График температуры 80 60. Температура теплоносителя в зависимости от наружной температуры


Введение

Полная обменная емкость анионита определяется при его нейтрализации раствором HCl или H 2 SO 4 в статических или динамических условиях и выражается в эквивалентах на 1г сухого или набухшего анионита.

Реакции обмена анионов / А-анионит/ имеют вид:

А. /OH/ +H /Cl = A.OH.Cl +H O;

A. /OH/ + H /SO = A.SO +2 H O .

Помимо обменной емкости к основным показателям пригодности анионита относят: обесцвечивающую способность, степень набухания, способность к старению, нерастворимость в воде и органических растворителях, простоту регенерации, термическую и механическую прочность.

Полная обменная емкость различных марок анионитов, используемых в сахарной промышленности, может быть 1 - 10 мг-экв/г. Применяемый для обесцвечивания сахарных растворов отечественный макропористый анионит АВ-17-2П имеет полную обменную емкость по 0,1 н. раствору HCl 3,8 мг-экв/г, а по 0,1 н. раствору NaCl 3,4 мг-экв/г.

Цель анализа - оценить качество анионита для обесцвечивания сахарных растворов.

Принцип метода анализа основан на титровании непоглощенного анионитом раствора кислоты 0,1 н. раствором NaOH.

Реактивы :

0,1 н. растворы HCl и NaOH.

Приборы и материалы:

Стеклянная колонка диаметром 18 мм, высотой 250 мм с оттянутым в нижней части концом, на который надевают резиновую трубку с винтовым зажимом;

Стеклянная воронка;

Мерная колба на 500 см 3 ;

Бюретка для титрования;

Химический стакан;

Анионообменная смола.

Ход определения

10г приготовленного для анализа анионита в ОН - форме переводят водой в стеклянную колонку диаметром 18 мм с тампоном из стеклянной ваты на дне, а избыток воды спускают через резиновую трубку с винтовым зажимом.

После этого через слой анионита в течение 30 мин равномерно пропускают 400 см 3 0,1 н. раствора HCl, поддерживая уровень раствора над слоем анионита равным 1 см. Затем его промывают двойным по объему анионита количеством воды. Фильтрат и промывные воды собирают в мерную колбу и доводят их объем до 500 см 3 . Отбирают из общего объема в стакан 50 см 3 и титруют 0,1 н. раствором NaOH.



Расчеты:

1. Для получения сравнимых результатов обменную емкость анионита выражают также, как и катионита через мг-экв/г сухого ионита.

Поэтому, если 1 г абсолютно сухого анионита поглотит

см 3 0,1 н. раствора HCl, а 1 см 3 этого раствора содержит 0,1 мг-экв/г, то полная обменная емкость анионита Е А может быть рассчитана из формулы

,

где E А - полная обменная емкость анионита, мг-экв/г абсолютно сухого ионита;

a - количество фильтрата, собранное для титрования, см 3 ;

V О – количество 0,1 н. раствора HCl, пропущенного через анионит, см 3 ;

V b - общее количество фильтрата, см 3 ;

g - количество сухого анионита, взятого для определения его емкости, г;

W – влажность анионита, %. Определяют методом высушивания в течение 3-х часов при 95-100˚С.

2. Емкость анионита может быть выражена и в процентах по HCl. В этом случае учитывают то, что 1 см 3 0,1 н. раствора HCl содержит 0,0036 г HCl, расчет E ведут по формуле

6.3. Регенерация ионообменных смол

Введение

Отработанные в рабочем цикле ионообменные смолы после их промывки водой подвергают регенерации (восстановлению).

Катиониты восстанавливают слабыми растворами HCl и H SO

K.Na + H /SO = K.H+ Na /SO ;

KNa + HCl = KH + NaCl.

Для восстановления анионитов применяются слабые растворы NaOH, KOH, NaCl и др.

A.OH.Cl + Na /OH = A./OH/ + Na /Cl .

В конце цикла регенерации кислотность регенерата из катионообменника или щелочность регенерата из анионообменника должны приближаться к кислотности и щелочности регенерационных растворов. Окончание регенерации устанавливают путем титрования.

Цель анализа - восстановить обменную емкость ионитов.

Принцип метода анализа основан на титровании регенерационных растворов из катионообменника 0,1 н. раствора NaOH, а из анионообменника - 0,1 н. раствором HCl.

Реактивы:

5%-ный раствор HCl;

4%-ный раствор NaOH;

0,1 н. раствор NaOH;

0,1 н. раствор HCl.

