Пособие по фхогт. Горелочные устройства и их размещение


Необходимая интенсивность горения и пол­нота выгорания пылевидного топлива в топоч­ном объеме достигаются правильной органи­зацией подачи и последующим смешением топлива (аэропыли) с вторичным воздухом, что обеспечивается горелочными устройствами, называемыми в дальнейшем горелками. В го­релках не происходит воспламенения топлива. Их задача состоит в том, чтобы подготовить два самостоятельных потока-пылевоздушную - смесь и вторичный воздух - к воспламенению топлива и активному горению в топке. Для этого необходимо обеспечить подсос топочных газов в свежую струю аэропыли для ее про­грева и своевременное смешение воспламенив­шегося топлива с остальной частью вторично­го воздуха. С этой целью потоки горячего воз­духа и аэропыли вводят в топочный объем с различными скоростями и с разной степенью крутки.

Различают два основных типа горелок:. вихревые и прямоточные. Через вихревые го­релки пылевоздушная смесь и вторичный воз^ дух подаются в виде закрученных струй, обра­зующих в топочном объеме конусообразно рас­ходящийся факел (см. рис. 4.10). Такие горелки выполняются круглыми в сечении. Прямоточные горелки подают в топку чаще всего параллельные струи аэропыли и вторич­ного воздуха. Перемешивание струй опреде­ляется главным образом взаимным располо*- жением горелок на стенах топки и созданием необходимой аэродинамики струй в объеме топки. Эти горелки могут быть круглого или прямоугольного сечения.

Вихревые горелки. Вихревые горелки вы­полняют следующих видов: двухулиточные с закручиванием аэропыли и вторичного воз­духа в улиточном аппарате (рис. 7.4,а); пря - моточно-улиточные, в которых аэропыль пода­ется по прямоточному каналу и раздается в стороны рассекателем, а вторичный воздух закручивается в улиточном аппарате (рис. 7.4,6); улиточно-лопаточные с улиточ­ным закручиванием потока аэропыли и акси­альным лопаточным закручивателем вторично­го воздуха (рис. 7.4,в); лопаточные, в которых закручивание потоков вторичного воздуха и аэропыли обеспечивается аксиальным и тан­генциальным лопаточными аппаратами.

Горелки этого типа имеют производительность от - 1 до 3,8 кг условного топлвва/с, что определяет us

Тепловую мощность от 25 до 100 МВт. Наиболее рас­пространены двухулиточные и улиточно-лопаточные го­релки, последние бывают большой тепловой мощности (75-100 МВт). Основным показателем аэродинамиче­ской характеристики горелки с закручивающим аппара­том является параметр крутки п (см. § 4.4). Его зна­чения для промышленных горелок находятся в преде­лах 1,5-5, большие значения (п- З-г-5) относятся к за­кручиванию потока вторичного воздуха.

С увеличением степени крутки потока увеличивает­ся угол раскрытия струи и расширяются ее границы, увеличиваются размеры зоны рециркуляции газов к устью факела, что обеспечивает более быстрый погрев и воспламенение топлива. Горелки с повышен­ным значением параметра п используют при сжигании малореакционных, трудно воспламеняющихся топлив (с относительно низким выходом летучих веществ). Лопаточный завихривающий аппарат может быть вы­полнен поворотным, что позволяет производить опти­мальную настройку аэродинамики горелки.

Из применяемых конструкций завихрителей мень­шее сопротивление при одинаковой степени крутки имеет аксиальный аппарат с профилированными лопат­ками, поэтому он широко применяется на новых мощ­ных горелках для закручивания вторичного воздуха и потока аэропыли. Горелки с рассекателем (по типу рис. 7.4,6) не обладают высокой турбулентностью и большим углом раскрытия потока аэропыли и приме­няются в ряде случаев для топлива с большим выходом летучих веществ, однако работа рассекателя в условиях интенсивного радиационного теплового излучения из ядра факела не надежна.

На полноту сгорания топлива сильное влияние ока­зывает соотношение аксиальных скоростей первичного и вторичного потоков воздуха в горелке. Скорость пер­вичного потока (аэропыли) обычно составляет W= = 16-s-25 м/с. Более высокие скорости характерны для мощных горелок. Оптимальная скорость вторичного воздуха составляет а)2=(1,3ч-1,4)ші.

