«космические растения», или огород в невесомости. Растения в космосе


Человечеству потребовались все знания, собранные учёными за сотни лет, чтобы начать космические полёты. И тогда человек столкнулся с новой проблемой - для колонизации других планет и дальних перелётов нужно разработать замкнутую экосистему, в том числе - обеспечить космонавтов едой, водой и кислородом. Доставлять еду на Марс, который находится за 200 миллионов километров от Земли, дорого и сложно, логичнее будет найти такие способы производства продуктов, которые легко реализовать в полёте и на Красной планете.

Как на семена влияет микрогравитация? Какие овощи будут безвредны, если их вырастить в богатой тяжёлыми металлами почве Марса? Как обустроить плантацию на борту космического корабля? Учёные и космонавты уже более пятидесяти лет ищут ответы на эти вопросы.

На иллюстрации - российский космонавт Максим Сураев обнимает растения в установке «Лада» на борту Международной космической станции, 2014 год.

Константин Циолковский в «Целях звездоплавания» писал: «Вообразим себе длинную коническую поверхность или воронку, основание или широкое отверстие которой прикрыто прозрачной шаровой поверхностью. Она прямо обращена к Солнцу, а воронка вращается вокруг своей длинной оси (высоты). На непрозрачных внутренних стенках конуса - слой влажной почвы с насаженными в ней растениями». Так он предлагал искусственно создавать гравитацию для растений. Растения должны быть подобраны плодовитые, мелкие, без толстых стволов и не работающих на солнце частей. Так колонизаторов можно частично обеспечить биологически активными веществами и микроэлементами и регенерировать кислород и воду.

В 1962 году главный конструктор ОКБ-1 Сергей Королёв ставил задачу: «Надо бы начать разработку «Оранжереи (ОР) по Циолковскому», с наращиваемыми постепенно звеньями или блоками, и надо начинать работать над «космическими урожаями».


Рукопись К.Э. Циолковского «Альбом космических путешествий», 1933 год.

СССР вывел на орбиту первый искусственный спутник Земли 4 октября 1957 года, спустя двадцать два года после смерти Циолковского. Уже в ноябре того же года в космос отправили дворняжку Лайку, первую из собак, которые должны были открыть путь в космос людям. Лайка погибла от перегрева всего за пять часов, хотя полёт рассчитали на неделю - на это время хватило бы кислорода и еды.

Учёные предположили, что проблема возникла из-за генетически заложенной ориентации - проросток должен тянуться к свету, а корень - в противоположную сторону. Они усовершенствовали «Оазис», и следующая экспедиция взяла на орбиту новые семена.

Лук вырос. Виталий Севастьянов сообщил на Землю, что стрелки достигли десяти-пятнадцати сантиметров. «Какие стрелки, какого лука? Понимаем, это шутка, мы же вам давали горох, а не луковицы», - говорили с Земли. Бортинженер ответил, что из дома космонавты прихватили две луковицы, чтобы посадить их сверх плана, и успокоил учёных - горошины почти все взошли.

Но растения отказывались цвести. На этой стадии они погибали. Такая же судьба ждала тюльпаны, которые в установке «Лютик» на Северном полюсе распустились, а в космосе - нет.

Зато лук можно было есть, что успешно делали в 1978 году космонавты В. Коваленок и А. Иванченков: «Вот хорошо поработали. Может быть, теперь нам в награду и луковицу разрешат съесть».


Техника - молодёжи, 1983-04, страница 6 . Горох в установке «Оазис»

Космонавты В. Рюмин и Л. Попов в апреле 1980 года получили установку «Малахит» с цветущими орхидеями. Орхидеи крепятся в коре деревьев и в дуплах, и учёные посчитали, что они могут быть менее подвержены геотропизму - способности органов растений располагаться и расти в определённом направлении относительно центра земного шара. Цветки через несколько дней опали, но при этом у орхидей образовались новые листья и воздушные корни. Ещё чуть позже советско-вьетнамский экипаж из В. Горбатко и Фам Туай привёзли с собой подрощенный арабидопсис.

Растения не хотели цвести. Семена всходили, но, например, орхидея не зацвела в космосе. Учёным нужно было помочь растениям справиться с невесомостью. Это делали в том числе с помощью электростимуляции корневой зоны: учёные считали, что электромагнитное поле Земли может влиять на рост. Ещё один способ предполагал описанный Циолковским план по созданию искусственной гравитации - растения выращивались в центрифуге. Центрифуга помогла - ростки ориентировались вдоль вектора центробежной силы. Наконец космонавты добились своего. В «Светоблоке» зацвёл Арабидопсис.

Слева на изображении ниже - оранжерея «Фитон» на борту «Салют-7». Впервые в этой орбитальной оранжерее Резуховидка Таля (Арабидопсис) прошла полный цикл развития и дала семена. Посредине - «Светоблок», в которой на борту «Салют-6» Арабидопсис впервые зацвёл. Справа - бортовая оранжерея «Оазис-1А» на станции «Салют-7»: она была оснащена системой дозированного полуавтоматического полива, аэрации и электростимулирования корней и могла перемещать вегетационные сосуды с растениями относительно источника света.


«Фитон», «Светоблок» и «Оазис-1А»


Установка «Трапеция» для исследования роста и развития растений.


Наборы с семенами


Бортовой журнал станции «Салют-7», зарисовки Светланы Савицкой

На станции «Мир» была установлена первая в мире автоматическая оранжерея «Свет». Российские космонавты в 1990-2000-х годах провели в этой оранжерее шесть экспериментов. Они растили салаты, редис и пшеницу. В 1996-1997 годах Институт медико-биологических проблем РАН планировал вырастить семена растений, полученные в космосе - то есть поработать с двумя поколениями растений. Для эксперимента выбрали гибрид дикой капусты высотой около двадцати сантиметров. У растения был один минус - космонавтам нужно было заниматься опылением.

