Открытие клетки и клеточной теории. Клеточная теория


Впервые клетки, а точнее клеточные стенки (оболочки) мертвых клеток, были обнаружены в срезах пробки с помощью микроскопа, английским ученым Робертом Гуком в 1665 году. Именно он и предложил термин «клетка».
Позднее голландец А. Ван Левенгук открыл множество одноклеточных организмов в каплях воды, а в крови людей красные кровяные клетки (эритроциты).

То, что помимо клеточной оболочки все живые клетки имеют внутреннее содержимое полужидкое студенистое вещество, ученые смогли открыть только только в начале XIX века. Это полужидкое студенистое вещество назвали протоплазмой. В 1831 году было открыто клеточное ядро, и все живое содержимое клетки — протоплазму стали подразделять на ядро и цитоплазму.

Позднее по мере совершенствования техники микроскопии в цитоплазме были обнаружены многочисленные органоиды (слово «органоид» имеет греческие корни и означает «похожий на орган»), и цитоплазму стали подразделять на органоиды и жидкую часть — гиалоплазму.

Известные немецкие ученые ботаник Матиас Шлейден и зоолог Теодор Шванн, активно работавшие с клетками растений и животных, пришли к выводу, что все клетки имеют похожее строение и состоят из ядра, органоидов и гиалоплазмы. Позднее в 1838-1839 г. они сформулировали основные положения клеточной теории . Согласно этой теории клетка является основной структурной единицей всех живых организмов, как растительных, так и животных, а процесс роста организмов и тканей обеспечивается процессом образования новых клеток.

Через 20 лет немецким анатомом Рудольфом Вирховым было сделано еще одно важное обобщение: новая клетка может возникнуть только из предшествующей клетки. Когда выяснелось, что сперматозоид и яйцеклетка — тоже клетки, соединяющиеся друг с другом в процессе оплодотворения, стало понятно, что жизнь из поколения в поколение — это непрерывная последовательность клеток. По мере развития биологии и открытия процессов деления клеток (митоза и мейоза) клеточная теория дополнялась все новыми положениями. В современном виде основные положения клеточной теории можно сформулировать так:

1. Клетка — основная структурно-функциональная и генетическая единица всех живых организмов и наименьшая единица живого.

Этот постулат был полностью доказан современной цитологией. Кроме того, клетка представляет собой открытую для обмена с внешней средой, саморегулирующуюся и самовоспроизводящуюся систему.

В настоящее время ученые научились выделять различные компоненты клетки (вплоть до отдельных молекул). Многие из этих компонентов могут даже функционировать самостоятельно, если создать им соответствующие условия. Так, например, сокращения актино-миозинового комплекса может быть вызвано добавлением в пробирку АТФ. Искусственный синтез белов и нуклеиновых кислот тоже стало реальностью в наше время, но все это лишь только части живого. Для полноценной работы всех этих комплексов, входящих в состав клетки, нужны еще дополнительные вещества, ферменты, энергия и т.д. И только клетки являются самостоятельными и саморегулирующимися системами, т.к. имеют все необходимое для поддержания полноценной жизнедеятельности.

2. Строение клеток, их химический состав и основные проявления процессов жизнедеятельности сходны у всех живых организмов (одноклеточных и многоклеточных).

В природе существует два типа клеток: прокариотические и эукариотические. Несмотря на их некоторые различия это правило для них справедливо.
Общий принцип организации клеток определяется необходимостью осуществить ряд обязательных функций, направленных на поддержание жизнедеятельности самих клеток. Например, у всех клеток есть оболочка, которая с одной стороны изолируюет ее содержимое от окружающей среды, с другой — контролирует поток веществ в клетку и из нее.

Органоиды или органеллы — постоянные специализированные структуры в клетках живых организмов. Органоиды разных организмов имеют общий план строения и работают по единым механизмам. Каждый органоид отвечает за определенные функции, которые жизненно необходимы для клетки. Благодаря органоидам в клетках происходит энергетический обмен, биосинтез белка, появляется способность к воспроизводству. Органоиды стали сопоставлять с органами многоклеточного организма, отсюда и появился этот термин.

У многоклеточных организмов хорошо прослеживается значительное разнообразие клеток, которое связано с их функциональной специализацией. Если сравнить, например, мышечные и эпительные клетки, можно заметить, что они отличаются друг от друга преимущественным развитием разных видов органоидов. Клетки приобретают черты функциональной специализации, которые необходимы для выполнения конкретных функций, в результате клеточной дифференцировки в процессе онтогенеза.