Приборы и материалы:

Стеклянные колонки с катионообменной смолой и анионообменной смолой.

Ход определения

После промывания смолы водой в колонках проводят регенерацию: катионита – 5%-ным раствором HCl, а анионита - 4%-ным раствором NaOH, пропуская их со скоростью 20 см 3 /мин.

Окончание регенерации катионита устанавливают титрованием его регенерационных растворов 0,1 н. раствором NaOH , а анионообменника – 0,1 н. раствором HCl.

После регенерации катионит отмывают водой до нейтральной или слабокислой реакции, а анионит – до нейтральной или слабощелочной реакции.

Контрольные вопросы

1. Что представляет собой ионный обмен?

2. Что такое ионообменные смолы?

3. Какие ионообменные смолы применяют в сахарном производстве?

4. Расскажите о статической и динамической обменной емкости ионитов?

5. Что определяет полная обменная емкость ионитов?

6. В каких единицах выражается полная обменная емкость?

7. С какой целью используют иониты в сахарном производстве?

8. На каком принципе основано определение полной обменной емкости ионитов?

9. Для чего проводят регенерацию ионообменных смол?

10. На каком принципе основано выполнение регенерации ионитов?

11. Как определяют окончание процесса регенерации ионитов?

Лабораторная работа № 7

Анализ сточных вод сахарного производства

Введение

В пищевой промышленности наибольшее количество воды потребляется сахарными заводами. Если для нужд свеклосахарного завода использовать только чистую воду из естественных водоемов, не возвращая части отработавшей воды в производство, то общий расход промышленной (свежей) воды составит 1200-1500% к массе свеклы. Сократить расход свежей воды до 150-250% к массе свеклы можно при условии использования на многих участках сахарного завода отработавшую воду по схеме оборотного водоснабжения. Артезианская вода расходуется только на промывание сахара-песка в центрифугах, для раскачки утфеля Ι кристаллизации и нужд заводской лаборатории.

Сточные (отработавшие) воды сахарных заводов разнообразны по своему физико-химическому составу, степени загрязнения и способу требуемой очистки. По степени загрязнения их классифицируют на три категории. Каждую категорию подразделяют на две подгруппы: А и Б, из которых вода подгруппы А по качеству лучше подгруппы Б.

Сточные воды сахарного производства содержат большое количество органических веществ, и их очистка в естественных условиях связана с определенными трудностями, требует значительных земляных площадей и может оказывать отрицательное влияние на окружающую среду. В последние годы разработан ряд способов биологической очистки и соответствующее оборудование для их реализации. Предлагаемые в настоящее время способы очистки в основном базируются на анаэробных и аэробных процессах разложения примесей сточных вод сахарных и крахмалопаточных заводов.

Современная технология очистки сточных вод заключается в последовательном отделении содержащихся в них примесей механическим, анаэробным и аэробным способами. При этом анаэробный способ является новым процессом в технологии очистки сточных вод. Анаэробный процесс очистки требует для его проведения выдерживания температур в интервале 36-38 0 С, что связано с дополнительным расходом тепла. Его отличие от широко распространенного аэробного способа состоит прежде всего в минимальном приросте биоосадка и превращении углеводсодержащих примесей в биогаз, основным компонентом которого является метан.

Аэробный процесс

С 6 Н 12 О 6 + О 2 ---- СО 2 + Н 2 О + Биоосадок + Тепло (6360 кДж).

Анаэробный процесс

С 6 Н 12 О 6 ---- СН 4 + СО 2 + Биоосадок + Тепло (0,38 кДж).

Анаэробные способы подразделяют на четыре основные группы по типу используемых в процессах очистки реакторов:

С рециркуляцией биоосадка (активного ила):

Со слоем анаэробного осадка и внутренним его осаждением;

С инертными наполнителями для биоосадка;

Специальные.

Сточные воды, подвергаемые анаэробной очистке, должны содержать как можно меньше механических примесей и веществ, ингибирующих метаногенный процесс. В них должна пройти гидролизно-кислотная фаза и кроме этого сточные воды должны иметь определенную величину рН и температуру в диапазоне 36-38 0 С.

Считается, что анаэробный способ очистки экономически выгоден для сточных вод с загрязнением более 1,2-2,0 г/дм 3 БПК 5 (биологическое потребление кислорода). Верхний предел загрязнения при этом не ограничен. Он может равняться и 100 г/дм 3 ХПК (химическое потребление кислорода).