Результат был интересный - семена второго поколения в космосе получили, и они даже взошли. Но растения выросли до шести сантиметров вместо двадцати пяти. Маргарита Левинских, научный сотрудник Института медико-биологических проблем РАН, рассказывает , что ювелирную работу по опылению растений выполнял американский астронавт Майкл Фоссум.


Видео Роскосмоса о выращивании растений в космосе. На 4:38 - растения на станции «Мир»

В апреле 2014 года грузовой корабль Dragon SpaceX доставил на Международную космическую станцию установку для выращивания зелени Veggie, а в марте астронавты начали тестировать орбитальную плантацию. Установка контролирует свет и поступление питательных веществ. В августе 2015 в меню астронавтов включили свежую зелень , выращенную в условиях микрогравитации.


Выращенный на Международной космической станции салат


Так плантация на космической станции может выглядеть в будущем

В российском сегменте Международной космической станции действует оранжерея «Лада» для эксперимента «Растения-2» . В конце 2016 или начале 2017 года на борту появится версия «Лада-2». Над этими проектами работает Институт медико-биологических проблем РАН.

Космическая растениеводство не ограничивается экспериментами в невесомости. Человеку для колонизации других планет придётся развивать сельское хозяйство на грунте, который отличается от земного, и в атмосфере, имеющей иной состав. В 2014 году биолог Майкл Маутнер вырастил спаржу с картофелем на метеоритном грунте. Чтоб получить пригодную для выращивания почву, метеорит был размолот в порошок. Опытным путём он сумел доказать, что на грунте внеземного происхождения могут произрасти бактерии, микроскопические грибы и растения. Материал большинства астероидов содержит фосфаты, нитраты и иногда воду.


Спаржа, выросшая на метеоритном грунте

В случае с Марсом, где много песка и пыли, измельчение породы не понадобится. Но возникнет другая проблема - состав почвы. В грунте Марса есть тяжёлые металлы, повышенное количество которых в растениях опасно для человека. Учёные из Голландии имитировали марсианскую почву и с 2013 года вырастили на ней десять урожаев нескольких видов растений.

В результате эксперимента учёные выяснили, что содержание тяжёлых металлов в выращенных на имитированном марсианском грунте горохе, редисе, ржи и помидорах не опасно для человека. Картофель и другие культуры учёные продолжают исследовать.


Исследователь Вагер Вамелинк инспектирует растения, выращиваемые на имитированной марсианской почве. Фото: Joep Frissel/AFP/Getty Images


Содержание металлов в урожае, собранном на Земле и на симуляциях почвы Луны и Марса

Одной из важных задач является создание замкнутого цикла жизнеобеспечения. Растения получают углекислый газ и отходы жизнедеятельности экипажа, взамен отдают кислород и производят еду. Учёные проверяли возможность использования в пищу одноклеточной водоросли хлореллы, содержащей 45% белка и по 20% жиров и углеводов. Но эта в теории питательная еда не усваивается человеком из-за плотной клеточной стенки. Существуют способы решения данной проблемы. Можно расщеплять клеточные стенки технологическими методами, используя термообработку, мелки помол или другие способы. Можно брать с собой разработанные специально для хлореллы ферменты, которые космонавты будут принимать с едой. Учёные могут и вывести ГМО-хлореллу, стенку которой человеческие ферменты смогут расщепить. Хлореллой для питания в космосе сейчас не занимаются, но используют в замкнутых экосистемах для производства кислорода.

Эксперимент с хлореллой проводили на борту орбитальной станции «Салют-6». В 1970-е годы ещё считали, что пребывание в микрогравитации не оказывает отрицательного влияния на человеческий организм - слишком было мало информации. Изучить влияние на живые организмы пытались и с помощью хлореллы, жизненный цикл которой длится всего четыре часа. Её удобно было сравнивать с хлореллой, выращенной на Земле.



Прибор ИФС-2 предназначался для выращивания грибов, культур тканей и микроорганизмов, водных животных.

С 70-х годов в СССР проводили эксперименты по замкнутым системам. В 1972 году началась работа «БИОС-3» - эта система действует и сейчас . Комплекс оснащён камерами для выращивания растений в регулируемых искусственных условиях - фитотронами. В них выращивали пшеницу, сою, салат чуфу, морковь, редис, свёклу, картофель, огурцы, щавель, капусту, укроп и лук. Учёные смогли достичь почти на 100% замкнутый цикл по воде и воздуху и до 50-80% - по питанию. Главные цели Международного центра замкнутых экологических систем - изучить принципы функционирования таких систем различной степени сложности и разработать научные основы их создания.

Одним из громких экспериментов, симулирующих перелёт к Марсу и возвращение на Землю, был «Марс-500» . В течение 519 дней шесть добровольцев находились в замкнутом комплексе. Эксперимент организовали Рокосмос и Российская академия наук, а партнёром стало Европейское космическое агентство. На “борту корабля” были две оранжереи - в одной рос салат, в другой - горох. В данном случае целью было не вырастить растения в приближенных к космическим условиям, а выяснить, насколько растения важны для экипажа. Поэтому дверцы оранжереи заклеили непрозрачной плёнкой и установили датчик, фиксирующий каждое открывание. На фото слева член экипажа «Марс-500» Марина Тугушева работает с оранжереями в рамках эксперимента.