3. Любая новая клетка может образоваться только в результате деления материнской клетки.

Размножение клеток (т.е. увеличение их количества) будь то прокариоты или эукариоты может происходить только делением уже существующих клеток. Делению обязательно предшествует процесс предварительного удвоения генетического материала (репликация ДНК). Началом жизни организма является оплодотворенная яйцеклетка (зигота), т.е. клетка образующаяся в результате слияния яйцеклетки и сперматозоида. Все остальное разнообразие клеток в организме — результат бесчисленного числа ее делений. Таким образом, можно сказать, что все клетки в организме родственны, развиваются одинаковым образом из одного источника.

4. Многоклеточные организмы — живые организмы, состоящие из множества клеток. Большая часть этих клеток дифференцирована, т.е. различаются по своему строению, выполняемым функциям и образуют различные ткани.

Многоклеточные организмы — это целостные системы специализированных клеток, регулируемыми межклеточными, нервными и гуморальными механизмами. Следует различать многоклеточность и колониальность. У колониальных организмов нет дифференцированных клеток, а следовательно, нет разделения тела на ткани. В многоклеточные организмы помимо клеток входят еще неклеточные элементы, например, межклеточное вещество соединительной ткани, костный матрикс, плазма крови.

В итоге можно сказать, что вся жизнедеятельность организмов от их рождения до смерти: наследственность, рост, обмен веществ, болезни, старение и т.п. — все это многообразные аспекты деятельности различных клеток организма.

Клеточная теория оказала огромное влияние на развитие не только биологии, но и естествознания в целом, так как она установила морфологическую основу единства всех живых организмов, дала общебиологическое объяснение жизненных явлений. По своему значению, клеточная теория не уступает таким выдающимся достижениям науки, как закон превращения энергии или эволюционная теория Ч. Дарвина. Итак, клетка — основа организации представителей царств растений, грибов и животных — возникла и развивалась в процессе биологической эволюции.

В 1838 - 1839 гг. два немецких ученых - ботаник М. Шлейден и зоолог Т. Шванн, собрали все доступные им сведения и наблюдения в единую теорию, утверждавшую, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ.

Спустя примерно 20 лет после провозглашения Шлейденом и Шванном клеточной теории другой немецкий ученый - врач Р. Вирхов сделал очень важное обобщение: клетка может возникнуть только из предшествующей клетки. Академик Российской Академии наук Карл Бэр открыл яйцеклетку млекопитающих и установил, что все многоклеточные организмы начинают свое развитие из одной клетки и этой клеткой является зигота.

Современная клеточная теория включает следующие основные положения:

Клетка - основная единица строения и развития всех живых организмов, наименьшая единица живого.

Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

Размножение клеток происходит путем их деления, т.е. каждая новая клетка образуется в результате деления исходной (материнской) клетки. Положения о генетической непрерывности относятся не только к клетке в целом, но и к некоторым из ее более мелких компонентов - к генам и хромосомам, а также к генетическому механизму, обеспечивающему передачу вещества наследственности следующему поколению,

В сложных многоклеточных организмах клетки специализированы по выполняемой им функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

3 Типы существующих клеток и их общая структура.

Все клетки делят на две общие группы: -- одну группу составляют бактерии и цианобактерии, которых называют доядерными (прокариотическими), так как у них нет оформленного ядра и некоторых других органоидов; -- другую группу (их большинство) составляютэукариоты , клетки которых содержат ядра и различные органоиды, выполняющие специфические функции. (см. Классификацию живых организмов по Маргелису и Шварцу (Рисунок 2)

Прокариотическая клетка - самая простая и, судя по данным палеонтологической летописи, это, вероятно, первая клетка, возникшая 3-3,5 млрд лет тому назад. Она имеет малые размеры (например, клетки микоплазмы достигают 0,10-0,25 мкм).

Эукариотическая клетка организована гораздо сложнее прокариотической. Из эукариотических клеток в данном курсе изучаются животная и растительная клетки,клетка плесени и клетка дрожжей. Представителями прокариотов является бактериальная клетка.

