Выбор оптимальной стратегии эксплуатации оборудования. Современные стратегии тоир


Важной экономической проблемой является своевременное обновление устаревшего оборудования: автомобилей, станков и т.п. Старение оборудования включает физический и моральный износ, в результате чего растут затраты на ремонт и обслуживание, снижается производительность труда и ликвидная стоимость. Поэтому на каком-то этапе эксплуатация устаревшего оборудования становится менее выгодной, нежели приобретение и использование нового. Задача заключается в определении оптимальных сроков замены старого оборудования.

Критерием оптимальности является доход от эксплуатации оборудования (задача максимизации), либо суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

Предположим, что планируется эксплуатация оборудования в течение некоторого периода времени продолжительностью n лет. Оборудование имеет тенденцию с течением времени стареть и приносить все меньший доход (t -возраст оборудования). При этом есть возможность в начале любого года продать устаревшее оборудование за цену
, которая также зависит от возраста t , и купить новое оборудование за цену Р. Под возрастом оборудования понимается период эксплуатации оборудования после последней замены, определенный в годах. Требуется найти оптимальный план замены оборудования с тем, чтобы суммарный доход за все n лет был бы максимальным, учитывая, что к началу эксплуатации возраст оборудования составлял t 0 лет.

Исходными данными в задаче являются доход
от эксплуатации в течение одного года оборудования возрастаt лет, остаточная стоимость
, цена нового оборудованияР и начальный возраст оборудования t 0 .

При составлении динамической модели выбора оптимальной стратегии обновления оборудования процесс замены рассматривается как n -шаговый, т.е. период эксплуатации разбивается на n -шагов.

Выберем в качестве шага оптимизацию плана замены оборудования с k -го по n -й годы.

Очевидно, что доход от эксплуатации оборудования за эти годы будет зависеть от возраста оборудования к началу рассматриваемого шага, т.е. k -го года.

Поскольку процесс оптимизации ведется с последнего шага (k = n ), то на k -м шаге неизвестно, в какие годы с первого по (k - 1)должна осуществляться замена и соответственно неизвестен возраст оборудования к началу k -го года. Возраст оборудования, который определяет состояние системы, обозначим t . На величину t накладывается следующее ограничение:
.

Это выражение свидетельствует о том, что t не может превышать возраста оборудования за (k -1)-й год его эксплуатации с учетом возраста к началу первого года, который составляет лет; и не может быть меньше единицы (этот возраст оборудование будет иметь к началу k -го года, если замена его произошла вначале предыдущего (k -1)-го года).

Таким образом, переменная t в данной задаче является переменной состояния системы на k -м шаге.

Переменной управления на k -м шаге является логическая переменная, которая может принимать одно из двух значений: сохранить (С) или заменить (З) оборудование в начале k -го года:

Функцию Беллмана
определяют как максимально возможный доход от эксплуатации оборудования за годы с k -го по n -й, если к началу k -го возраст оборудования составлял t лет. Применяя то или иное управление, система переходит в новое состояние.

Так, например, если в начале k -го года оборудование сохраняется, то к началу (k +1)-го года его возраст увеличится на единицу (состояние системы станет t + 1), в случае замены старого оборудования новое достигнет к началу (k +1)-го года возраста
год.

На этой основе можно записать уравнение, которое позволяет рекуррентно вычислить функции Беллмана, опираясь на результаты предыдущего шага. Для каждого варианта управления доход определяется как сумма двух слагаемых – непосредственного результата управления и его последствий.

Если в начале каждого года сохраняется оборудование, возраст которого t лет, то доход за этот год составит
. К началу (k +1)-го года возраст оборудования достигнет (t + 1)и максимально возможный доход за оставшиеся годы (с (k + 1)-го по n -й) составит
. Если в начале k -го года принято решение о замене оборудования, то продается старое оборудование возраста t лет по цене
, приобретается новое заР единиц, а эксплуатация его в течение k -го года нового оборудования принесет прибыль
. К началу следующего года возраст оборудования составит 1 год и за все оставшиеся годы с (k + 1)-го по n -й максимально возможный доход будет
. Из двух возможных вариантов управления выбирается тот, который приносит максимальный доход. Таким образом, уравнение Беллмана на каждом шаге управления имеет вид

Функция
вычисляется на каждом шаге управления для всех
.

Управление, при котором достигается максимум дохода, является оптимальным .