Ещё один эксперимент на «борту» «Марс-500» - GreenHouse. В видео ниже член экспедиции Алексей Ситнев рассказывает об эксперименте и показывает оранжерею с различными растениями. Добавить метки

Выращивание в космосе растений связано с притягательной, сегодня еще романтической, стороной освоения Вселенной человеком: - с путешествиями в дальний космос. Продуктивные космические оранжереи должны будут в таких полетах давать космонавтам кислород и пищу, а также перерабатывать (вместо «неэкономного» выброса за борт) отходы их жизнедеятельности.

Но дело тут и в другом. Человеку всегда будет нужна привычная ему земная среда. И, уходя в безоглядные космические дали, он обязательно возьмет с собой частицу родной планеты, станет заботливо выхаживать растения, включит их в свой космический интерьер. Это поможет ему сохранять психологическое равновесие. Уже сегодня наблюдение за зелеными ростками, уход за ними - любимое занятие космонавтов.

Космоботаника старше пилотируемой космонавтики. Ветка традесканции, комнатного цветкового растения, летала на орбиту еще до Гагарина, в одном из испытательных полетов будущего корабля «Восток». К нашему времени в космосе побывали представители многих растении: лук, горох, пшеница, кукуруза, капуста, укроп, салат.

«Оазис» - так назвали установки для выращивания высших растений. По космическим масштабам, это крупные приборы. Летавший на «Союзе-6» «Оазис» имел массу около 20 килограммов и габариты 455х520 миллиметров. Таким был островок растительной жизни в космической пустыне. Главная его часть - культивационный блок, в котором, собственно, и происходит выращивание растений. Произрастает посев в сосудах, на дне которых вместо привычной почвы - вкладыш, пропитанный питательным раствором.

Для нормального развития растений требуется хорошая освещенность. Поэтому установка имеет свой светильник, заменяющий растениям Солнце. Движение воздуха создает вентилятор - без этого в невесомости не обойтись. Ведь привычного нам на Земле перемешивания воздушных слоев - подъема теплых потоков и опускания холодных ввиду разницы в их весе - здесь нет.

Полив растений - процедура особая. Вода на станции хранится в специальном баке, из которого насосом подается к корням. Они, кстати, тоже нуждаются в вентиляции, поэтому время от времени проветриваются.

Вот сколько сегодня требуется всяческих ухищрений, чтобы устроить огород или сад в космосе. Вначале дело шло не столь благополучно, как хотелось бы: растения принимались расти вроде бы нормально, а потом быстро чахли, гибли. Удалось добиться цветения лишь одного из бобовых - арабидопсиса, крошечного мелкоцветкового растения, очень неприхотливого в земных условиях.

Некоторые специалисты даже поговаривали, что страшного в этом ничего нет: в космосе и не обязательно выращивать растения по полному циклу, от семени до семени; можно ограничиться получением зеленой массы наподобие выращивания кукурузы до стадии молочно-восковой спелости в умеренных и северных зонах территории Советского Союза. А новый посадочный материал легко доставлять с Земли, благо семена много места не занимают и сохраняются в течение долгого времени.

Но если растения в космосе нормально не развиваются - значит, что-то на орбите их не устраивает. А если это «что-то» в конце концов скажется на здоровье космонавтов? Оптимисты утверждали: растения на орбите плохо себя чувствуют потому, что мы пока еще не научились правильно ухаживать за ними. Сам человек сумел же приспособиться к невесомости, хотя под ее воздействием в его организме происходит значительная перестройка: жидкости перемещаются в верхнюю часть тела, уменьшается объем циркулирующей крови, меняется водно-солевой баланс; эти и другие сдвиги, в свою очередь, ведут к изменениям в работе сердечно-сосудистой системы, в мышечной и костной ткани. Тем не менее с помощью различных средств профилактики (физических упражнений и специальных костюмов, о которых мы уже упоминали) и сбалансированного рациона питания удается компенсировать отсутствие привычной организму среды. В каком-то смысле человеку в космосе легче, чем растению: он может сознательно регулировать свою жизнедеятельность, восполнять в своем организме недостающие последнему продукты питания, подвергать его компенсирующим физическим воздействиям.

Долго и настойчиво работали специалисты над совершенствованием методов космического растениеводства и наконец добились своего. Космонавты Анатолий Березовой и Валентин Лебедев в полете на станции «Салют-7» вырастили в при боре «Фитон» (древнегреческое слово, означающее «растение») из семян арабидопсиса, посеянных в космосе, растения, которые дали семена!

Труден путь земледелия в космосе. Но разве был он легок в свое время и на Земле, разве он чрезвычайно прост и теперь на нашей планете? Первобытный человек испытал на себе угрозу голода и вымирания, прежде чем догадался перейти от собирательства готовых «даров природы» к земледелию (и от охоты к скотоводству). Прогнозы-фантазии о космических оранжереях с могучими плодами, не гнущими (в невесомости) ветвей, где энергия Солнца обильна и круглосуточна, оказались не так легко реализуемы. Но оранжереи в космосе будут! Принципиальную возможность их создания доказал маленький арабидопсис.

Кстати сказать, зеленая поверхность всех растений нашей планеты раз в триста превышает поверхность самой Земли и сопоставима с площадью поверхности планеты-гиганта Юпитера. Так что растения - поистине космические существа, живущие рядом с нами и очень активно использующие энергию ближайшей к нам звезды, то есть нашего Солнца.