Вихревые горелки универсальны и приме­нимы для любого твердого топлива, но наи­большее распространение они получили при сжигании топлив с малым выходом летучих. Горелки повышенной тепловой мощности вы­полняют с двумя регулируемыми коаксиаль­ными каналами по вторичному воздуху (см. рис. 7.4,в), что обеспечивает сохранение необ­ходимых скоростей воздуха при работе на по­ниженных нагрузках. При нагрузке менее 70% номинальной периферийный канал возду­ха перекрывают и тем сохраняют высокие скорости.

Рис. 7.4. Виды вихревых пылеугольных горелок.

А - двухулиточная горелка; б - прямоточно-улиточная горелка ОРГРЭС; в - улиточно-лопаточная горелка ЦКТИ - ТКЗ; 1-улит­ка пылевоздушной смеси; /" - входной патрубок палевоздушной смеси; 2 - улитка вторичного воздуха; 2? - короб ввода вто­ричного воздуха; 3 - кольцевой канал для выхода пылевоздушной смесн в топку; 4 - то же для вторичного воздуха; 5 - основная мазутная форсунка; 5" - растопочная мазутная форсунка; 6 - рассекатель иа выходе пылевоздушной смесн; 7 - завнхрнвающие лопатки для вторичпого воздуха; 8 - подвод третичного воздуха по осевому каналу; 9 - управление положением рассекателя; 10 - завнхрнтель осевого потока воздуха; // - обмуровка топки; аб - граница воспламенения пылевоздушной смеси; в - подсос топочных газов к корню факела.

Прямоточные горелки. Ввиду более низкой турбулизации потока прямоточные горелки создают дальнобойные струи с малым углом расширения и с вялым перемешиванием пер­вичного и вторичного потоков. Поэтому успеш­ное сжигание топлива достигается взаимодей­ствием струй разных горелок в объеме топоч­ной камеры. Они могут быть установлены- неподвижно или выполнены как поворотные, что облегчает наладку топочного режима (рис. 7.5,о). Горелки прямоугольного типа, особенно вытянутые по высоте, характеризу­ются высокой эжекцией окружающей газовой среды с боковых сторон струи. Поэтому такие горелки при внешней подаче аэропыли (рис. 7.5,6) имеют преимущества по условиям воспламенения перед горелками с внутренней подачей пыли. Прямоточные горелки выпол­няют, как правило, относительно небольшой производительности, поэтому в мощных паро­вых котлах их набирают в блоки (рис. 7.6). Прямоточные горелки применяют в основном для сжигания высокореакционных топлив: бу­рых углей, торфа, сланцев и каменных углей с высоким выходом летучих. Скорость пыле­воздушной смеси на выходе из горелок при­
нимают: йУі=20-ь28 м/с, а оптимальную ско­рость вторичного воздуха ш2- (1,5-^-1,7) Ш!.

А ~ с поворотной насадкой на выходе аэропыли (конструкции ЗиО); б -с центральным каналом горячего воздуха (конструк­ции ВТИ); 1 - подвод пылевоздушной смесн; 2 - то же горя­чего воздуха; 3 - выход пылевоздушной смеси; 4 - выход горя­чего воздуха; 5 - подсос топочных газов.

Рис. 7.6. Блок из трех прямоточных пылеугольных го­релок.

1 - подача пылевоздушной смесн в горелку; 2 - подача вто­ричного воздуха в горелку; 3 - труба для установки растопоч­ной мазутной форсунки с газовым электрозапальником - 4 - по - - воротный воздушный патрубок. "

Комбинированные горелки. Во многих слу­чаях на электростанции возникает необходи­мость попеременно или одновременно сжигать разные виды топлива, для чего горелки вы­полняют комбинированными с обеспечением экономичного сжигания каждого из видов топ­лива. На рис. 7.7 в качестве иллюстрации изо­бражена горелка мощного парового котла на

Рис. 7.7. Схема горелки для сжигания трех видов топ­лива.

Обозначения те же, что и на ркс. 7.4; кроме того: 13 - кольце­вой короб природного газа; 14 - трубки ввода природного га­за в горелку, расположенные вокруг канала первичного возду­ха 3; 15 -■ выход природного газа в топку; 16 - газовый элек - трозапальиик.