Таблица 1. Сопоставление некоторых черт прокариотной и эукариотной клеточной организации

Признак Прокариотная клетка Эукариотная клетка
Организация генетического материала нуклеоид (ДНК не отделена от цитоплазмы мембраной), состоящий из одной хромосомы; митоз отсутствует ядро (ДНК отделена от цитоплазмы ядерной оболочкой), содержащее больше одной хромосомы; деление ядра путем митоза
Локализация ДНК в нуклеоиде и плазмидах, не ограниченных элементарной мембраной в ядре и некоторых органеллах
Цитоплазматически органеллы отсутствуют имеются
Рибосомы в цитоплазме 70S-типа 80S-типа
Цитоплазматические органеллы отсутствуют имеются
Движение цитоплазмы отсутствует часто обнаруживается
Клеточная стенка (там, где она имеется) в большинстве случаев содержит пептидогликан пептидогликан отсутствует
Жгутики нить жгутика построена из белковых субъединиц, образующих спираль каждый жгутик содержит набор микротрубочек, собранны в группы: 2·9-2

Клетка эукариотов состоит из трех неразрывно связанных между собой частей: плазматической мембраны (плазмалеммы), цитоплазмы и ядра. У растительной клетки поверх мембраны имеется наружная стенка из целлюлозы и других материалов, выполняющих важную роль, которая представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток, пропускает воду, соли, молекулы многих органических веществ. У большинства клеток (особенно животных) наружная сторона мембраны покрыта слоем полисахаридов и гликопротеидов (гликокаликс). Гликокаликс - очень тонкий, эластичный слой (в световой микроскоп не виден). Он, как и целлюлозная стенка растений, осуществляет прежде всего функцию непосредственной связи клеток с внешней средой, однако, он не обладает опорной функцией, как у стенки растительной клетки. Отдельные участки мембраны и гликокаликса могут дифференцироваться и превращаться в микроворсинки (обычно на поверхности клетки, которая контактирует с окружающей средой), межклеточные соединения и связи, находящиеся между клетками ткани и имеющими различную структуру. Одни из них играют механическую роль (межкле-точные соединения), а другие участвуют в межклеточных обменных процессах, изменяя электрический потенциал мембраны. Итак, каждая клетка состоит из цитоплазмы и ядра, снаружи она покрыта мембраной (плазмолеммой), разграничивающей одну клетку от соседних. Пространство между мембранами соседних клеток заполнено жидким межклеточным веществом.

Между клетками растений и животных нет принципи­альных различий по структуре и функциям. Некоторые отличия касаются лишь строения их мембран, клеточных стенок и отдельных органелл. На рисунке можно легко обнаружить отличия животной и растительной клеток

Как бы ни были сходны животная и растительная клетки –между ними имеются значительные отличия. Основным отличием является отсутствие в растительной клетке клеточного центра с центриолями, который имеется в животной клетке и вакуолей с водой, которые занимают Существенным отличием названных клеток является присутствие в растительной клетке хлоропластов, которые обеспечивают фотосинтез растений и другие функции.

достаточно большое пространство в клетке и обеспечивают этим тургор растений.

Рисунок 25 – Отличия животной и растительной клетки

В таблице 2 представлены отличительные признаки растительных и животных клеток.

4 Строение биологических мембран.

Основной компонент мембран – фосфолипиды - образуются при присоединении к глицерину вместо третьей жирной кислоты – фосфорной кислоты


Рисунок 3 – Липид (схематичное изображение)

Жирные кислоты представляют из себя длинную или короткую цепочку из атомов углерода и водорода, иногда содержащие двойные связи. Они обладают выраженными гидрофобными свойствами.

Рисунок 4 - Схема жирных кислот

Фосфолипиды, являясь по своей химической структуре сложным эфиром многоатомных спиртов с жирными кислотами содержат в качестве добавочных структурных элементов остаток фосфорной кислоты и гидрофильное основание. Головка фосфолипида, включая кроме остатка спирта -глицерида, остаток фосфорной кислоты и основание, обладает выраженными гидрофильными свойствами.

В силу выраженной полярности, фосфолипиды в воде образуют структуру, представленную на рисунке 5.

Рисунок 5 - Капля жира в воде (А) и фосфолипидный бислой мембран (В)

Липиды и белки. В основе мембраны лежит двойной слой липидов и фосфолипидов. Хвосты молекул обращены в двойном слое друг к другу, а полярные головки остаются снаружи, образуя гидрофильные поверхности.