До сих пор мы говорили о транспортировании земной жизни в космос, об искусственном её там культивировании. А нет ли в необозримых просторах Вселенной какой-то иной жизни - внеземного происхождения. Средствами космонавтики пока не обнаружено ничего живого ни в открытом космическом пространстве, ни на других планетах Солнечной системы. Астрономия тоже пока не засвидетельствовала признаков жизни в космосе за пределами Солнечной системы.

Участники первых американских лунных экспедиций подвергались строгому карантину по возвращении на Землю, чтобы предотвратить занесение на нашу планету предполагавшихся лунных микробов с неизвестными свойствами и потенциально крайне опасных именно ввиду неизвестности их свойств и, следовательно, средств борьбы с ними, Однако предосторожности оказались излишними: безжизненна, стерильна Луна. Это не помешало, правда, тому, что, как показали последующие эксперименты, земные семена - капусты, моркови, салата, редиса - прекрасно всходят на стерильном лунном грунте, доставленном на Землю. Одно голландское любительское общество по выращиванию тюльпанов даже просило горстку «лунной земли» у академии наук СССР, чтобы создать новый сорт прославленного в этой стране цветка.

Не оказалось жизни также на Венере. Спускаемые аппараты советских автоматических станций «Венера» показали: температура и давление на поверхности «утренней звезды» такие, что ничто живое их не выдержит.

Не найдена жизнь и на «красной планете» - Марсе, хотя именно там до недавнего времени предполагалось существование не только жизни, но и высокоразвитой цивилизации. Старый вопрос: «Есть ли жизнь на Марсе?» получил отрицательный ответ. Но теперь возникает другой вопрос: «Будет ли жизнь на Марсе?». Современная наука не исключает положительного ответа.

Советские биологи и техники создали наземную установку «Искусственный Марс». В ней воспроизведены природные условия (грунт, температуры, состав и давление разреженной атмосферы, сравнительно интенсивное ультрафиолетовое облучение Солнцем), реально существующие на Марсе и ставшие известными благодаря информации, полученной от автоматических станций и их спускаемых аппаратов. Оказалось, что бактерии, в отличие от животных и растений, вполне могут выжить в марсианских условиях. Это подтверждает принципиально важное предположение ученых о том, что «хрупкая» жизнь в земной атмосфере и в земной водной среде (эпитет «хрупкий» родился при взгляде на нашу планету и её биосферу из космоса) не столь уж хрупка.

Но главным остается принципиальная доказанность возможности существования и развития в космосе различных видов земной жизни. Жизнь способна на многое. Из многообразия её свойств мы бы выделили её космическую устремленность и, можно даже сказать, космическую сущность.

«Я надеюсь, что мои работы, может быть, скоро, а может быть, и в отдаленном будущем дадут обществу горы хлеба и бездну могущества», - писал Циолковский. Могуществом человека уже отмечен космический век. Будет произрастать и хлеб в космосе. Однако космонавтика нацелена прежде всего на содействие тому, чтобы «горы хлеба» всходили на Земле. Знамение развивающегося космического века состоит в том, что космонавтика все больше и больше поворачивается лицом к нашей собственной планете.

Смогут ли земляне когда-нибудь засеивать поля на других планетах? Чтобы можно было вслед за космонавтами и мечтателями пропеть, что «и на Марсе будут яблони цвести»? Возможно, совсем скоро мы ответим на этот вопрос. А пока - давайте поговорим о некоторых конкретных космических исследованиях, которые ставили своей целью изучение поведения растений в условиях гравитации.

Эта работа публикуется в рамках конкурса научно-популярных статей , проведенного на конференции «Биология - наука 21 века» в 2015 году.

Наверное, у многих возник вопрос: неужели у растений тоже есть поведение? Разве это свойство живых существ не является прерогативой представителей исключительно животного мира? Оказывается - нет! Представьте себе, у растений тоже есть свои «фишки», в том числе: чувствительность к внешним раздражителям, разные рецепторные процессы, специфические реакции на свет, температуру, силу тяжести. И - что очень любопытно - растения обладают удивительной способностью определять свое положение в пространстве. Вот об этом удивительном феномене растительного мира я и предлагаю поговорить.

Гравитация: маленький шаг для растения и огромный скачок для ученого

Кстати говоря, арабидопсис - самое первое растение, которое не только проявило себя в опытах по влиянию отсутствия гравитации на рост, но и прошло полный цикл развития в космосе, успешно перенеся воздействие всех неблагоприятных внеземных условий.

Фитогормоны: растения тоже чувствуют!

Рисунок 3. Корневой статоцит в вертикальном положении. А - проксимальная часть клетки (расположенная ближе к центру). В - дистальная часть клетки (периферическая). 1 - клеточная стенка, 2 - эндоплазматический ретикулум , 3 - плазмодесма , 4 - ядро, 5 - митохондрия , 6 - цитоплазма, 7 - статолит, 8 - корень, 9 - корневой чехлик, 10 - статоцит. Рисунок из «Википедии ».

Давайте задумаемся над вопросом: как же растения понимают, где у них низ, а где верх? Человек, например, в любой момент времени может определить, стоит ли он на земле или лежит беспомощный (за эту способность определять свое место в пространстве можно сказать спасибо вестибулярному аппарату). А обездвиженным и безмолвным растениям приходится изощряться другими способами.

Так, у представителей растительного царства есть специальная группа клеток-статоцитов , которые содержат специфические тяжелые структуры, быстро оседающие под действием гравитации (рис. 3). Эти образования называются статолитами .