Три вида топлива: твердое (основное), мазут и природный газ. Такая горелка отличается повышенным диаметром центрального канала, где размещена основная мазутная форсунка с регистром для закручивания осевого потока воздуха. Природный газ через раздающие трубки тонкими струями поступает между за­вихренными осевым и вторичным потоками воздуха, чем обеспечивается его хорошее пе­ремешивание и последующее сгорание.

Расположение горелок. Горелки на стеках топоч­ной камеры располагают таким образом, чтобы обеспе­чить наибольшую полноту сгорания топлива в ядре факела, создать благоприятные условия для удаления. шлаков из топки в заданном твердом или жидком виде и исключить возможность шлакования стен топочной камеры. При выборе типа и расчете оптимального раз­мещения горелок учитывают особенности их рабочих характеристик. Так, вихревые горелки создают более короткий факел по длине н широкий угол его рас­крытия по сравнению с прямоточными. Интенсивное перемешивание первичного и вторичного потоков возду­ха происходит за счет энергии вихревого движения, что обеспечивает глубокое выгорание топлива в ядре фа­кела (до 90-95%).

Определяющим конструктивным параметром вихре­вых горелок является диаметр амбразуры Z>a. Горелки размещают на достаточном расстоянии друг от друга (2,2-т-3)£>а и от боковых стен (1,6-г-2)£>а, чтобы ис­ключить раннее взаимодействие факелов и наброс фа­кела на стены .

На рис. 7.8 показаны наиболее характерные схемы расположения вихревых пылеугольных горелок. Схемы с фронтальными и двухфронтальными горелками (рис. 7.8,а, б) могут быть выполнены как в один, так и в два яруса по высоте. При однофроитальном рас­положении экран задней стены получает повышенное тепловосприятие (на 10-20% выше среднего) и для исключения шлакования стены при твердом шлако - удалении глубина топки должна быть не менее Ь= =(6-ь7)£>а. Встречное двухфронтальное расположение горелок характерно для мощных паровых котлов, когда необходимое число горелок невозможно разместить на одной фронтовой стене даже в два яруса.

Прл встречном расположении выравнивается тепло - напряжение экранов топки. Чаще всего топки с го-

А - фронтальное; б- двухфронтальиое (встречное); в - встреч­ное с боковых стен топкн.

Релками по этой схеме работают с жидким шлакоуда - леиием, так как здесь за счет движения факела после ■Соударения как вверх, так и вниз повышается уровень температур у пода топки. Правильное взаимодействие встречных факелов достигается при ширине топочной камеры fr=(5-s-6)Da. В котлах относительно небольшой мощности размещают горелки встречно с боковых стен

Рис. 7.9. Схемы расположения прямоточных пылеуголь­ных горелок иа стенах топочной камеры. а - встречно-смещенное; б - угловое с блочным соударением струй (блочное расположение); a - угловое с тангенциальным направлением струй (тангенциальное расположение).

В один ярус (рис. 7.8,в). Тогда размер глубины топки определяется только их расположением. При этой схеме имеет место повышенная температура газов в средней части топки по ее ширине.

На рис. 7.9 показаны характерные схемы разме­щения прямоточных горелок. Горелки этого типа обес­печивают полное сжигание топлива только за счет тур-
булизацин факелов отдельных горелок при их соударе­нии в объеме топочной камеры. Все представленные схемы нашли широкое применение при сжигании тор­фа, бурых и молодых каменных углей.

Сжигание торфа и бурых углей по схеме встречно - смещенных струй, разработанной и внедренной МЭИ, отличается высокой эффективностью за счет повышен­ной турбулизации факела в зоне основного горения. Это достигается созданием большого градиента скоро­стей между соседними струями, имеющими противопо­ложные направления движения.

Схема с угловыми горелками и тангенциальным направлением горелочных струй к условной окружно­сти в центре топки диаметром 1-2,5 м (рис. 7.9,е) на­шла широкое применение на многих типах паровых кот­лов, в том числе большой мощности (рис. 7.10). Ее преимущества заключаются в равномерности тепловых потоков по всем стенам топки, малой вероятности шла­кования стен, так как вдоль них движутся уже ча­стично остывшие газы. При организации жидкого шла­коудаления достигается выпадение капель жидкого шлака на стенах предтопка и увеличение доли шлако - улавливания.

Схему с блочным соударением струй смежных горе­лок (рис. 7.9,6) применяют при сжигании каменных углей. Этим достигается высокая турбулизация ядра факела. Недостатком этой схемы является возможность шлакования фронтовой и задней стен топки при движе­нии факела из центра топки (зоны относительно повы­шенного давления) в обе стороны к стенам.