Для первого шага условной оптимизации при k = n функция представляет собой доход за последний n -й год:

Значения функции
, определяемые
,
вплоть до
.
, представляют собой возможные доходы за все годы. Максимум дохода достигается при некотором управлении, применяя которое на первом году, мы определяем возраст оборудования к началу второго года. Для данного возраста оборудования выбирается управление, при котором достигается максимум дохода за годы со второго поn -й и т. д. В результате на этапе безусловной оптимизации определяются годы, в начале которых следует произвести замену оборудования.

Пример. Найти оптимальную стратегию эксплуатации оборудования на период продолжительностью 6 лет, если годовой доход
и остаточная стоимость
в зависимости от возраста заданы в таблице 1, стоимость нового оборудования равнаР =13, а возраст оборудования к началу эксплуатационного периода составлял 1 год.

Таблица 1.

Борис Кац, руководитель проекта ООО «АйТиЭм» кандидат технических наук.

Как же добиться эффективного управления процессами ТОиР?

Перефразируя Питера Друкера:

«Эффективно управлять возможно лишь тем, что можно достоверно и оперативно измерить»

Сначала стратегия, а потом ремонт

Прежде чем развивать тему управления процессами ТОиР, надо сказать о возможных стратегиях проведения ремонтов.

Первая стратегия - это курс на применение «классической» системы ППР, характерными особенностями которой являются: «жесткий» ремонтный цикл (заранее заданная - как правило, изготовителем последовательность ремонтов определенного вида и времен между ними); «жесткое» задание объема работ при выполнении ремонта определенного вида.

В варианте «классической» системы ППР, называемом «планирование по наработке», при сохранении фиксированной последовательности ремонтов и их заданных объемах время между ремонтами определяется не по календарю, а в зависимости от некоторого показателя, характеризующего наработку оборудования (часы работы, литры горючего, километры пробега, число пусков и т. п.).

Другая достаточно распространенная стратегия - «ремонт по отказу». При этом оборудование ремонтируется (или заменяется) только тогда, когда его дальнейшее использование становится невозможным вследствие отказа. Ошибочно считать, что такая «примитивная» стратегия заведомо плоха. Для некоторых видов оборудования она и технически, и экономически оправдана. Технически - в том случае, если отказы элементов имеют «абсолютно случайный» характер, то есть практически не зависят от длительности их работы (такой тип отказа характерен, например, для электронных компонент КИП и А).

Экономическая оправданность появляется в тех случаях, когда последствия поломки незначительны, а меры профилактики стоят дороже, чем замена отказавшего узла или устройства.

Более «изощренный» вариант этой стратегии - «ремонт по мере возникновения дефектов». В этом случае ремонт или замена может проводиться не только в случае отказа, но и при появлении явных свидетельств приближения отказа (повышенная вибрация, течь масла, повышение температуры выше допустимой, явные признаки недопустимого износа).

Наконец, третья стратегия - «ремонт по состоянию». При этой стратегии объем ремонтов и время между ними не фиксированы заранее и определяются по результатам регулярных ревизий (обследований) оборудования, а также по результатам мониторинга состояния оборудования с помощью автоматизированных средств контроля (вибродиагностика и т. п.). Эта стратегия считается наиболее прогрессивной в применении к сложному и дорогостоящему оборудованию, так как позволяет существенно экономить ресурсы.

Не только экономия бумаги

При любой выбранной стратегии ремонтов планирование и учет выполненных работ являются весьма трудоемкими. Поэтому при использовании традиционных «бумажных» методов учета ни о прозрачности, ни об оперативности говорить не приходится. В лучшем случае планы доводятся до исполнителей раз в год, и даже простейший учет выполнния ведется крайне редко. Тем более невозможно переходить на ремонт по состоянию (или хотя бы «с учетом состояния») - ведь сначала это состояние необходимо измерить, учесть, сохранить его историю.

Только применение ЕАМ-систем (информационных систем управления ТОиР - ИСУ ТОиР) может придать новый импульс и получить принципиально новое качество управления процессами ППР. Получаемое новое качество состоит не только в безбумажных технологиях, повышении прозрачности процесса проведения ТОиР, точности и оперативности учета ресурсов. Появляются ранее отсутствовавшие возможности по анализу результатов ТОиР в целом по предприятию, по анализу тенденций и трендов - и тем самым закладывается возможность оптимального выбора стратегии ремонтов.

Реальный опыт использования EAM-систем на российских предприятиях не так уж велик - всего несколько сотен внедрений. При этом такие системы в настоящее время используются преимущественно как удобный инструмент планирования и оперативного управления процессами ТОиР. Поэтому наибольшей популярностью пользуются функции:

  • календарного и ресурсного планирования,
  • учета дефектов,
  • учета расходования запчастей и материалов.