Допустим, растение пригнулось к земле - отлично, в игру вступают статолиты, которые «падают» вниз (то есть осаждаются) под воздействием силы тяжести. В итоге формируются новые низ (там, где статолиты) и верх (где их нет). Далее запускается целый каскад реакций, призванных преобразовать физический процесс осаждения статолитов в биохимические процессы, которые в итоге ведут к гравитропическому ответу. Это явление очень сложно и до конца не изучено; можно с определенностью сказать лишь то, что в нем задействуется целая сеть различных посредников, вторичных мессенджеров и, конечно же, фитогормонов . Да-да, представьте себе, у растений тоже есть свои гормоны - пусть не такие популярные в плане исследований, как гормоны животных, но всё же не менее интересные и важные. Эти вещества способны оказывать целый спектр биологических воздействий. Но я предлагаю поговорить об ауксине (он же - индол-3-уксусная кислота, ИУК ) как о важном участнике гравитропической реакции .

Так, при «перевороте» растения происходит накопление ИУК на нижней стороне гравистимулированного органа (как растение определяет свой верх и низ, мы уже обсуждали выше). Это приводит к различной скорости роста клеток на противоположных сторонах побега и корня. Получается, что ауксин - это определяющий фактор формирования гравитропического изгиба . Однако было бы несправедливо оставить в стороне помощников ауксина - специальные PIN-белки (от англ. pin - булавка), которые транспортируют его к месту воздействия . Таких белков-переносчиков в клетке очень много, их классификация довольно сложна, но суть заключается в том, что именно от типа и количества этих белков зависит, куда пойдет ауксин. Получается, что если PIN-белков много на нижней стороне корня, то там будет и ауксин, чтобы простимулировать его рост.

И наконец мы подходим к такому интересному моменту, как распределение PIN-белков в пространстве клетки. Ведь сами белки, хоть и называются переносчиками, лишены возможности произвольного перемещения. Их распределение регулируется цитоскелетом . У клеток растений тоже есть свой скелет, и представлен он не костями и хрящами, а специальными веществами: актином , тубулином и миозином . Важно, что именно эти структурные полимеры определяют подвижность большинства компонентов клетки. Актиновый цитоскелет - это словно раскинувшаяся по всему объему клетки огромная сеть дорог, по которой обеспечивается транспорт большинства соединений .

А еще - актиновый цитоскелет очень сложно увидеть: для этого было бы недостаточно даже применения очень сильного микроскопа. Дело даже не в чрезвычайно малых размерах данной структуры, а в визуализации* - ведь человеческий глаз не способен различать эти тонкие ниточки, из которых состоят микрофиламенты , даже при очень большом увеличении. И здесь нам на помощь приходят трансгенные растения . Уверена, что многие из вас так или иначе слышали о них, причем большей частью плохое. На самом же деле трансгенные растения - это универсальный инструментарий биолога, без которого нельзя представить работу любой современной физиологической лаборатории.

* - Как преодолеть дифракционный барьер и различить детали размером меньше полудлины волны мы писали в статье «Лучше один раз увидеть, или микроскопия сверхвысокого разрешения » , а о лауреатах Нобелевской премии за разработку методов сверхразрешающей микроскопии - в материале «По ту сторону дифракционного барьера: Нобелевская премия по химии 2014 » . В сообщении « » описан новый метод приготовления микропрепаратов, который позволяет существенно улучшить разрешение . - Ред.

Итак, «трансгены» - это те же самые растения (в нашем случае - арабидопсис), просто снабженные специальными белками для создания новой экспериментальной модели. Получается, мы берем резуховидку Таля и внедряем в ее ДНК ген зеленого флуоресцентного белка (GFP , green fluorescent protein ). А затем исследуем трансформированное растение под особым конфокальным микроскопом , подсвечивая лазером. И, как говорится, voila - получаем на выходе цифровое изображение, на котором прекрасно видны внутренние структуры, в частности актиновый цитоскелет, который и был нам нужен (рис. 4) .

* - Значимость GFP для биологических экспериментов оказалась настолько высока, что за открытие этого маркера вручили Нобелевскую премию: « » . Однако ученые не удовлетворились и явили миру новые поколения флуоресцентных белков: « » . - Ред .

Рисунок 4. Так выглядит актиновый цитоскелет корня, если подсветить его лазером конфокального микроскопа. Яркие тонкие нити - микрофиламенты, границы клеток светятся менее ярко. Масштабная линейка равна 50 мкм. Фото автора.

Новые направления: что же будет дальше?

Возможно, кого-то заинтересует, зачем нужны подобные исследования с использованием конфокальной микроскопии и где они выполняются? Поведение растений в космосе - глобальная тема исследований, над которой работают многие научные умы. Однако я могу назвать конкретное место, где тоже происходит активнейшее изучение процессов гравитропизма, - это кафедра физиологии и биохимии растений Санкт-Петербургского государственного университета. Именно здесь были сделаны конкретные экспериментальные заключения, о которых и пойдет речь ниже. В том числе по той причине, что я - студентка этой кафедры и работаю над магистерской диссертацией (за помощь хочется поблагодарить Ресурсный центр «Развитие молекулярных и клеточных технологий» СПбГУ, а особенно - их замечательный конфокальный микроскоп Leica TCS SPE).

А теперь, познакомившись с основным инструментарием, обратимся непосредственно к результатам проведенных экспериментов. Фундаментальной проблемой, интересовавшей нас в ходе работы, было поведение растений в космосе, и для ее решения мы проводили опыты по гравистимуляции растительных образцов с дальнейшей визуализацией актинового цитоскелета. Была поставлена задача сравнить корни контрольных (вертикально растущих) и гравистимулированных (расположенных горизонтально) растений арабидопсиса, а также исследовать действие на них различных реагентов.

