вашем случае двутавр был бы более приемлемым вариантом (или по 2 швеллера как балка перекрытия).

09-06-2015: ученик

Док, я понял.
С другой стороной проблем нет-уголок на закладных в теле балки. С расчетом двухпролетной балки с разными пролетами и разными нагрузками пока не справился, попробую перештудировать Вашу статью по расчету многопролетной балки методом моментов.

29-06-2015: Сергей

Добрый день. Хотелось бы у Вас по интересоваться: отливали фундамент: сваи из бетона глубиной 1.8м, а потом отливали бетоном ленту глубиной 1м. Вопрос вот в чем: нагрузка передаётся только на сваи или она равномерно распределяется и на сваи и на ленту?

29-06-2015: Доктор Лом

Как правило сваи делаются при слабых грунтах, чтобы нагрузка на основание передавалась через сваи, поэтому ростверки по сваям рассчитываются, как балки на опорах-сваях. Тем не менее, если вы заливали ростверк по уплотненному грунту, то часть нагрузки будет передаваться основанию через ростверк. В этом случае ростверк рассматривается как балка, лежащая на упругом основании, и представляет собой обычный ленточный фундамент. Примерно так.

29-06-2015: Сергей

Спасибо. Просто на участке получается смесь глины, песка. Причём слой глины очень твёрдый: слой можно снять только при помощи лома и т.д.,т.п.

29-06-2015: Доктор Лом

Я всех ваших условий не знаю (расстояние между сваями, этажность и пр.). По вашему описанию получается, что вы сделали обычный ленточный фундамент и сваи для надежности. Поэтому вам достаточно определить, достаточно ли будет ширины фундамента для передачи нагрузки от дома основанию.

05-07-2015: Юрий

Здравствуйте! Нужна Ваша помощь в расчете. Металлическая воротина 1,5 х1,5 м весом 70 кг крепится на металлической трубе, забетонированной на глубину 1,2 м и обложенной кирпичом (столб 38 на 38 см).Какого сечения и толщины должна быть труба, чтобы не было изгиба?
Я рассчитал по табл. 2, п. 1.1. (#comments) как прогиб консольной балки с нагрузкой 70 кг, плечом 1,8 м, труба квадратная 120х120х4 мм, моментом инерции 417 см4. У меня получился прогиб – 1,6 мм? Верно или нет?

05-07-2015: Доктор Лом

Вы правильно предположили, что вашу стойку следует рассматривать, как консольную балку. И даже с расчетной схемой вы почти угадали. Дело в том, что на вашу трубу будут действовать 2 силы (на верхнем и нижнем навесе) и значение этих сил будет зависеть от расстояния между навесами. Больше подробностей в статье "Определение вырывающего усилия (почему дюбель не держится в стене)". Таким образом в вашем случае следует выполнить 2 расчета прогиба по расчетной схеме 1.2, а затем полученные результаты сложить с учетом знаков (проще говоря из одного значения вычесть другое).
P.S. А точность расчетов я не проверяю, тут уж только на себя надейтесь.

05-07-2015: Юрий

Спасибо за ответ. Т.е. мною расчет сделан по максимуму с большим запасом, и вновь рассчитанная величина прогиба всяко будет меньше?

06-07-2015: Доктор Лом

01-08-2015: Павел

Подскажите, пожалуйста, на схеме 2.2 таблицы 3 как определить прогиб в точке C, если длины консольных участков различны?

01-08-2015: Доктор Лом

В этом случае вам нужно пройти полный цикл. Есть ли в этом необходимость или нет, я не знаю. Для примера посмотрите статью, посвященную расчету балки на действие нескольких равномерно сосредоточенных нагрузок (ссылка на статью перед таблицами).

04-08-2015: Юрий

К моему вопросу от 05 июля 2015г. Есть ли какое правило минимальной величины защемления в бетоне данной металлической консольной балки 120х120х4 мм с воротиной 70 кг.- (например, не менее 1/3 длины)

04-08-2015: Доктор Лом

Вообще-то расчет защемления - отдельная большая тема. Дело в том, что сопротивление бетона сжатию - это одно, а деформации грунта, на который давит бетон фундамента - это совсем другое. Если коротко, то чем больше длина профиля и чем больше площадь, контактирующего с грунтом, тем лучше.

05-08-2015: Юрий

Спасибо! В моем случае металлическая стойка ворот будет заливаться в бетонной свае диаметром 300 мм длиной 1 м., а сваи по верху будут соединены бетонным ростверком с арматурным каркасом? бетон везде М 300. Т.е. деформации грунта не будет. Хотелось бы знать приблизительное, пусть с большим запасом прочности, соотношение.