Примером автоматизации упомянутых функций может служить Северо-Западная ТЭЦ (г. Санкт-Петербург), на которой учет дефектов с 2002 года ведется в электронном виде. Дефекты регистрирует дежурная смена (круглосуточно). При этом дефект привязывается к оборудованию, заранее учтенному в базе данных. Затем - не сходя с рабочего места - начальник или заместитель начальника соответствующего цеха назначает мастера, ответственного за устранение дефекта, и указывает плановые сроки устранения. Мастер видит задание на своем компьютере. По окончании работы он делает отметку о выполнении, затем дефект принимает дежурная смена. При необходимости система «помогает» составить акт дефектации и акт выполненных работ.

Календарное планирование на Северо-Западной ТЭЦ также ведется в электронном виде. Годовой план ППР составляется автоматически, на основе заданной периодичности ремонтов. После согласования с цехами план поступает в работу. Исполнители ремонтов отмечают на компьютере их выполнение, вводя отчет по работе. ОППР (отдел подготовки и проведения ремонтов) оперативно отслеживает своевременность выполнения работ.

Однако на большинстве предприятий, использующих системы EAM, управление ТОиР ведется преимущественно на «микроуровне», то есть на уровне отдельной работы, дефекта и т. п. Значительно реже данные из EAM-систем используются для управления ТОиР на уровне предприятия. Богатейшие возможности контроля и анализа, которые могут дать EAM-системы, остаются невостребованными.

От информационной системы - к системе управления ТОиР

Для того чтобы обеспечить управление процессами ТОиР на верхнем уровне (цех, предприятие), а также для анализа эффективности управления на длительных временных интервалах, руководитель должен оперативно получать достоверные данные из ЕАМ-системы в агрегированном виде, то есть в виде системы показателей.

Важное условие успешности управления - выбор системы показателей для системы ТОиР конкретного предприятия.Зачастую разработчики EAM-системы заявляют, что могут выдать заказчику любые показатели. А когда дело доходит до внедрения, они предлагают заказчику самому назвать требуемые показатели, оставляя за собой только вопросы программной реализации. Но заказчик (за редкими исключениями) не может этого сделать, так как подобными вопросами не занимался и к тому же не знает досконально возможностей новой для него EAM-системы. В то же время типовую систему показателей вполне реально (путем диалога с заказчиком) адаптировать под нужды конкретного предприятия.

Какова же должна быть система показателей? Понятно, что она обязана ориентироваться, с одной стороны, на цели, которые ставит перед предприятием руководитель, с другой стороны - на достигнутый уровень управления и автоматизации. Кроме того, мы должны иметь достаточно удобные средства прослеживания, позволяющие «спускаться» по дереву показателей - от предприятия к цеху и участку, от технологической системы или агрегата к отдельной машине, от общих показателей к более частным (рис. 1), вплоть до микро-объектов, из которых этот показатель складывается. Такое прослеживание позволяет аналитику понять, какая из составляющих вносит наибольший вклад в итоговый показатель, и тем самым подсказать необходимое управляющее воздействие. Кроме того, для ряда показателей желательно назначить допустимые границы («тревожные» и аварийные). «Управление по отклонениям» позволяет сосредоточиться на показателях, выходящих за эти границы.

Рис. 1. График затрат на ТОиР - пример мониторинга общего показателя и его частных составляющих

Условно можно разделить совокупность показателей на несколько групп.

1. Первая группа обеспечивает достижение и поддержание элементарного порядка в планировании ремонтов и отчетности по их проведению, контроль исполнительской дисциплины при календарном планировании. В набор показателей на этом уровне входит количество запланированных, выполненных в срок, просроченных и невыполненных работ, процент выполнения плана (рис. 2) и т. п.

Рис. 2. Данные по выполнению плана ремонтов

2. Вторая группа - учет и контроль при ресурсном планировании (материалы и запчасти в натуральном и денежном выражении, трудовые ресурсы, расходы на поставщиков). Первые два слоя дают руководству предприятия и его подразделений средства учета и контроля, ориентированные, прежде всего, на оперативные («административные») средства управления. Они не направлены на изменение принятой системы проведения ТОиР или хотя бы на изменение параметров этой системы (например, периодичность проведения ТОиР).

3. Третья группа обеспечивает средства анализа для изменения (совершенствования) принятой на предприятии системы ТОиР (или параметров этой системы) и ориентирована на использование инженерно-техническими службами. В эту группу входят показатели, отражающие статистику повреждаемости оборудования (статистика дефектов и отказов по видам оборудования, по видам дефектов, а также по причинам и последствиям отказов и дефектов, а также параметры распределения времен между дефектами и времен устранения дефектов).