Молекулы белков не образуют сплошного слоя, (рисунок 6) они располагаются в слое липидов, погружаясь на разную глубину (есть периферические белки, часть белков пронизывает мембрану насквозь, часть погружена в слой липидов) и выполняя различные функции. Молекулы белков и липидов подвижны, что обеспечивает динамичность плазматической мембраны.

Гликолипиды и холестерол. В мембранах содержатся также гликолипиды и холестерол. Гликолипиды - это липиды с присоединенными к ним углеводами. Как и у фосфолипидов, у гликолипидов имеются полярные головы и неполярные хвосты. Холестерол близок к липидам; в его молекуле также имеется полярная часть.

Гидрофильная головка фосфолипида

Гидрофобный хвост фосфолипида

Рисунок 6 - Схема фосфолипидного слоя мембраны с встроенными белками.

В 1972 г. Сингер и Николсон предложилижидкостно-мозаичную модель мембраны (рисунок 7), согласно которой белковые молекулы плавают в жидком фосфолипидном бислое. Они образуют в нем как бы своеобразную мозаику, но поскольку бислой этот жидкий, то и сам мозаичный узор не жестко фиксирован; белки могут менять в нем свое положение. Покрывающая клетку тонкая мембрана напоминает пленку мыльного пузыря - она тоже все время «переливается». Ниже суммированы известные данные, касающиеся строения и свойств клеточных мембран.

Рисунок 7 - А. Трехмерное изображение жидкостно-мозаичной модели мембраны. Б. Плосткостное изображение. Гликопротеины и гликолипиды связаны только с наружной поверхностью мембраны.

1. Толщина мембран составляет около 7 нм.

2. Основная структура мембраны - фосфолипидный бислой.

3. Гидрофильные головы фосфолипидных молекул обращены наружу - в сторону водного содержимого клетки и в сторону наружной водной среды.

4. Гидрофобные хвосты обращены внутрь - они образуют гидрофобную внутреннюю часть бислоя.

5. Фосфолипиды находятся в жидком состоянии и быстро диффундируют внутри бислоя.

6. Жирные кислоты, образующие хвосты фосфолипидных молекул, бывают насы­щенными и ненасыщенными. В ненасыщенных кислотах имеются изломы, что делает упаковку бислоя более рыхлой. Следовательно, чем больше степень ненасыщенности, тем более жидкую консистенцию имеет мембрана.

7. Большая часть белков плавает в жидком фосфолипидном бислое, образуя в нем своеобразную мозаику, постоянно меняющую свой узор.

8. Белки сохраняют связь с мембраной, поскольку в них есть участки, состоящие из гидрофобных аминокислот, взаимодействующих с гидрофобными хвостами фосфолипидов: то есть – они склеиваются, а вода из этих мест выталкивается. Другие участки белков гидрофильны. Они обращены либо к окружению клетки, либо к ее содержимому, т. е. к водной среде.

9. Некоторые мембранные белки лишь частично погружены в фосфолипидный бислой, тогда как другие пронизывают его насквозь.

10. К некоторым белкам и липидам присоединены разветвленные олигосахаридные цепочки, играющие роль антенн. Такие соединения называются соответственно гликопротеинами и гликолипидами.

11. В мембранах содержится также холестерол. Подобно ненасыщенным жирным кислотам он нарушает плотную упаковку фосфолипидов и делает их более жидкими. Это важно для организмов, живущих в холодной среде, где мембраны могли бы затвердевать. Холестерол делает мембраны также более гибкими и вместе с тем более прочными. Без него они бы легко разрывались.

12. Две стороны мембраны, наружная и внутренняя, различаются и по составу, и по функциям.

Фосфолипидный бислой, как уже было сказано, составляет основу структуры мембраны. Он также ограничивает проникновение полярных молекул и ионов в клетку и выход их из нее. Ряд функций выполняют и другие компоненты мембран.

5 Функции биологических мембран. Транспорт через мембрану

Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают отделение клеток от окружающей среды. Помимо мембран общего назначения в клетках существуют внутренние мембраны, которые ограничивают клеточные органеллы.