05-08-2015: Доктор Лом

Тогда действительно 1/3 длины для создания жесткого защемления должно хватить. Посмотрите для примера статью "Виды опор, какую расчетную схему выбрать".

05-08-2015: Юрий

20-09-2015: Карла

21-09-2015: Доктор Лом

Можно сначала рассчитать балку отдельно на каждую нагрузку по представленным здесь расчетным схемах, а затем полученные результаты сложить с учетом знаков.
Можно сразу составлять уравнения статического равновесия системы и решать эти уравнения.

08-10-2015: Наталья

Здравствуйте, доктор)))
У меня балка по схеме 2.3. В Вашей таблице дана формула для расчета прогиба в середине пролета l/2, а по какой формуле можно просчитать прогиб на конце консоли? Прогиб в середине пролета будет максимальным? Сравнивать с предельно допустимым прогибом по СНиПу "Нагрузки и воздействия" полученный по этой формуле результат надо используя величину l - расстояние между точками А и В? Заранее спасибо, я что-то запуталась совсем. И еще, не могу найти первоисточник, из которого взяты эти таблицы - можно ли название указать?

08-10-2015: Доктор Лом

Как я понял, вы ведете речь о балке из таблицы 3. Для такой балки максимальный прогиб будет не посредине пролета, а ближе к опоре А. В целом величина прогиба и расстояние х (до точки максимального прогиба) зависят от длины консоли, поэтому в вашем случае следует воспользоваться уравнениями начальных параметров, приведенных в начале статьи. Максимальный прогиб в пролете будет в точке, где угол поворота наклонного сечения равен нулю. Если консоль достаточно длинная, то прогиб на конце консоли может быть даже больше, чем в пролете.
Когда вы сравниваете полученный результат прогиба в пролете со СНиПовкским, то длина пролета - это расстояние l между А и В. Для консоли вместо l принимается расстояние 2а (двойной вылет консоли).
Данные таблицы я составил сам, воспользовавшись различными справочниками по теории сопротивления материалов, проверяя при этом данные на предмет возможных опечаток, а также общими методами расчета балок, когда необходимые на мой взгляд схемы в справочниках отсутствовали, поэтому первоисточников много.

22-10-2015: Александр

22-10-2015: Иван

Огромное спасибо Вам за ваши разъяснения. Предстоит куча работ по своему дому. Беседки, навесы, опоры. Попробую вспомнить то что в свое время старательной проспал а потом случайно сдал во Сов.ВТУЗ-е.

31-05-2016: Виталий

Спасибо огромное, вы большой молодец!

14-06-2016: Денис

Во время наткнулся на ваш сайт. Чуть не промахнулся с расчетами всегда думал что консольная балка с нагрузкой на конце балки будет прогибаться сильнее чем с равномерно распределенной нагрузкой а формулы 1.1 и 2.1 в таблице 2 показывают обратное. Спасибо за вашу работу

14-06-2016: Доктор Лом

Вообще-то сравнивать сосредоточенную нагрузку с равномерно распределенной имеет смысл лишь тогда когда одна нагрузка приведена к другой. Например при Q = ql формула определения прогиба по расчетной схеме 1.1 примет вид f = ql^4/3EI, т.е. прогиб будет в 8/3 = 2.67 раза больше, чем при просто равномерно распределенной нагрузке. Так что формулы для расчетных схем 1.1 и 2.1 ничего обратного не показывают и изначально вы были правы.

16-06-2016: инженер гарин

добрый день! вот все-таки никак не могу взять в толк-буду очень признателен, если поможете раз и навсегда разобраться-при расчете (любом) обычной балки двутавровой с обычной распределенной нагрузкой по длине какой момент инерции использовать - Iy или Iz и почему? ни в одном учебнике сопромата не могу найти-всюду пишут, что сечение должно стремиться к квадрату и брать надо наименьший момент инерции. Никак не могу ухватить за хвост физический смысл-можно это как-то на пальцах истрактовать?

16-06-2016: Доктор Лом

Я вам советую для начала посмотреть статьи "Основы сопромата" и "К расчету гибких стержней на действие сжимающей внецентренной нагрузки", там все достаточно подробно и наглядно разъяснено. Здесь же добавлю, что мне кажется, вы путаете расчеты на поперечный и продольный изгиб. Т.е. когда нагрузка перпендикулярна нейтральной оси стержня, то определяется прогиб (поперечный изгиб), когда нагрузка параллельна нейтральной оси балки, то определяется устойчивость, другими словами, влияние продольного изгиба на несущую способность стержня. Конечно же при расчетах на поперечную нагрузку (вертикальную нагрузку для горизонтальной балки) момент инерции следует принимать в зависимости от того, какое положение имеет балка, но в любом случае это будет Iz. А при расчетах на устойчивость, при условии, что нагрузка приложена по центру тяжести сечения, рассматривается наименьший момент инерции, так как вероятность потери устойчивости именно в этой плоскости значительно больше.