Схемы с тангенциальной компоновкой можно осу­ществить в топке, форма которой близка к квадратной, т. е. отношение размеров стен Это обуслов­

Ливает хорошую аэродинамику топочного объема. В то­почных камерах с более развитой шириной фронта применимы другие схемы размещения горелок.

Одним из преимуществ комбинированных горелок является возможность легкого перехода с одного вида топлива на другое. При этом сжигание каждого из них должно происходить в оптимальных условиях.

В такой горелке каналы подвода воздуха выполняются общими для обоих видов топлив, а расположение каждого вида горелочного устройства должно обеспечить быстрое и полное смешение топлива с воздухом. Для эффективного смешения с топливом поток воздуха в горелке сильно турбулизируется с помощью воздушного регистра (воздухо-направляющего устройства), обеспечивающего его интенсивную закрутку.

Воздушные регистры выполняют трех видов: улиточный, аксиальный лопаточный и тангенциальный лопаточный (рисунок 2.13).

Рисунок 2.13 - Схемы воздушных регистров:

а - улиточный; б - тангенциальный лопаточный; в - аксиальный лопаточный.

С учетом больших расчетных объемов воздуха улиточный завихритель получается довольно громоздким. Его применяют на горелках относительно небольшой мощности. Аксиальный лопаточный аппарат наиболее прост в выполнении и имеет наименьшее гидравлическое сопротивление, но для пропуска всего потока воздуха требуется канал большего диаметра. Тангенциальный лопаточный регистр имеет несколько большее сопротивление, но отличается возможностью регулирования размера проходного сечения при изменении нагрузок путем перемещения вдоль оси горелки регулирующего диска (рисунок 2.14).

На мощных паровых котлах устанавливают три основных типа газомазутных горелок и отличающихся способом ввода газа в поток воздуха и методом регулирования его расхода при переменных нагрузках.

Природный газ из центрального кольцевого коллектора выдается двумя рядами отверстий разного диаметра. Воздух подводится через тангенциальный лопаточный регистр. Регулирование его расхода обеспечивается перемещающимся дисковым шибером. Таким образом, при снижении нагрузки котла уменьшенный расход воздуха будет сохранять интенсивность крутки и хорошие условия смешения с топливом. Мазут распыляется в механической форсунке, установленной в центральном канале горелки.

Давление газа перед горелкой 2,5 - 3,0 кПа. Скорость воздуха в узком сечении горелки 40 м/с. Воспламенение топлива - мазута или газа - обеспечивается электрозапальными устройствами.

Рисунок 2.14 - Газомазутная горелка ТКЗ коаксиального типа с центральной подачей газа:

1 - кольцевой газовый коллектор; 2 - мазутная форсунка; 3 - тангенциальный лопаточный аппарат; 4 - регулирующий воздушный шибер; 5 - фланец, предохраняющий газовый наконечник от обгорания; 6 - воздушный короб; 7 - подвод воздуха для охлаждения наконечника и фланца; 8 - коническая амбразура; 9 - канал для запальника.

Газомазутная горелка ЦКБ (харьковского филиала)-ВТИ-ТКЗ для прямоточного котла блока 300 МВт, работающего под наддувом (рисунок 2.15), имеет тангенциально-аксиальный подвод воздуха через лопаточный аппарат с разделением основного потока воздуха на два канала. Кроме того, имеется еще третичный воздух, постоянно поступающий по центральному каналу для охлаждения мазутной форсунки. При снижении нагрузки расход воздуха по периферийному кольцевому каналу уменьшается регулирующим шибером. Подача мазута осуществляется паро-механической форсункой типа ТКЗ-4М производительностью 4,6 т/ч при давлении мазута 4,5 МПа и пара 0,2 МПа. Природный газ в основном вводится в поток воздуха с периферии большим числом труб Æ 32 мм и частично из отверстий центрального коаксиального канала.

На рисунке 2.16 показана газомазутная горелка однокорпусного прямоточного котла блока 800 МВт производительностью 5,2 т/ч мазута.