Регулируя обмен между клеткой и средой, мембраны обладают рецепторами, которые воспринимают внешние стимулы. В частности, примерами восприятия внешних стимулов являются восприятие света, движение бактерий к источнику пищи, ответ клеток-мишеней на гормоны, например, на инсулин. Некоторые из мембран одновременно сами генерируют сигналы (химические и электрические). Замечательной особенностью мембран является то, что на них происходит превращение энергии. В частности, на внутренних мембранах хлоропластов происходит фотосинтез, а на внутренних мембранах митохондрий осуществляется окислительное фосфорилирование .

Компоненты мембран находятся в движении. Построенным, главным образом из белков и липидов, мембранам присущи различные перестройки, что определяет раздражимость клеток – важнейшее свойство живого.

С конца прошлого века известно, что клеточные мембраны ведут себя не так, как полупроницаемые мембраны, способные пропускать лишь воду и другие малые молекулы, например молекулы газов. Клеточные мембраны обладаютизбирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жир­ные кислоты, глицерол и ионы, причем сами мембраны активно регулируют этот процесс - одни вещества пропускают, а другие нет.

Появление в научной среде в середине XIX века клеточной теории, авторами которой являлись Шлейден и Шванн, стало настоящей революцией в развитии всех без исключения направлений биологии.

Еще один творец клеточной теории, Р. Вирхов, известен таким афоризмом: «Шванн стоял на плечах Шлейдена». Великий русский физиолог Иван Павлов, имя которого известно всем, сравнивал науку со стройкой, где все взаимосвязано и для всего имеются свои предшествующие события. «Постройку» клеточной теории разделяют с официальными авторами все ученые-предшественники. На чьих же плечах стояли они?

Начало

Создание теории о клетке началось около 350 лет назад. Известный английский ученый Роберт Гук в 1665 году изобрел прибор, который назвал микроскопом. Игрушка так его занимала, что он рассматривал все, что попадалось под руку. Результатом его увлечения стала книга «Микрография». Гук написал ее, после чего увлеченно начал заниматься совсем другими исследованиями, а про свой микроскоп совсем забыл.

Но именно запись в его книге под №18 (он описал ячейки обычной пробки и назвал их клетками - англ. cells) прославила его как первооткрывателя клеточного строения всего живого.

Роберт Гук забросил увлечение микроскопом, но его подхватили ученые с мировыми именами - Марчелло Мальпиги, Антони ван Левенгук, Каспар Фридрих Вольф, Ян Эвангелиста Пуркинье, Роберт Броун и другие.

Усовершенствованная модель микроскопа дает возможность французу Шарлю-Франсуа Бриссо де Мирбелю сделать вывод, что все растения образованы из специализированных клеток, объединенных в ткани. А Жан Батист Ламарк переносит идею о тканном строении и на организмы животного происхождения.

Маттиас Шлейден

Маттиас Якоб Шлейден (1804-1881) в двадцать шесть лет обрадовал семью тем, что бросил перспективную адвокатскую практику и пошел учиться на медицинский факультет того же Геттинского университета, в котором получил образование юриста.

Сделал он это не зря - в 35 лет Маттиас Шлейден становится профессором Йенского университета, изучает ботанику и физиологию растений. Его цель - узнать, как образуются новые клетки. В своих работах он правильно определил главенство ядра в образовании новых клеток, но заблуждался на счет механизмах процесса и отсутствия сходства клеток растений и животных.

После пяти лет трудов он пишет статью под названием «К вопросу о растениях», доказывая клеточное строение всех частей растений. Рецензентом статьи, кстати, был физиолог Иоганн Мюллер, ассистентом которого в то время трудится будущий автор клеточной теории Т. Шванн.

Теодор Шванн

Шванн (1810-1882) с детства мечтал стать священником. В Боннский университет он пошел учиться на философа, выбрав эту специализацию как более близкую к будущей карьере священнослужителя.

Но юношеский интерес к наукам естественным победил. Теодор Шванн окончил университет на медицинском факультете. Всего пять лет он проработал ассистентом физиолога И. Мюллера, но за эти годы он сделал такое количество открытий, что хватило бы нескольким ученым. Достаточно сказать, что в желудочном соке он обнаружил пепсин, в нервных окончаниях - специфическую оболочку волокна. Начинающий исследователь заново открыл дрожжевые грибы и доказал их причастность к процессам брожения.

Друзья и соратники

Научный мир Германии того времени не мог не познакомить будущих соратников. Оба вспоминали встречу за ланчем в маленьком ресторанчике в 1838 году. Шлейден и Шванн непринужденно обсуждали текущие дела. Шлейден рассказал о наличии ядер в клетках растений и его способе рассмотреть клетки с помощью микроскопического оборудования.