Анализ повреждаемости оборудования одного из предприятий показал, что большинство дефектов выявлено на относительно небольшом количестве оборудования (рис. 3). Предложено сосредоточить средства и ресурсы именно на этом, «больном» оборудовании, несколько уменьшив частоту проведения ППР на «здоровом» оборудовании. Ожидается, что это может дать значительную экономию средств без снижения работоспособности оборудования.

Использование показателей третьей группы наиболее перспективно для крупных предприятий, так как именно оптимизация системы проведения ТОиР может дать для них наибольший эффект.

В то же время именно показатели третьей группы наименее разработаны, а их применение наиболее редко встречается.

Рис. 3. Диаграмма распределения оборудования по числу дефектов

Регламент и еще раз регламент!

Мало разработать систему показателей и иметь соответствующие программные средства для ее поддержки. Для каждого из показателей необходим регламент его получения, который должен обеспечить полный и своевременный ввод необходимых исходных данных, постоянный анализ результатов мониторинга показателей. Так, например, для обеспечения анализа дефектов по видам, причинам, последствиям необходимо не только разработать многоаспектную классификацию дефектов, но и обеспечить описание всех дефектов в соответствии с разработанной классификацией.

Так, анализ причин дефектов с помощью информационной системы на предприятии электроэнергетики показал, что один из наиболее распространенных отказов связан с дефектом подшипников качения. Получив данные по количеству таких дефектов и подсчитав затраты на их устранение, руководство согласилось с предложением о выделении средств на модернизацию (замену типа подшипников).

Примеры обратного свойства - весьма многочисленны. Так, в большинстве случаев, даже внедрив электронный журнал дефектов, не удается заставить персонал «раскладывать по полочкам» все дефекты по мере их устранения. Это приводит к существенному ограничению возможностей автоматизированного анализа повреждаемости

К сожалению, в настоящее время на большинстве предприятий нет должностных лиц, в обязанности которых входил бы регулярный анализ данных, поступающих из EAM-систем. Отсутствуют навыки такого анализа, нет регламентов, которые бы определяли порядок использования аналитических данных. Поэтому очень важными являются определение правильной этапности внедрения системы управления ТОиР, выработка «стартового» состава показателей и последовательности его дальнейшего расширения - и одновременно разработка организационного обеспечения, гарантирующего как полный и своевременный ввод первичных данных, так и обязательную реакцию управленцев на выход итоговых показателей за установленные пределы. Только через обеспечение обратной связи в цепочке управления процессами ТОиР можно рассчитывать на эффективное воздействие управленцев на работу этой системы.

Необходимые условия

Для того чтобы полноценно использовать те возможности по анализу и управлению, которые могут предоставить EAM-системы, необходимо, по нашему мнению, выполнение следующих условий.

  1. Наличие на предприятии «узаконенной» системы показателей, которые бы описывали процессы ТОиР на макроуровне (укрупненным образом).
  2. Наличие программных средств, позволяющих обеспечить оперативное и объективное получение таких показателей, их хранение и удобное отображение.
  3. Введение в действие «узаконенного» и работающего регламента, обеспечивающего регулярный ввод в ИСУ ТОиР исходных данных, необходимых для расчета указанных показателей.
  4. Назначение людей, которые в силу своих должностных обязанностей должны использовать результаты анализа в своей работе и, что немаловажно, способны использовать эти данные, вырабатывая на их основе необходимые управляющие воздействия.

Все эти составляющие должны закладываться в проект внедрения ИСУ ТОиР уже на этапе проектирования. При этом разработчик информационно-управляющей системы предлагает заказчику номенклатуру готовых типовых решений (набор показателей, типовые регламенты, программное обеспечение для анализа), и далее, в диалоге с разработчиком заказчик, отталкиваясь от типовых решений, вырабатывает свою стартовую систему показателей, регламент ее поддержания и использования.

В дальнейшем, по мере накопления опыта использования ИСУ ТОиР на предприятии, система показателей может расширяться, обеспечивая решение более широкого круга задач по управлению процессами ТОиР.

В заключение следует подчеркнуть, что только работающая система мониторинга показателей качества процессов ТОиР в сочетании с системой выработки управляющих решений на основе анализа этих показателей способна превратить информационную систему EAM в полноценную систему управления ТОиР.

В процессе эксплуатации оборудование подвергается физическому и моральному износу. Существует два способа восстановления оборудования - полное и частичное. При полном восстановлении оборудование меняется на новое, при частичном оборудование ремонтируется. Для оптимального использования оборудования нужно найти возраст, при котором его необходимо заменить, чтобы доход от машины был максимальным или, если доход подсчитать не удается, издержки на ремонтно-эксплуатационные нужды были минимальными. Данный подход рассматривается с позиции экономических интересов потребителя.