Выяснилось, что в нормально (вертикально) развивающихся растениях находится очень много аксиально ориентированных микрофиламентов - то есть тех, которые сонаправлены с вектором силы тяжести. А вот в случае гравистимуляции, когда арабидопсис оказывается лежащим на боку, происходят изменения - в частности, увеличивается доля тех актиновых нитей, которые расположены наклонно или перпендикулярно поверхности Земли. Это значит, что корень действительно узнает, что низ и верх теперь не там, где были раньше, и уже через 20–30 минут после этой «смены полюсов» начинает активно подстраиваться под новые условия за счет переориентации своего цитоскелета. Данные механизмы лежат в основе формирования гравитропического изгиба - структуры, которую мы так долго и упорно обсуждали.

Еще более интересные результаты были получены в случае действия на такие же растения разнообразных реагентов (рис. 5). Известно, что при стрессе (например, во время гравистимуляции) в клетках растений начинает синтезироваться гормон стресса - этилен , который подавляет процессы роста корней и развитие побега, но не препятствует гравитропической реакции. При дополнительной обработке корней арабидопсиса раствором этефона (из которого образуется этилен) обнаруживалась почти тотальная разборка цитоскелета, и чем дольше растение подвергалось такому воздействию, тем больше разрушались актиновые микрофиламенты. Гравитропический изгиб образовывался, но корень был значительно короче.

Салициловая кислота ускоряла реорганизацию цитоскелета и в целом угнетала гравитропическую реакцию за счет подавления синтеза этилена. То есть корни растения не воспринимали переворот на 90 градусов в качестве стресса: ведь этилен, призванный сигнализировать о стрессовых изменениях, не выделялся. Однако по прошествии часа действие салицилата ослабевало, и растение, ощутив стресс, могло формировать изгиб.

А вот при удалении Cа 2+ из клеточных стенок с помощью раствора EGTA (которая способствует связыванию ионов кальция) образование гравитропического изгиба полностью ингибировалось.

Подводя итог, можно сказать, что все эти вещества оказывают свои собственные эффекты на рост растения, причем способны как подавлять стресс, так и усиливать действие гравистимуляции.

Рисунок 5. Растения, которые подверглись различным воздействиям. В верхней строчке - нормальное (вертикальное) положение корней, в нижней - гравистимулированные (перевернутые) корни. В случае EGTA использовали два красителя: циановым цветом показан актиновый цитоскелет, а цветом фуксии - ядра клеток. Фото автора.

Варианты вертикального и горизонтального (в случае поворота растения на 90 градусов по часовой стрелке) роста арабидопсиса в течение 12 часов. Col-0 - дикий тип, GFP-fABD2 - растения Col-0, трансформированные конструкцией GFP-fABD2. В случае гравистимулированных образцов (справа ) наблюдается формирование гравитропического изгиба под влиянием изменения вектора гравитации. Стрелкой показаны кончики корней, клетки которых служили объектом для исследования актинового цитоскелета.

На самом деле, это исследование только начинается. Нам еще предстоят новые эксперименты, связанные с обработкой резуховидок Таля различными активаторами и ингибиторами роста, регуляторами транспорта ауксина. К слову, оформленных научных статей еще нет: ведь работа не прекращается, буквально каждую неделю можно говорить о новых результатах.

Думаю, может возникнуть вопрос: зачем вообще нужны эти эксперименты? Чтобы лучше разобраться в механизмах стрессовой реакции в условиях смены вектора гравитации. Это поможет лучше понять, что именно испытывают растения в условиях невесомости.

Когда будет жизнь на Марсе?

Идея запланированного полета людей на Марс с целью создания там колонии не нова, однако споры вокруг этого вопроса начались с того самого момента, как идея впервые была высказана. Скептиков и тогда, и сейчас находится очень и очень много.

В одной из недавно опубликованных статей утверждается, что с некоторой долей вероятности марсианский корабль может стать кораблем-призраком, если на Солнце во время полета произойдет незапланированная вспышка . Доза радиации при этом возрастет на порядок и легко убьет экипаж.

Однако технологии постоянно развиваются - пусть медленно, если речь идет о межпланетных путешествиях, но всё же... Уже созданы проекты космических кораблей с уникальной защитной экранирующей поверхностью, способной обеспечить надежную защиту на весь срок полета, а потому проблему радиации можно считать теоретически решенной.

В той же статье автор высказыват мнение о том, что человек в принципе не способен долгое время существовать и работать рядом с одними и теми же людьми. Космонавты в один прекрасный день могут поубивать друг друга просто из-за того, что кто-то кому-то наступит на ногу. А всему виною стресс, особенно от того, что в «мышеловке» марсолёта помощи ждать неоткуда и спасательных капсул для побега на Землю не предусмотрено.

Стресс убивает, это правда. Но давайте заглянем на страничку проекта Mars One (рис. 6), в раздел «Отбор кандидатов» - и мы увидим, что способность справляться со сложными и конфликтными ситуациями (так называемая стрессоустойчивость) является, пожалуй, основным критерием отбора будущих астронавтов. К тому же участники проекта - это люди, которые сами захотели кардинально изменить свою жизнь, в отличие от профессиональных космонавтов, которым ставят конкретные задачи, часто не считаясь с их личным мнением.

Во всяком случае, время для колонизации Марса пока еще не настало, и впереди у нас как минимум десять лет. Ну а кандидатам, уже выбранным по конкурсу для участия в проекте, предстоят длительные тренинги и тщательное обучение на Земле. Что из этого получится - увидим!