К ним относят:

А) Избыточную свежую воду из напорного резервуара, от охлаждения утфеля в утфелемешалках, от насосов и других установок с температурой ниже 30°С. Для возврата в производство эти воды не требуют очистки;

Б) Барометрическую, аммиачную и другие с температурой выше 30°С. Для возврата этих вод требуется предварительное охлаждение и аэрация.

К сточным водам II категории относят транспортерно-моечную воду из гидравлических транспортеров и свекломоек. Для повторного использования этих вод в производстве требуется их предварительная механическая очистка путем отстаивания в специальных отстойниках.

К сточным водам III категории относят: жомопрессовую воду, ее отстой, лаверные воды, осадок транспортерно-моечной воды, жидкий фильтрационный осадок, хозяйственно-бытовые, фекальные и другие вредные воды. Для очистки вод III категории требуются биологические и комбинированные способы очистки в соответствующих отстойниках и на полях фильтрации.

На действующих сахарных заводах за основу принимают следующие основные показатели баланса воды (% к массе свеклы): забор свежей воды из водоема – 164; количество оборотных вод I категории – 898; II категории –862; сточных вод III категории – 170 или 110 при условии отстаивания суспензии транспортерно-моечного осадка в вертикальных отстойниках-сгустителях Ш1-ПОС-3 и возврате декантата в контур рециркуляции вод II категории.

Для вновь строящихся свеклосахарных заводов потребление свежей воды на производственные нужды не должно превышать 80% к массе свеклы, а количество сбрасываемых очищенных производственных сточных вод в природные водоемы – не более 75% к массе свеклы.

При анализе качества промышленных и сточных вод определяют их температуру, цвет, запах, прозрачность, характеристику осадка, содержание взвешенных веществ, сухой остаток, рН, общую щелочность (кислотность), окисляемость, биохимическое потребление кислорода (БПК), химическое потребление кислорода (ХПК), концентрацию аммиака, нитратов, хлоридов и другие показатели.

Цель работы - освоить методы контроля качества промышленной (свежей) и сточных вод.

Обменная емкость ионитов является их важнейшей технологической характеристикой. Способность к ионному обмену определена, как известно, наличием в ионитах функциональных групп, которые у катионитов носят кислотный характер -SO 3 H (сульфогруппа), -COOH (карбоксильная группа), у анионитов - основной. Монофункциональные катионы, содержащие сульфогруппы, являются сильнокислотными (сильно диссоциирующими), а содержащие карбоксильные группы - слабокислотными (слабо диссоциирующими). Сильнокислотные катиониты(например, КУ-2-8) осуществляют обмен ионов практически при любых значениях pH среды, так как их функциональные группы диссоциируют, как и сильные кислоты, при любыхзначениях pH. Слабокислотные функциональные группы в кислой среде практически остаются в недиссоциированном состоянии, что резко уменьшает способность карбоксильных катионитов (типа КБ) к ионному обмену в таких условиях, поэтому их рекомендуется применять при обработке растворов с pH ³ 7. Отечественный катионит "сульфоуголь" содержит оба типа функциональных групп, поэтому его относят к среднекислотным катионитам.

Функциональными группами анионитов являются различные амины (-NH 2 , =NH, ºN), расположенные в порядке возрастания силы их основности, а также группы четвертичного аммониевого основания (-NR 3 OH). При присоединении первых трех групп образуются слабоосновные аниониты, а группа -NR 3 OH придает аниониту сильноосновной характер. Аминогруппы способны присоединять ион водорода с образованием комплексов -NH 3 , =NH 2 (потенциалообразующих ионов) с последующим образованием диффузного слоя противоионов. Из-за низкой основности функциональных аминогрупп слабоосновные аниониты работоспособны лишь в кислых средах и могут осуществлять ионный обмен только с анионами сильных кислот(Cl - , SO 4 2- , NO 3 -).

Сильноосновные (сильно диссоциирующие) аниониты с группой -NR 3 OH вступают в обменные реакции с анионами как сильных, так и слабых кислот (например, HCO 3 - , HSiO 3) в широкой области значений pH. Среди сильноосновных анионитов различают - аниониты типа 1 с функциональной группой -N(CH 3) 3 OH и типа 2 с группой -N(CH 3) 2 · (CH 2 · CH 2 OH)OH. Их отличие состоит в том, что анионит типа 2 хуже поглощает анион HSiO 3 - , но имеет более высокую обменную емкость и лучшую регенерируемость по сравнению с анионитом типа 1.