Для оптимизации ремонта и замены оборудования требуется разработать на плановый период стратегию по замене машины. В качестве экономических интересов может быть использован один из двух подходов:

1. Максимум дохода от машины за определенный промежуток времени.

2. Минимум затрат на ремонтно-эксплуатационный нужды, если доход подсчитать не удается.

Данная задача решается методом динамического программирования. Основная идея этого метода заключается в замене одновременного выбора большего количества параметров поочередным их выбором. Этим методом могут быть решены самые различные задачи оптимизации. Общность подхода к решению самых различных задач является одним из достоинств этого метода.

Рассмотрим механизм оптимизации ремонта и замены оборудования. Для решения задачи введем следующие обозначения:

t - возраст оборудования;

d(t) - чистый годовой доход от оборудования возраста t;

U(t) - издержки на ремонтно-эксплуатационные нужды машины возраста t;

С - цена нового оборудования.

Для решения этой задачи введем функцию f n (t) , которая показывает величину максимального дохода за последние n - лет при условии, что в начале периода из n - лет у нас была машина возраста t - лет.

Алгоритм решения задачи следующий:

1) f 1 (t) = max d(0) - С

2) f n (t) = max f n-1 (t+1) + d(t)

f n-1 (1) + d(0) - С

Увеличение издержек приведет к снижению чистого дохода, который рассчитывается так:

d(t) = r(t) - u(t)

r(t) - годовой объем дохода от оборудования возраста t;

u(t) - годовые затраты на ремонтно - эксплуатационные нужды

оборудования возраста t.

Подход максимизации дохода

Для решения этой задачи введем функцию f n (t) , которая показывает величину максимального дохода за последние n - лет при условии, что в начале периода из n-лет у нас было оборудование возраста t-лет.

Если до конца периода остался 1 год

Если до конца периода осталось n лет

где t - возраст оборудования;

d (t) - чистый годовой доход от оборудования возраста t;

C - цена нового оборудования.

Увеличение издержек приведет к снижению чистого дохода, который рассчитывается так

d(t) = r(t) - u(t)

где r (t) - годовой объем дохода от оборудования возраста t;

u(t) - годовые затраты на ремонтно-экплуатационные нужды оборудования возраста t.

Рассчитаем чистый доход по формуле, зная динамику поступления дохода и роста издержек на ремонт.

Таблица 2. Чистый доход от оборудования по годам

Рассчитаем оптимальную стратегию замены и сохранения оборудования, зная динамику поступления дохода и роста издержек на ремонт и цену нового изделия С=44 усл. ед.

Таблица 3. Стратегия замены оборудования

Поле сохранения Поле замены

Построим «оптимальную» стратегию замены оборудования на период 10 лет, которому в начале замены было 1 год. В таблице 3 она показана стрелками, а в сокращенной записи будет иметь следующий вид:

F 10 (2) = 34 + 30 + 26 + 24 - 2 + 38 + 34 + 30 + 26 + 24 = 264

Подход минимизации затрат

В случае, если доход подсчитать не удается, в качестве экономических интересов может быть использован подход минимума затрат на ремонтно-эксплуатационные нужды при разработке стратегии по замене оборудования на плановый период. В данном случае, формулы расчета примут следующий вид:

Если до конца периода остался 1 год:

Если до конца периода осталось n лет:

где f n (t) - функция, которая показывает величину минимальных издержек за последние n-лет при условии, что в начале периода из n-лет у нас было оборудование возраста t-лет;

u(t) - издержки от оборудования возраста t-лет.

Таблица 4

Поле сохранения Поле замены

Построим «оптимальную» стратегию замены оборудования на период 10 лет, которому в начале замены было 1 год. В таблице 4 она показана стрелками, а в сокращенной записи будет иметь следующий вид:

С - С - С - С - З - С - С - С - С - С

Чистый доход за 10 лет от оборудования возраста 1 год при выборе этой стратегии замены составит:

F 10 (2) = 3 + 4 + 6 + 7 + 43 + 1 + 3 + 4 + 6 + 7 = 84

Определить оптимальную стратегию использования оборудования в период времени длительностью т лет, причем прибыль за каждые i лет, i = от использования оборудования возраста t лет должна быть максимальной.

Известны

r (t )выручка от реализации продукции, произведенной за год на оборудовании возраста t лет;

l (t ) – годовые затраты, зависящие от возраста оборудования t;

с (t ) – остаточная стоимость оборудования возраста t лет;

Р – стоимость нового оборудования.