Рисунок 2.15 - Газомазутная горелка ХФЦКБ-ВТИ-ТКЗ с периферийной и центральной подачей газа:

1, 1’ - центральный и периферийный коробы воздуха; 2 - тангенциальный лопаточный аппарат; 3 - аксиальный лопаточный аппарат; 4 - ствол паро-механической форсунки; 5 - ввод центрального потока воздуха; 6 - подвод газа в коаксиальный канал; 7 - периферийный подвод газа; 8 - разводка экранных труб вокруг горелки.

Равномерная раздача воздуха по горелкам обеспечивается за счет больших размеров воздушных коробов, общих для всех горелок одной стены топки. Каждый короб разделен по всей длине на два отсека для раздачи воздуха во внутренние и периферийные каналы горелок. Отдельно имеется короб для ввода через горелку дымовых газов рециркуляции. Потоки воздуха закручиваются тангенциальным лопаточным аппаратом, а газы вводятся в топку прямотоком и смешиваются с расходящимся под углом периферийным воздухом.

Природный газ вводится по центральному коаксиальному каналу под углом 45 о к оси потока. Для компенсации разницы тепловых расширений воздушного короба с встроенными в него горелками и экранов топки установлены линзовые компенсаторы.

При переходе на сжигание газа мазутная форсунка автоматически отключается и втягивается в центральный ствол. Одновременное сжигание двух видов топлива приводит к ухудшению выгорания одного из них (чаще мазута), что связано с различными условиями смешения и временем воспламенения.

Рисунок 2.16 - Газомазутная горелка парового котла ТГМП-204 производительностью 5,2 т/ч мазута или 5,54 тыс.м 3 природного газа:

1, 1’ - центральный и периферийный каналы горячего воздуха; 2 - канал подачи рециркулирующих газов; 3 - линзовый компенсатор; 4,5 - тангенциальные закручивающие лопатки; 6 - центральный канал подачи природного газа; 7 - пневмозатвор, препятствующий выбиванию топочных газов из горелки; 8 - разводка экранных труб вокруг амбразуры горелки; 9 - ствол для мазутной форсунки; 10 - газовый электрозапальник; 11 - импульсные линии для контроля за давлением воздуха.

Cтраница 1


Расположение плоско-пламенных горелок на своде методической печи.| Схемы печи с расположением теплогенератора вне рабочего пространства.| Схема плоско-пламенной горелки.  

Тангенциальный подвод воздуха к газу в этих горелках обеспечивает получение закрученного вокруг оси горелки потока, обеспечивающего растекание пламени вблизи поверхности огнеупорной футеровки.  

Тангенциальный подвод воздуха с высокой скоростью обеспечивает его интенсивное перемешивание с топливом, а наличие карборундовой обмазки способствует быстрому зажиганию и горению мазута.  


Горелки снабжены тангенциальным подводом воздуха, вызывающим закручивание воздушного потока при выходе из них, что способствует укорочению факела. Поэтому такие горелки работают в действительности не как длиннопламенные.  

В мельницах с тангенциальным подводом воздуха горячий воздух подается непосредственно в кожух, мельницы по всей его ширине тангенциально по отношению к поверхности ротора и в направлении вращения его. В мельницах с аксиально-тангенциальным подводом воздуха совмещены оба способа его подвода.  


В циклонной печи благодаря тангенциальному подводу воздуха происходит исключительно сильное перемешивание паров серы с воздухом и интенсивность сгорания Жидкая сера. Поэтому новые циклонные печи вытесняют форсуночные печи старого типа.  


Завихритель был убран и сделали тангенциальный подвод воздуха через улитку, обеспечивающий хорошее закручивание воздушного потока.  

Исследования воздушного сопротивления горелок при тангенциальном подводе воздуха, выполненные ИИГ АН УССР И. Я. Сигал показали, что простой тангенциальный подвод имеет меньшее сопротивление, чем улиточный при одинаковых степенях крутки. Кроме того, простой тангенциальный подвод требует меньших затрат на изготовление и конструктивно проще осуществим.  

Окружные скорости в вихревой камере с тангенциальным подводом воздуха по всей высоте возрастают при уменьшении радиуса вращения от начальной скорости до максимальной. Скорость потока у стенки, как правило, меньше, а при некоторых конструктивных соотношениях может быть равна скорости входа. Радиус, соответствующий максимальной скорости, приблизительно совпадает с радиусом выходной горловины.  

Температурные поля Е конической камере.| Изменение состава газа в зависимости от концентрациии топлива в кипящем слое.  