Возвращаясь к результатам наших сугубо лабораторных экспериментов, следует сказать, что они имеют важное значение именно для фундаментальной науки. Однако хочется надеяться, что когда-нибудь именно эти исследования лягут в основу проектов по выращиванию свежих овощей и фруктов на космических кораблях или даже на других планетах (напомню, что пока лишь единичные экспериментальные образцы пшеницы и салата смогли пройти полный цикл вегетации в космических условиях). Интерес к внеземным пространствам сопровождал развитие цивилизации, хоть под этим пространством и подразумевалось совершенно разное. Сейчас же для удовлетворения своего интереса человечество способно разрабатывать конкретные планы, моделировать условия, чтобы потом согласно расчетам и результатам экспериментов «расстелить соломку» везде, где только можно. Глядишь, и зацветет марсианский сад?..

Международная космическая программа Mars One уже достаточно обсуждалась в прессе. Набор кандидатов, решивших приобрести билет в один конец, завершен. Теперь руководителям проекта предстоит колоссальная задача по подготовке всех необходимых условий, чтобы облегчить начало колонизации Красной планеты (рис. 7). Колонисты ставят масштабные задачи по преобразованию Марса: предполагается растопить там лед, вызвать парниковый эффект и, когда стабилизируется круговорот воды, засеять планету растениями. А пока что мы просто изучаем поведение растительных организмов в надежде на успешное освоение новых космических пространств.

Рисунок 7. Одна из основных задач научной экспедиции - изучить влияние Марса на растения, а затем и на собственные тела. Рисунок с сайта eggheado.com . . ;

  • Экспансионная микроскопия, или Как увидеть новое сквозь старую линзу ;
  • Флуоресцирующая Нобелевская премия по химии ;
  • Флуоресцентные белки: разнообразнее, чем вы думали! ;
  • Паевский А. (2015). Замечтались . Научно-образовательный проект ТАСС «Чердак». .
  • Эксперимент по выращиванию растений получил название Veg-01 и стал возможным благодаря системе Veggie. Цель - изучить то, как ведут себя растения на орбите.

    Система Veggie была доставлена на МКС в рамках миссии SpaceX в апреле 2014 года. На тот момент возраст семян составлял уже 15 месяцев. В Veggie они погружены на специальную платформу и освещаются красными, синими и зелёными лампами.

    Красные и синие лампы нужны для обеспечения качественного роста растений и в то же время потребляют наименьшее количество энергии. Зелёные нужны лишь для визуального восприятия (мы привыкли к зелёным растениям), но, по сути, на рост не оказывают никакого влияния.

    Это второй эксперимент по выращиванию растений на МКС. Первый также прошёл удачно, но через 33 дня полученные ростки отправили во Флориду, чтобы провести исследования. Листья салата из проекта Veg-01 также росли в течение 33 дней перед тем, как космонавты их собрали.

    Сами астронавты отнеслись к проекту Veggie с теплотой. В одном из интервью канадец Крис Хэдфилд говорил, что на МКС никогда не бывает скучно: всегда есть задачи, которые нужно выполнить. Однако все они сводятся к анализу показаний приборов и работе с оборудованием. Возможность ухаживать за растениями пришлась по душе всем ещё и потому, что это разнообразит жизнь на станции.

    Почему это важно

    Первая мысль, которая пришла вам в голову наверняка верна. Важность выращивания еды в космосе сложно переоценить. Сейчас космонавты получают еду с Земли, однако в будущем, когда более длительные космические миссии будут подразумевать перелёты на другие планеты, этот способ будет становиться всё более дорогостоящим.

    В 2030 году NASA готовится отправить группу космонавтов на Марс. К этому времени нужно создать стабильную систему по производству еды, ведь полёт в одну сторону займёт от 150 до 300 дней - это зависит от положения Марса.


    Челл Линдгрен, Скотт Келли и Кимия Юи едят салат

    Почти два года назад, 16 января 2016 года, в космической оранжерее Veggie на американском сегменте МКС зацвела цинния. Астронавт Скотт Келли в своем восторженном твите назвал ее «первым цветком, зацветшим в космосе».

    Восторг астронавта можно понять: он вырастил эти растения из семян, ухаживал за ними, спасал от засухи, наводнения и нашествия плесени. Но он ошибся. Растения в космосе и раньше неоднократно росли, цвели и даже давали семена. Еще Циолковский говорил о том, что растения необходимы человеку для освоения космоса, чтобы служить источником пищи и кислорода. И с самого начала космической эры растения сопровождают человека в освоении внеземного пространства. Однако в отличие от людей и животных они часто остаются безызвестными участниками космических полетов. Давайте вспомним основные вехи космического растениеводства.

    Первым растением, зацветшим в космосе и давшим семена , стала Arabidopsis thaliana , или резуховидка Таля. Арабидопсис зацвел в 1982 году на советской космической станции «Салют-7», в микрооранжерее «Фитон-3», благодаря усилиям космонавтов Анатолия Березового и Валентина Лебедева. Мелкий невзрачный сорняк, который живет всего пару месяцев, цветет крохотными белыми цветочками и дает множество семян. За это его и полюбили молекулярные биологи и физиологи растений всего мира. Неприхотливый, занимает мало места, быстро растет и дает много материала. Последние десятилетия это основной объект генетики и молекулярной биологии растений. Эти его свойства - малый размер и неприхотливость - оказались удобны и для космических исследований. В космических аппаратах места мало и создать растениям идеальные условия непросто.