Под возрастом оборудования понимается период эксплуатации оборудования после последней замены, выраженный в годах.

Воспользуемся приведенными выше этапами составления математической модели задачи.

1. Определение числа шагов. Число шагов равно числу лет, в течение которого эксплуатировалось это оборудование.

2. Определние состояний системы. Состояние системы характеризуется возрастом оборудования t , t= .

3. Определение уравнений. В начале i -го шага, i = может быть выбрано одно из двух управлений: заменять или не заменять оборудование. Каждому варианту управления приписывается число

4. Определение функции выигрыша на i -ом шаге. Функция выигрыша на i -ом шаге – это прибыль от использования оборудования к концу i -го года эксплуатации, t= , i = . Таким образом, если оборудование не продается, то прибыль от его использования – это разность между стоимостью произведенной продукции и эксплуатационными издержками. При замене оборудования прибыль составляет разность между остаточной стоимостью оборудования и стоимостью нового оборудования, к которой прибавляется разность между стоимостью продукции и эксплуатационными издержками для нового оборудования, возраст которого в начале i -го шага составляет 0 лет.

5. Определение функции изменения состояния

(9.7)

Таким образом, если оборудование не меняется х i =0, то возраст оборудования увеличивается на один год t +1, если же оборудование меняется х i =1, то оборудование будет годовалым.

6. Составление функционального уравнения для i =т

Верхняя строка функционального уравнения соответствует ситуации, при которой в последний год оборудование не меняется и предприятие получает выигрыш в размере разницы между выручкой r (t ) и годовыми затратами l (t ).

7. Составление основного функционального уравнения

где W i (t t лет с i -го шага (с конца i -го года) до конца периода эксплуатации;

W i + 1 (t ) – прибыль от использования оборудования возраста t+ 1год с (i +1)-го шага до конца периода эксплуатации.

Математическая модель задачи построена.

Пример

т =12, р= 10, с (t )=0, r (t ) – l (t )=φ (t ).

Значения φ (t ) даны в таблице 9.1.

Таблица 9.1.

t
φ (t )

Для данного примера функциональные уравнения будут иметь вид

Рассмотрим заполнение таблицы для нескольких шагов.

Условная оптимизация начинается с последнего 12-го шага. Для i =12 рассматриваются возможные состояния системы t= 0, 1, 2, …, 12. Функциональное уравнение на 12-ом шаге имеет вид

1) t= 0 х 12 (0)=0.

2) t= 1 х 12 (1)=0.

10) t= 9 х 12 (9)=0.

11) t= 10 х 12 (10)=0; х 12 (10)=1.

13) t= 12 х 12 (12)=0; х 12 (12)=1.

Таким образом, на 12-ом шаге оборудование возраста 0 – 9 лет заменять не надо. Оборудование возраста 10 – 12 лет можно заменить или продолжить его эксплуатировать, так как для t= 10, 11, 12 имеется два условных оптимизационных управления 1 и 0.

По результатам расчетов заполняются два столбца таблицы 9.2, соответствующие i= 12.

Условная оптимизация 11-го шага.

Для i =11 рассматриваются все возможные состояния системы t =0, 1, 2, …, 12. Функциональное уравнение на 11-м шаге имеет вид

1) t= 0 х 11 (0)=0.

2) t= 1 х 11 (1)=0.

6) t= 5 х 11 (5)=0; х 11 (5)=1.

7) t= 6 х 11 (6)=1.

13) t= 12 х 11 (12)=1.

Таким образом на 11-ом шаге не следует заменять оборудование возраста 0 – 4 года. Для оборудования возраста 5 лет возможны две стратегии использования: заменить или продолжать эксплуатировать.

Начиная с 6-го года оборудование следует заменять. По результатам расчетов заполняются два столбца таблицы 9.2, соответствующие i =11.

1) t= 0 х 10 (0)=0.

2) t= 1 х 10 (1)=0.

3) t= 2 х 10 (2)=0.

4) t= 3 х 10 (3)=0.

5) t= 4 х 10 (4)=1.

13) t= 12 х 10 (12)=1.

На 10-ом шаге не следует заменять оборудование возраста 0 – 3 года. Начиная с 4-го года, оборудование следует заменять, так как новое оборудование приносит бóльшую прибыль.

По результатам расчетов заполняются два столбца в 9.2, соответствующие i =10.

Аналогичным образом заполняются остальные девять столбцов таблицы 9.2. При расчетах W i + 1 (t ) на каждом шаге значения φ (t ) для каждого t =0, 1, 2, …, 12 берутся из таблицы 9.1 исходных данных, приведенной в условии задачи, а значения W i (t ) – из последнего, заполненного на предыдущем шаге столбца в 9.2.