Дожигание этой пыли может быть организовано за счет тангенциального подвода воздуха в верхнюю часть конуса или в специальной циклонной камере с жидким шлакоудалением.  

Были исследованы две турбулентные горелки конструкции Укргипромеза с тангенциальным подводом воздуха и так называемая польская горелка, разработанная Гипромезом на основе чертежей Biprohut zabrze. Горелки Укргипромеза отличаются друг от друга конструкцией газового сопла. Одна горелка имеет укороченное газовое сопло с выходным отверстием в виде узкой кольцевой щели (рис. 2а), и перемешивание газа с воздухом начинается внутри горелки. Вдоль оси в центре газового сопла этой горелки расположена смотровая труба, в которую может быть вставлена мазутная форсунка или запальник.  

Полнота выгорания топлива, условия эксплуатационно надежной работы топки в значительной степени определяет расположение горелок. Наибольшее распространение для обычных однокамерных топок получило фронтальное (рис. 8.10, а), встречное (рис. 8.10,б) и угловое (рис. 8.10,в) расположение горелок.

Фронтальное расположение горелок и их примерный характер аэродинамики топки показаны на рис. 8.11, а. При выходе из отдельных горелок струи первоначально развиваются самостоятельно, а затем сливаются в общий поток. При движении к задней стенке струя подсасывает из окружающей среды топочные газы, масса ее значительно увеличивается, а концентрация окислителя снижается. При ударе факела о заднюю стенку может иметь место ее шлакование. В связи с этим фронтальное расположение горелок наиболее целесообразно применять в вихревых горелках с относительно коротким широким факелом.

Встречное расположение горелок (рис. 8.11,б и в) предполагает, что горелки могут располагаться как на противоположных боковых, так и на фронтальной и задней стенках, возможно встречно-лобовое и встречно-смещенное расположение горелок. При встречно-лобовой ориентации горелок (рис. 8.11,6) в топке получается концентрированный удар встречных потоков. Часть общего потока направляется в верхнюю половину топки, часть опускается в холодную воронку. При неравенстве импульсов возникает асимметричность течения в вертикальной плоскости и результативный факел приближается к одной из стен, что может вызвать ее шлакование.

При встречно-смещенной компоновке горелок по схеме МЭИ (рис. 8.11, в) горящие потоки взаимно проникают друг в друга. При этом имеет место лучшее заполнение факелом топочного объема, обеспечивается принудительный подвод теплоты к корню факела, улучшается выгорание топлива при бесшлаковочном режиме работы экранов. В случае применения встречно-смещенной компоновки горелок более целесообразными являются щелевые горелки.

При угловом расположении горелок возможны следующие схемы их установки (рис. 8.12): диагональная, блочная, тангенциальная. Такое размещение горелок ставит ряд конструктивных трудностей. Наблюдается также шлакование стенок. При тангенциальном расположении горелок при взаимодействии струй образуется единый закрученный поток, направляющийся вверх и вниз топочной камеры. По центру топки образуется область несколько пониженного давления, что стабилизирует положение факела. Наличие крутки потока сохраняется вплоть до выхода из топки. При вытянутой форме сечения топки в плане может иметь место искажение аэродинамики потока, сопровождающееся шлакованием стенок. Поэтому при тангенциальной компоновке горелок целесообразно, чтобы горизонтальное сечение топочной камеры по форме приближалось к квадратному.

Фронтальное, встречное и угловое расположение горелок по высоте топки могут размещаться в один-два и более ярусов. Количество горелок, размещенных в топке, определяется на основе следующих расчетов. Тепловая мощность топки Q тт, МВТ, определяется по выражению

где В р - общий расчетный расход топлива на котел, кг/с; Q р н -теплота сгорания топлива, МДж/кг.

Тепловая мощность горелки Q r , МВт, определяется аналогично:

где В г - расход топлива на одну горелку, кг/с.

Количество горелок

С увеличением паропроизводительности котла количество горелок соответственно увеличивается. Так, для котла производительностью 20,8 кг/с (75 т/ч) при тепловой мощности топки около 60 МВт применяют две-три вихревые горелки при фронтальном и две-четыре горелки при встречном их расположении; при угловой компоновке применяют четыре прямоточные горелки. Для котла производительностью 89 кг/с (320 т/ч) при тепловой мощности топки 290 МВт применяют 6-8 встречных или 16 угловых горелок. По конфигурации факела различают топки с U-образным факелом (рис. 8.13, а) и L-образным факелом (рис.8.13,6). Наибольшее распространение нашли топки с L-образным факелом. По способу удаления шлака различают пылеугольные топки с твердым (гранулированным) и жидким шлакоудалением.