Это сообщение перевернуло жизнь обоих - Шлейден и Шванн становятся друзьями и много общаются. Уже через год упорного изучения животных клеток появляется труд «Микроскопические исследования о соответствии в структуре и росте животных и растений»(1839). Теодор Шванн сумел увидеть сходство в строении и развитии элементарных единиц животного и растительного происхождения. А главный вывод - жизнь находится в клетке!

Именно этот постулат вошел в биологию как клеточная теория Шлейдена и Шванна.

Революция в биологии

Как и фундамент постройки, открытие клеточной теории Шлейдена и Шванна запустило цепную реакцию открытий. Гистология, цитология, патологическая анатомия, физиология, биохимия, эмбриология, эволюционные учения - все науки начали активно развиваться, обнаруживая новые механизмы взаимодействия в живой системе. Немец, как Шлейден и Шванн, основатель патанатомии Рудольф Вирхов в 1858 году дополняет теорию положением «Всякая клетка от клетки» (на латинском - Omnis cellula е cellula).

А россиянин И. Чистяков (1874) и поляк Э. Стразбургер (1875) открывают митотическое (вегетативное, не половое) деление клеток.

Из всех этих открытий, как из кирпичиков, строится клеточная теория Шванна и Шлейдена, основные постулаты которой неизменны и сегодня.

Современная клеточная теория

Хотя за сто восемьдесят лет с того времени, когда Шлейден и Шванн формулировали свои постулаты, получены экспериментальные и теоретические знания, заметно расширившие границы познаний о клетке, основные положения теории почти такие же и выглядят вкратце следующим образом:

  • Единицей всего живого является клетка - самообновляющаяся, саморегулирующаяся и самовоспроизводящаяся (тезис единства происхождения всех живых организмов).
  • Все организмы на планете имеют схожее строение клеток, химический состав и процессы жизнедеятельности (тезис гомологичности, единства происхождения всего живого на планете).
  • Клетка - это система биополимеров, способная воспроизводить себе подобное из не подобного себе (тезис основного свойства жизни как определяющего фактора).
  • Самовоспроизведение клеток осуществляется путем деления материнской (тезис наследственности и преемственности).
  • Многоклеточные организмы формируются из специализированных клеток, образующих ткани, органы, системы, которые находятся в тесной взаимосвязи и взаимной регуляции (тезис организма как системы с тесными межклеточными, гуморальными, нервными взаимосвязями).
  • Клетки морфологически и функционально разнообразны и приобретают специализацию в многоклеточных организмах в результате дифференциации (тезис о тотипотентности, о генетической равнозначности клеток многоклеточной системы).

Окончание "строительства"

Прошли годы, в арсенале биологов появился электронный микроскоп, исследователи подробно изучили митоз и мейоз клеток, строение и роль органелл, биохимию клетки и даже расшифровали ДНК-молекулу. Немецкие ученые Шлейден и Шванн вместе со своей теорией стали опорой и фундаментом для последующих открытий. Но совершенно точно можно сказать, что система знаний о клетке еще не окончена. И каждое новое открытие, кирпичик к кирпичику, продвигает человечество к познанию организации всего живого на нашей планете.

Российскому физиологу Ивану Павлову принадлежит сравнение науки со стройкой, где знания, как кирпичики, создают фундамент системы. Так и клеточную теорию с ее основателями - Шлейденом и Шванном - разделяют множество натуралистов и ученых, их последователей. Один из творцов теории клеточного строения организмов Р. Вирхов однажды сказал: «Шванн стоял на плечах Шлейдена». Именно о совместном труде этих двух учёных и пойдёт речь в статье. О клеточной теории Шлейдена и Шванна.

Матиас Якоб Шлейден

В возрасте двадцати шести лет юный юрист Матиас Шлейден (1804-1881) решил изменить свою жизнь, чем совсем не порадовал семью. Бросив адвокатскую практику, он переводится на медицинский факультет Гейдельбергского университета. А уже в 35 лет становится профессором кафедры ботаники и физиологии растений Йенского университета. Свою задачу Шлейден видел в разгадке механизма размножения клеток. В своих работах он верно выделил главенство ядра в процессах размножения, но не видел сходства в строении клеток растений и животных.