Возвращаясь к понятию "обменная емкость" ионитов, отметим, что на практике различают полную обменную емкость и рабочую обменную емкость . Полная обменная емкость ионита, выраженная в эквивалентах на единицу объема смолы, определяется числом привитых к матрице функциональных групп. Примерные значения полных обменных емкостей (E п) для ионитов различных типов приведены в табл. 4.2.

Экономичный расход энергоресурсов в отопительной системе, может быть достигнут, если выполнять некоторые требования. Одним из вариантов, является наличие температурной диаграммы, где отражается отношение температуры, исходящей от источника отопления к внешней среде. Значение величин дают возможность оптимально распределять тепло и горячую воду потребителю.

Высотные дома подключены в основном к центральному отоплению. Источники, которые передают тепловую энергию, являются котельные или ТЭЦ. В качестве теплоносителя используется вода. Её нагревают до заданной температуры.

Пройдя полный цикл по системе, теплоноситель, уже охлаждённый, возвращается к источнику и наступает повторный нагрев. Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём.

Регулирование тепла от центральной системы можно производить двумя вариантами:

  1. Количественный. В этом виде изменяется расход воды, но температуру она имеет постоянную.
  2. Качественный. Меняется температура жидкости, а расход её не изменяется.

В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды. И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше.

Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).

График зависимости может быть различный.

Конкретная диаграмма имеет зависимость от:

  1. Технико-экономических показателей.
  2. Оборудования ТЭЦ или котельной.
  3. Климата.

Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией.

Ниже показан пример схемы, где Т1 – температура теплоносителя, Тнв – наружного воздуха:

Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника. Он считается высоким, когда возвращённая жидкость поступает охлаждённая.

Стабильность схемы зависит от проектных значений расхода жидкости высотными домами. Если увеличивается расход через отопительный контур, вода будет возвращаться не охлаждённой, так как возрастёт скорость поступления. И наоборот, при минимальном расходе, обратная вода будет достаточно охлаждена.

Заинтересованность поставщика, конечно, в поступлении обратной воды в охлаждённом состоянии. Но для уменьшения расхода существуют определённые пределы, так как уменьшение ведёт к потерям количества тепла. У потребителя начнётся опускаться внутренний градус в квартире, который приведёт к нарушению строительных норм и дискомфорту обывателей.

От чего зависит?

Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.

Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.

Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.

Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.

График температуры 95-70:

Температурный график 95-70

Как рассчитывается?

Выбирается метод регулирования, затем делается расчёт. Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды.

Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».

Исходными данными на теплогенерирующую станцию будут:

  1. Тнв – величина наружного воздуха.
  2. Твн – воздух в помещении.
  3. Т1 – теплоноситель от источника.
  4. Т2 – обратное поступление воды.
  5. Т3 – вход в здание.

Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.

При этом, на выходе они будут иметь 70°C.

Полученные результаты сносятся в единую таблицу, для последующего построения кривой:

Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.

Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру. Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.

Регулировка


Регулятор отопления

Автоматический контроль обеспечивается регулятором отопления.

В него входят следующие детали:

  1. Вычислительная и согласующая панель.
  2. Исполнительное устройство на отрезке подачи воды.
  3. Исполнительное устройство , выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
  4. Повышающий насос и датчик на линии подачи воды.
  5. Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.

Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.

Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.

Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.

Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.

Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.

Плюсы регулятора:

  1. Жёстко выдерживается температурная схема.
  2. Исключение перегрева жидкости.
  3. Экономичность топлива и энергии.
  4. Потребитель, независимо от расстояния, равноценно получает тепло.

Таблица с температурным графиком

Режим работы котлов зависит от погоды окружающей среды.

Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.

В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:

Температура наружного воздуха Температура сетевой воды в подающем трубопроводе Температура сетевой воды в обратном трубопроводе
+10 70 55
+9 70 54
+8 70 53
+7 70 52
+6 70 51
+5 70 50
+4 70 49
+3 70 48
+2 70 47
+1 70 46
0 70 45
-1 72 46
-2 74 47
-3 76 48
-4 79 49
-5 81 50
-6 84 51
-7 86 52
-8 89 53
-9 91 54
-10 93 55
-11 96 56
-12 98 57
-13 100 58
-14 103 59
-15 105 60
-16 107 61
-17 110 62
-18 112 63
-19 114 64
-20 116 65
-21 119 66
-22 121 66
-23 123 67
-24 126 68
-25 128 69
-26 130 70

СНиП

Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.

Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.