Любые горелки служат для ввода в топку топлива и воздуха, последующего их перемешивания и для обеспечения устойчивого воспламенения топливовоздушной смеси. Другое название – горелочные устройства. Любые горелки должны удовлетворять требованиям экономичности, экологичности, технологичности и ремонтопригодности и надежности.

Конкретные требования:
1. Должны обеспечивать экономичное сжигание расчетных видов топлив во всем диапазоне нагрузок котла
2. Должны обеспечивать требуемые экологические показатели при работе на расчетных видах топлива
3. Конструкция горелок должна быть такова, чтобы обеспечивалось герметичное соединение с топкой
4. Горелки должны быть технологичными и ремонтопригодными
5. Горелки должны обеспечивать срок службы котла не менее 12000 часов без капитального ремонта

Выполнение требований 1 и 2 зависят не только от конструкции горелок но и от топочного устройства.

Классификация:
1. По виду сжигания топлива горелки бывают:
1.1. Пылеугольные
1.2. Газовые
1.3. Мазутные
1.4. Комбинированные
2. По аэродинамическому способу ввода компонентов горючей смеси:
2.1. Вихревые
2.2. Прямоточные

Под прямоточной горелкой понимается такая горелка, в которой потоки топлива и воздуха вводится в топку без закрутки. Формально, в выходном сечении она может иметь любую форму, но обычно, каналы, через которые вводятся потоки, прямоугольны в сечении и выходное сечение горелки тоже прямоугольное.

Типы прямоточных горелок:
a) Горелка с центральным вводом вторичного воздуха (с периферийным вводом пылевоздушной смеси). Обычно такие горелки используются для низкореакционных топлив.
b) Горелка с периферийным подводом вторичного воздуха (с центральным вводом П-В смеси). Используются для сжигания высокореакционных топлив.
a. Т.к. вторичный воздух в пределах этих горелок разворачивается на 90 градусов и попадает в вертикальный выходной канал с h>b, то в пределах поворота предусматривается направляющий лопаточный аппарат 4, позволяющий более равномерно распределить воздух по высоте выходного канала. — рассчитываются, чтобы неравномерность была минимальна.
c) ГПО — Горелка прямоточная, с односторонним подводом П-В смеси. Горелки ГПО разрабатывались специально для тангенциальной компоновки горелок в топке и поэтому используются только при этой компоновке. Они достаточно универсальны и поэтому применяются для любых видов топлив – как высоко- так и низко-реакционных. (15-12-4)
d) ГПЧг – Горелка прямоточная с чередующимися по высоте горизонтальными каналами. (15-12-5). Использование первой модификации – для высокореакционных топлив. Вторая модификация –специально для бурых углей.
e) ГПЧв – горелка прямоточная с чередующимися по высоте вертикальными каналами. ГПЧвр — горелка прямоточная с чередующимися по высоте вертикальными каналами и каналов рециркуляции. (15-12-6). Эти горелки предназначены для сжигания бурых углей. Большинство бурых углей – сильно шлакуюшее топливо и одновременно – они очень влажные, поэтому для бурых углей обычно используется газовая сушка топлива. Для того, чтобы в зоне активного горения не было шлакования экранов топки нужно, чтобы температуры в этой зоне были относительно невысоки, а в этом случае может оказаться полезным ввод в топку газов рециркуляции (горелки ГПЧвр). На ЗИО были разработаны унифицированные ряды этих горелок разной тепловой мощности. П-67 (Пп-2650-25-545БТ) ЗиО, работающих в составе блока 800МВт Березовской ГРЭС и сжигающий Березовский Б2. Эти котлы имеют габариты ~25х25х100м. На этих котлах установлено 32 горелки ГПЧвр в 4 яруса.

Все эти горелки целиком изготавливаются на заводе. Для проведения монтажа на них предусматриваются подсоединительные фланцы 8, для пристыковке к пыле- и воздухопроводам, а также крепежный фланец 5 для стыковки горелки с топкой. После проведения монтажа, на горелки снаружи наносится теплоизоляция и Ме обшивка для защиты теплоизоляции.