В статье «К вопросу о растениях» (1844) он доказывает общность в строении всех независимо от места их расположения. Рецензию к его статье пишет немецкий физиолог Иоганн Мюллер, ассистентом которого в тот период был Теодор Шванн.

Несостоявшийся священник

Теодор Шванн (1810-1882) учился на философском факультете Боннского университета, так как считал именно это направление наиболее близким к своей мечте - стать священником. Однако интерес к естествознанию был настолько силен, что окончил Теодор университет уже на факультете медицинском. упомянутого И. Мюллера, за пять лет он совершил открытий столько, что хватило бы на нескольких ученых. Это и обнаружение в желудочном соке пепсина, и оболочки нервных волокон. Именно он доказал непосредственное участие дрожжевых грибов в процессе брожения.

Соратники

Научное сообщество тогдашней Германии не было слишком большим. Поэтому встреча немецких ученых Шлейдена и Шванна была предрешена. Состоялась она в кафе в один из обеденных перерывов, в 1838 году. Будущие соратники обсуждали свои работы. Матиас Шлейден с Теодором Шванном поделился своей находкой распознавания клеток по ядрам. Повторив опыты Шлейдена, Шванн изучает клетки животного происхождения. Они много общаются и становятся друзьями. И уже через год появляется совместный труд «Микроскопические исследования о сходстве в строении и развитии элементарных единиц животного и растительного происхождения», который и сделал Шлейдена и Шванна основателями учения о клетке, ее строении и жизнедеятельности.

Теория о клеточном строении

Главный постулат, который отражали работы Шванна и Шлейдена,- это то, что жизнь находится в клетке всех живых организмов. Работы еще одного немца - патологоанатома Рудольфа Вирхова - в 1858 году окончательно вносят ясность в Именно он дополнил работы Шлейдена и Шванна новым постулатом. «Всякая клетка от клетки»,- поставил он точку в вопросах самозарождения жизни. многие считают соавтором, и некоторые источники употребляют высказывание "клеточная теория Шванна, Шлейдена и Вирхова".

Современное учение о клетке

Сто восемьдесят лет, прошедшие с того момента, добавили экспериментальных и теоретических знаний о живых существах, но основой так и осталась клеточная теория Шлейдена и Шванна, основные постулаты которой следующие:


Точка бифуркации

Теория немецких ученых Матиаса Шлейдена и Теодора Шванна стала переломным моментом в развитии науки. Все отрасли знаний - гистология, цитология, молекулярная биология, анатомия патологий, физиология, биохимия, эмбриология, эволюционное учение и многие другие - получили мощный толчок в развитии. Теория, дающая новое понимание во взаимодействиях внутри живой системы, открыла новые горизонты для ученых, которые тут же ими воспользовались. Россиянин И. Чистяков (1874) и польско-немецкий биолог Э. Страсбургер (1875) раскрывают механизм митотического (бесполого) деления клеток. Следуют открытие хромосом в ядре и их роли в наследственности и изменчивости организмов, расшифровка процесса репликации и трансляции ДНК и ее роли в биосинтезе белка, энергетического и пластического обмена в рибосомах, гаметогенеза и образования зиготы.

Все эти открытия кирпичиками входят в здание науки о клетке как структурной единице и основе всего живого на планете Земля. Отрасли знаний, фундамент которой был заложен открытиями друзей и соратников, каковыми были немецкие ученые Шлейден и Шванн. Сегодня на вооружении биологов электронные микроскопы с разрешаемостью в десятки и сотни раз и сложнейший инструментарий, методы радиационного маркирования и изотопного облучения, технологии генного моделирования и искусственная эмбриология, но клетка все еще остается самой загадочной структурой жизни. Все новые и новые открытия о ее структуре и жизнедеятельности приближают научный мир к крыше этого здания, но никто не предскажет, закончится ли его строительство и когда. А пока здание не достроено, и все мы ждём новых открытий.

Клетки открыты в 1665 г. Р. Гуком. Клеточная теория, одно из величайших открытий 19-го века, была сформулирована в 1838 г. немецкими учёными М. Шлейденом и Т. Шванном, а в дальнейшем развита и дополнена Р. Вирховым. Клеточная теория включает в себя следующие положения:

1.Клетка является наименьшей единицей живого.