Этап условной оптимизации заканчивается после заполнения таблицы 9.2.

Безусловная оптимизация начинается с первого шага.

Предположим, что на первом шаге i =1 имеется новое оборудование, возраст которого 0 лет.

Для t=t 1 =0 оптимальный выигрыш составляет W 1 (0)=82. Это значение соответствует максимальной прибыли от использования нового оборудования в течение 12 лет.

W*=W 1 (0)=82.

Выигрышу W 1 (0)=82 соответствует х 1 (0)=0.

Для i =2 по формуле (9.7) t 2 =t 1 +1=1.

Безусловное оптимальное управление х 2 (1)=0.

Для i =3 по формуле (9.7) t 3 =t 2 +1=2.

Безусловное оптимальное управление х 3 (2)=0.

i =4 t 4 =t 3 +1=3 х 4 (3)=0
i =5 t 5 =t 4 +1=4 х 5 (4)=1
i =6 t 6 = 1 х 6 (1)=0
i =7 t 7 =t 6 +1=2 х 7 (2)=0
i =8 t 8 =t 7 +1=3 х 8 (3)=0
i =9 t 9 =t 8 +1=4 x 9 (4)=1
i =10 t 10 = 1 х 10 (1)=0
i =11 t 11 =t 10 +1=2 х 11 (2)=0
i =12 t 12 =t 11 +1=3 х 12 (3)=0

В рамках данной задачи оптимальная стратегия заключается в замене оборудования при достижении им возраста 4-х лет. Аналогичным образом можно определить оптимальную стратегию использования оборудования любого возраста.

В левой колонке таблицы 9.2 записываются возможные случаи системы t = , в верхней строке – номера шагов i = . Для каждого шага определяются условные оптимальные управления х i (t ) и условный оптимальный выигрыш W i (t ) c i -го шага и до конца для оборудования возраста t лет.

Управления, составляющие оптимальную стратегию использования оборудования, выделены в таблице 9.2 жирным шрифтом.


Таблица 9.2.

t i =12 i =11 i =10 i =9 i =8 i =7 i =6 i =5 i =4 i =3 i =2 i =1
x 12 W 12 x 11 W 11 x 10 W 10 x 9 W 9 x 8 W 8 x 7 W 7 x 6 W 6 x 5 W 5 x 4 W 4 x 3 W 3 x 2 W 2 x 1 W 1
0/1 0/1
0/1 0/1 0/1 0/1
0/1 0/1 0/1
0/1
0/1
0/1

Найти оптимальную стратегию эксплуатации оборудования на период продолжительностью 6 лет, если годовой доход r(t) и остаточная стоимость S(t) в зависимости от возраста заданы в таблице, стоимость нового оборудования равна P = 10 , а возраст оборудования к началу эксплуатационного периода составлял 1 год.