Горелки полного предварительного перемешивания (ГПП) предназначены для сжигания топлива в плоских параллельных струях и были разработаны на кафедре ПГС для сжигания торфа и подмосковного бурого угля. А последствии они использовались также для сжигания других бурых углей, а также некоторых каменных углей. ГПП применяются исключительно в сочетании с ММТ и гравитационным (шахтным) сепаратором. Горелка устанавливается в верхней части шахты и по первичному воздуху (П-В смеси является продолжением сепаратора. Вторичный воздух по каналам 1 подается в камеру смешения 6, при этом струи вторичного воздуха вытекают туда с большой скоростью и по этому эжектируют в камеру по каналам 3 П-В смесь из шахты. Внутри каналов вторичного воздуха установлены поворотные лопатки 7, которые позволяют получить на выходе из канала более равномерное распределение воздуха по высоте. Внизу канал вторичного воздуха закрыт рассекателем 2. Рассекатель позволяет улучшить аэродинамическую картину сечения и снизить сопротивление горелки; он также предохраняет нижнюю часть корпуса канала вторичного воздуха от абразивного износа. Существует две модификации ГПП: одноструйная (б) и двухструйная (а). Их применение связано с особенностями работы гравитационного сепаратора. В шахтном сепараторе, в зависимости от направления вращения ротора мельницы, существует область восходящего потока смеси и область сепарации. Область восходящего потока занимает примерно половину шахты и с этим обстоятельством связано использование одноструйных или двухструйных ГПП. Если двухструйную ГПП использовать в сочетании с ММТ, ось ротора которой расположена перпендикулярно фронту котла, то большая часть П-В смеси попадет в одну из двух амбразур, а во вторую попадет очень мало были, поэтому двухструйные ГПП обычно используют при расположении осей ММТ параллельно фронту котла, при этом в обе амбразуры попадает одинаковое количество пыли. Для одноструйных горелок расположение оси ротора не имеет значения, но обычно они используются при перпендикулярном расположении оси ротора к фронту котла. На практике ГПП применяются на котлах паропроизводительностью 50..320т/ч. На котлах производительностью =100т/ч обычно используют 3 ММТ с перпендикулярными осями и одноструйными горелками. Иногда на больших котлах (около 320 т/ч) используют двухструйные горелки – это получается из-за того, что высота одноструйных горелок была бы очень большой, в частности, три мельницы и двухструйные горелки используются на колах ТП – 208 (Еп – 670 – 13.8 – 545БТ, двухкорпусные) на Шатурской ГРЭС.

При установке трех мельниц, оси крайних мельниц повернуты под углом относительно средней мельницы. Это позволяет уменьшить воздействие крайних труб на боковые экраны топки и тем самым понизить вероятность их шлакования. Во вторых, между мельницами образуются ремонтные зоны, позволяющие в том числе вынуть ротор. Обычно этот угол порядка 15-20град. При использовании двух ММТ и двухструйных горелок, оси струн тоже наклонены друг к другу для уменьшения шлакования боковых стен.

Кроме рассмотренных прямоточных горелок существует еще:
. Плоскофакельные горелки
. Горелки ударного типа

Достоинства:
1. Конструктивно просты, по сравнению с вихревыми горелками
2. Имеют меньшее аэродинамическое сопротивление, чем вихревые горелки, следовательно расход электроэнергии на собственные нужды меньше.
3. Топки, оборудованные прямоточными горелками отличаются меньшим выходом оксидов азота NOx, чем топки с вихревыми горелками.

Недостатки:
1. Худшая, чем в вихревых, организация перемешивания потока.
2. Меньшая единичная мощность
3. Прямоточные горелки с большей степенью чувствительны к способу их компоновки в топки. Ошибка при выборе компоновочных размеров для прямоточных горелок опаснее, чем для вихревых. Это связано с механизмом стабилизации процесса горения (механизм воспламенения П-В смеси). В прямоточных горелках стабилизация процесса горения в основном протекает за счет внешней эжекции продуктов сгорания.
4. Прямоточные горелки за исключение ГПО и плоско-факельных горелок менее универсальны по топливу, чем вихревые.
5. Как правило, у прямоточных горелок более высокая дальнобойность, чем у вихревых горелок. Исключение – плоско-факельные горелки и горелки ударного типа.