2.Клетки разных организмов имеют сходное строение, что свидетельствует о единстве живой природы.

3.Размножение клеток происходит путём деления исходной, материнской клетки (постулат: каждая клетка - из клетки).

4.Многоклеточные организмы состоят из сложных ансамблей клеток и их производных, объединённых в системы тканей и органов, а последние - в целостный организм с помощью нервных, гуморальных и иммун­ных механизмов регуляции.

Клеточная теория объединила представления о клетке как наименьшей структурной, генетической и функциональной единице животных и растительных организмов. Она вооружила биологию и медицину пониманием общих закономерностей строения живого.

Меры длины, применяемые в цитологии

1 мкм (микрометр) – 10 –3 мм (10 –6 м)

1 нм (нанометр) – 10 –3 η (10 –9 м)

1 A (амстрем) – 0,1 нм (10 –10 м)

Общая организация животных клеток

Все клетки организма человека и животных имеют общий план строения. Они состоят из цитоплазмы и ядра и отделены от окружающей среды клеточной оболочкой.

Организм человека состоит примерно из 10 13 клеток, подразделяющихся более чем на 200 типов. В зависимости от своей функциональной специализации, различные клетки организма могут значительно отличаться по своей форме, величине и внутреннему устройству. В организме человека встречаются круглые (клетки крови), плоские, кубические, призматические (эпителиальные), веретеновидные (мышечные), отростчатые (нервные) клетки. Их размеры колеблются от 4-5 мкм (клетки-зёрна мозжечка и малые лимфоциты) до 250 мкм (яйцеклетка). Отростки некоторых нервных клеток имеют длину более 1 метра (у нейронов спинного мозга, отростки которых идут до кончиков пальцев конечностей). При этом форма, величина и внутреннее строение клеток всегда наилучшим образом соответствуют выполняемым ими функциям.

Структурные компоненты клетки

Цитоплазма – часть клетки, отделённая от окружающей среды клеточной оболочкой и включающая в себя гиалоплазму , органеллы и включения .

Все мембраны в клетках имеют общий план строения, который обобщён в понятии универсальная биологическая мембрана (рис. 2- 1А).

Универсальная биологическая мембрана образована двойным слоем молекул фосфолипидов общей толщиной 6 мкм. При этом гидрофобные хвосты молекул фосфолипидов обращены внутрь, навстречу друг другу, а полярные гидрофильные головки обращены наружу мембраны, навстречу воде. Липиды обеспечивают основные физико-химические свойства мембран, в частности, их текучесть при температуре тела. В этот двойной слой липидов встроены белки. Их подразделяют на интегральные (пронизывают весь бислой липидов), полуинтегральные (проникают до половины ли­пидного бислоя), или поверностные (располагаются на внутренней или наружной поверхности липидного бислоя).

Рис. 2-1. Строение биологической мембраны (А) и клеточ­ной оболочки (Б).

1. Молекула липида.

2. Бислой липидов.

3. Интегральные белки.

4. Полуинтегральные белки.

5. Периферические белки.

6. Гликокаликс.

7. Подмембранный слой.

8. Микрофиламенты.

9. Микротрубочки.

10. Микрофибриллы.

11. Молекулы гликопротеинов и гликолипидов.

(По О. В. Волковой, Ю. К. Елецкому).

При этом белковые молекулы располагаются в липидном бислое мозаично и могут «плавать» в «липидном море» наподобие айсбергов, благодаря текучести мембран. По своей функции эти белки могут быть структурными (поддерживать определённую структуру мембраны), рецепторными (образовывать рецепторы биологически активных веществ), транспортными (осуществляют транспорт веществ через мембрану) и ферментными (катализируют определённые химические реакции). Эта наиболее признанная в настоящее время жидкостно-мозаичная модель биологической мембраны была предложена в 1972 г. Singer и Nikolson.

Мембраны выполняют в клетке разграничительную функцию. Они разделяют клетку на отсеки, компартменты, в которых процессы и химические реакции могут идти независимо друг от друга. Например, агрессивные гидролитические ферменты лизосом, способные расщеплять большинство органических молекул, отделены от остальной цитоплазмы с помощью мемраны. В случае её разрушения происходит самопереваривание и гибель клетки.

Имея общий план строения, разные биологические мембраны клетки различаются по своему химическому составу, организации и свойствам, в зависимости от функций структур, которые они образуют.