23-06-2016: Денис

Здравствуйте, такой вопрос почему в таблице 1 для формул 1.3 и 1.4 формулы прогиба по сути одинаковые и размер b. в формуле 1.4 ни как не отражен?

23-06-2016: Доктор Лом

При несимметричной нагрузке формула прогиба для расчетной схемы 1.4 будет достаточно громоздкой, но при этом следует помнить, что прогиб в любом случае будет меньше, чем при приложении симметричной нагрузки (конечно же при условии b

03-11-2016: vladimir

в таблице 1 для формул 1.3 и 1.4 формулы прогиба вместо Qa^3/24EI должно быть Ql^3/24EI. Долго не мог понять почему прогиб с кристаллом не сходится

03-11-2016: Доктор Лом

Все верно, еще одна опечатка из-за невнимательного редактирования (надеюсь, что последняя, но не факт). Исправил, спасибо за внимательность.

16-12-2016: иван

Здравствуйте, Доктор Лом. Вопрос следующий: просматривал фото со стройки и заметил одну вещь: Жб заводская перемычка 30*30 см примерно, оперта на трехслойную жб панель сантиметров на 7. (жб панель немного подпилили для опирания на нее перемычки). Проем под балконную раму 1,3 м, по верху перемычки армопояс и плиты перекрытия чердака. Критичны ли эти 7 см, опирание другого конца перемычки больше 30 см, все стоит нормально несколько лет уже

16-12-2016: Доктор Лом

Если есть еще и армопояс, то нагрузка на перемычку может значительно снизиться. Думаю, все будет нормально и там даже при 7 см достаточно большой запас по прочности на опорной площадке. Но вообще нужно конечно же считать.

25-12-2016: Иван

Доктор, а если предположить, ну чисто теоретически
что арматура в армопоясе над балкой полностью разрушена, армопояс треснет и ляжет на балку вместе с плитами перекрытия? Хватит ли этих 7 см опорной площадки?

25-12-2016: Доктор Лом

Думаю, даже в этом случае ничего не случится. Но повторю, для более точного ответа нужен расчет.

09-01-2017: Андрей

В таблице 1 в формуле 2.3 для вычисления прогиба вместо "q" указана "Q". Формула 2.1 для вычисления прогиба, являясь частным случаем формулы 2.3, при вобставлении воответствующих значений (a=c=l, b=0) приобретает другой вид.

09-01-2017: Доктор Лом

Все верно была опечатка, но теперь это не имеет значения. Формулу прогиба для такой расчетной схемы я брал из справочника Фесика С.П., как наиболее короткую для частного случая х = а. Но как вы правильно подметили - эта формула не проходит проверки на граничные условия, поэтому я ее вообще убрал. Оставил только формулу для определения начального угла поворота, чтобы упростить определение прогиба по методу начальных параметров.

02-03-2017: Доктор Лом

В учебных пособиях, насколько я знаю, такой частный случай не рассматривается. Тут поможет только программное обеспечение, например, Лира.

24-03-2017: Еагений

Добрый день в формуле прогиба 1.4 в первой таблице - значение в скобках всегда получаетсья отрицательным

24-03-2017: Доктор Лом

Все правильно, во всех приведенных формулах отрицательный знак в формуле прогиба означает, что балка прогибается вниз по оси у.

29-03-2017: Оксана

Добрый день, доктор лом. Не могли бы Вы написать статейку про крутящий момент в металлической балке - когда он вообще возникает, при каких расчётных схемах, ну и, конечно же, расчёт хотелось бы от Вас увидеть с примерами. У меня - мет балка шарнирно опёртая, один край консольный и на него приходит сосредоточенная нагрузка, а по всей балке распределённая от ж.б. тонкой плиты 100 мм и стены ограждения. Эта балка крайняя. С ж.б. плитой соединяется приваренными к балке с шагом 600 мм стержнями 6 мм. Не могу понять будет ли там крутящий момент, если да - то как его найти и рассчитать сечение балки в связи с ним?

Доктор Лом

Виктор, эмоциональные поглаживания - это конечно хорошо, но их на хлеб не намажешь и семью ими не прокормишь. Для ответа на ваш вопрос требуются расчеты, расчеты - это время, а время - это не эмоциональные поглаживания.