T 0 1 2 3 4 5 6
r(t) 8 8 7 7 6 6 5
S(t) 10 7 6 5 4 3 2

Решение находим с помощью калькулятора .
I этап. Условная оптимизация (k = 6,5,4,3,2,1).
Переменной управления на k-м шаге является логическая переменная, которая может принимать одно из двух значений: сохранить (С) или заменить (З) оборудование в начале k-го года.
1-й шаг: k = 6. Для 1-го шага возможные состояния системы t = 1,2,3,4,5,6, а функциональные уравнения имеют вид:
F 6 (t) = max(r(t), (C); S(t) - P + r(0), (З))
F 6 (1) = max(8 ; 7 - 10 + 8) = 8 (C)
F 6 (2) = max(7 ; 6 - 10 + 8) = 7 (C)
F 6 (3) = max(7 ; 5 - 10 + 8) = 7 (C)
F 6 (4) = max(6 ; 4 - 10 + 8) = 6 (C)
F 6 (5) = max(6 ; 3 - 10 + 8) = 6 (C)
F 6 (6) = max(5 ; 2 - 10 + 8) = 5 (C)
2-й шаг: k = 5. Для 2-го шага возможные состояния системы t = 1,2,3,4,5, а функциональные уравнения имеют вид:
F 5 (t) = max(r(t) + F 6 (t+1) ; S(t) - P + r(0) + F 6 (1))
F 5 (1) = max(8 + 7 ; 7 - 10 + 8 + 8) = 15 (C)
F 5 (2) = max(7 + 7 ; 6 - 10 + 8 + 8) = 14 (C)
F 5 (3) = max(7 + 6 ; 5 - 10 + 8 + 8) = 13 (C)
F 5 (4) = max(6 + 6 ; 4 - 10 + 8 + 8) = 12 (C)
F 5 (5) = max(6 + 5 ; 3 - 10 + 8 + 8) = 11 (C)
3-й шаг: k = 4. Для 3-го шага возможные состояния системы t = 1,2,3,4, а функциональные уравнения имеют вид:
F 4 (t) = max(r(t) + F 5 (t+1) ; S(t) - P + r(0) + F 5 (1))
F 4 (1) = max(8 + 14 ; 7 - 10 + 8 + 15) = 22 (C)
F 4 (2) = max(7 + 13 ; 6 - 10 + 8 + 15) = 20 (C)
F 4 (3) = max(7 + 12 ; 5 - 10 + 8 + 15) = 19 (C)
F 4 (4) = max(6 + 11 ; 4 - 10 + 8 + 15) = 17 (C/ З)
4-й шаг: k = 3. Для 4-го шага возможные состояния системы t = 1,2,3, а функциональные уравнения имеют вид:
F 3 (t) = max(r(t) + F 4 (t+1) ; S(t) - P + r(0) + F 4 (1))
F 3 (1) = max(8 + 20 ; 7 - 10 + 8 + 22) = 28 (C)
F 3 (2) = max(7 + 19 ; 6 - 10 + 8 + 22) = 26 (C/ З)
F 3 (3) = max(7 + 17 ; 5 - 10 + 8 + 22) = 25 (З)
5-й шаг: k = 2. Для 5-го шага возможные состояния системы t = 1,2, а функциональные уравнения имеют вид:
F 2 (t) = max(r(t) + F 3 (t+1) ; S(t) - P + r(0) + F 3 (1))
F 2 (1) = max(8 + 26 ; 7 - 10 + 8 + 28) = 34 (C)
F 2 (2) = max(7 + 25 ; 6 - 10 + 8 + 28) = 32 (C/ З)
6-й шаг: k = 1. Для 6-го шага возможные состояния системы t = 1, а функциональные уравнения имеют вид:
F 1 (t) = max(r(t) + F 2 (t+1) ; S(t) - P + r(0) + F 2 (1))
F 1 (1) = max(8 + 32 ; 7 - 10 + 8 + 34) = 40 (C)
Результаты вычислений по уравнениям Беллмана F k (t) приведены в таблице, в которой k - год эксплуатации, а t - возраст оборудования.

k / t 1 2 3 4 5 6
1 40 0 0 0 0 0
2 34 32 0 0 0 0
3 28 26 25 0 0 0
4 22 20 19 17 0 0
5 15 14 13 12 11 0
6 8 7 7 6 6 5

В таблице выделено значение функции, соответствующее состоянию (З) - замена оборудования.

II этап. Безусловная оптимизация (k = 6,5,4,3,2,1)
Безусловная оптимизация начинается с шага при k = 1. Максимальной возможный доход от эксплуатации оборудования за годы с 1-го по 7-й составляет F 1 (1) = 40. Этот оптимальный выигрыш достигается, если на первом году не производить замены оборудования.
К началу 2-го года возраст оборудования увеличится на единицу и составит: t 2 = t 1 + 1 = 1 + 1 = 2.
Безусловное оптимальное управление при k = 2, x 2 (2) = (C/З), т.е. для получения максимума прибыли за оставшиеся годы необходимо в этом году провести замену оборудования.
К началу 3-го года возраст оборудования увеличится на единицу и составит: t 3 = t 2 + 1 = 0 + 1 = 1.
Оптимальное управление при k = 3, x 3 (1) = (C), т.е. максимум дохода за годы с 3-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 4-го года возраст оборудования увеличится на единицу и составит: t 4 = t 3 + 1 = 1 + 1 = 2.
Оптимальное управление при k = 4, x 4 (2) = (C), т.е. максимум дохода за годы с 4-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 5-го года возраст оборудования увеличится на единицу и составит: t 5 = t 4 + 1 = 2 + 1 = 3.
Оптимальное управление при k = 5, x 5 (3) = (C), т.е. максимум дохода за годы с 5-го по 6-й достигается, если оборудование сохраняется, т.е. не заменяется.
К началу 6-го года возраст оборудования увеличится на единицу и составит: t 6 = t 5 + 1 = 3 + 1 = 4.
Оптимальное управление при k = 6, x 6 (4) = (C), т.е. максимум дохода за 6-ой год достигается, если оборудование сохраняется, т.е. не заменяется.

Таким образом, за 6 лет эксплуатации оборудования замену надо произвести в начале 2-го года эксплуатации.