    А вообще первым растением, которое побывало в космосе и вернулось обратно , была кукуруза. Ее семена отправились в суборбитальный полет в июле 1946 года на ракете «Фау-2» (V-2), собранной в США из немецких трофейных запчастей. Согласно директиве министерства обороны США, начиная с 1946 года на каждой запущенной ракете этой серии должны были находиться экспериментальные образцы для ученых. Семена кукурузы и плодовые мушки дрозофилы были первыми подобными образцами. Ученые планировали исследовать действие космической радиации на живые организмы.

    Полностью по орбите вокруг Земли первыми из растений пролетели традесканция, водоросль хлорелла, семена кукурузы, пшеницы, гороха и лука. Они отправились в космос на втором «Спутнике» в 1960 году, вместе с Белкой и Стрелкой.

    Первым растением, съеденным в космосе , стал лук. Его вырастили в 1978 году на космической станции «Салют-4» в установке «Оазис» космонавты Владимир Ковалёнок и Александр Иванченков. Задачей эксперимента было - отработать условия выращивания растений и получить от них цветы и плоды с семенами. У лука нужно было срезать несколько стрелок, чтобы он не сгнил. Александр Машинский, в то время один из руководителей биологической группы НПО «Энергия», рассказывает , что часть этих стрелок космонавты съели, даже не спросив разрешения начальства.

    Первые растения, облетевшие Луну, - деревья пяти хвойных и лиственных пород: сосна, пихта, секвойя, платан и ликвидамбар (лиственное дерево, распространенное на востоке Северной Америки). Около 500 семян этих деревьев отправились в космос в 1971 году на корабле «Аполлон-14» вместе с Аланом Шепардом и Эдгаром Митчеллом. Пока Шепард и Митчелл работали на поверхности спутника, их коллега Стюарт Руса облетал Луну на командном модуле. В начале своей карьеры Руса был членом парашютного пожарного отряда лесной охраны, и у него остались знакомые в Службе леса США. Они попросили его взять с собой в космос семена.

    После возвращения на Землю эти семена прорастили и получили около 450 саженцев. Их посадили на территории объектов НАСА, университетов, парков и государственных учреждений в США. Одно такое «лунное дерево», сосна, растет на территории Белого дома. Несколько саженцев были отправлены в другие страны, в том числе в качестве подарка императору Японии. Другие «лунные деревья» посадили рядом с их собратьями, выращенными из семян, оставшихся на Земле. Спустя годы после посадки эти деревья практически неотличимы.

    Одно из лунных деревьев, растущее в Форт-Смите, в штате Арканзас. Фото: Jesse Berry / wikimedia commons / CC BY-SA 4.0

    Первое растение, «слетавшее» на Марс, - китайская капуста. Это листовая капуста, внешне похожая на салат-латук. Именно ее в оранжерее «Фитоцикл-СД» выращивали участники эксперимента «Марс-500» - пробного «полета» на Марс, который состоялся в 2010-2011 годах. В ангаре, стоящем на территории Института медико-биологических проблем РАН в Москве, построили макет марсианского корабля. В нем экипаж из шести человек провел 520 дней. За эти дни участники эксперимента отработали все этапы полета на Марс, включая выход на поверхность красной планеты, обрыв связи с Землей и даже пожар на корабле. В программу «полета» были включены и научные эксперименты, в том числе отработка методики выращивания китайской капусты в космической оранжерее, специально сконструированной для выращивания растений в невесомости. К сожалению, полакомиться свежей зеленью «космонавтам» не удалось: растения выросли мелкими и чахлыми. Предполагают, что причина этого - наличие в атмосфере «корабля» этилена и других газов, угнетающих рост растений. В реальном космическом корабле потребуется поставить воздушные фильтры на входе в отсек с оранжереей. Кроме капусты «космонавты» выращивали в обычной, земной оранжерее другие овощи - лук, сладкий перец, редис, томаты и пр. А в кают-компании стояла небольшая оранжерея для цветов.

    По-настоящему же на Марс пока - кроме роботов - никто не летал. На межпланетной станции «Фобос-грунт», которую планировали отправить к одному из спутников Марса - Фобосу, должны были лететь различные живые организмы, в том числе семена редиса и ячменя. Запуск состоялся 9 ноября 2011 года, но во время запуска не сработала маршевая пусковая установка, и станция осталась на низкой околоземной орбите. В январе 2012 года ее обломки упали в Тихий океан, семена погибли вместе с ними. Так что освоение Марса живыми существами еще впереди.

    Первые растения, вышедшие в открытый космос, - несколько сельскохозяйственных растений и модельных объектов: горчица, рис, томат, редис, ячмень, арабидопсис и никандра. В 2007-2008 годах их семена провели тринадцать месяцев в специальном контейнере на внешней обшивке МКС, в рамках второго этапа эксперимента «Биориск». Первый этап, завершившийся в 2006 году, включал только бактерии и грибы - ученые пытались понять, насколько эти микроорганизмы могут повредить внешнюю обшивку станции. На втором этапе к эксперименту добавили и другие биологические объекты: семена растений, икринки рыб, яйца раков, личинки насекомых. Томаты не выдержали условий открытого космоса, а вот семена других растений сохранили всхожесть, и из них уже на Земле выросли нормальные растения.

    Первые растения, выросшие в «марсианской» и «лунной» почвах, - 14 видов растений, участники эксперимента, который в 2013 году провели голландские ученые под руководством Вигера Вамелинка. Для эксперимента они взяли томаты, рожь, морковь, кресс-салат и несколько видов дикорастущих растений. Их вырастили на созданных в НАСА образцах почвы, по составу такой же, как марсианский и лунный грунт. На лунной почве семена плохо прорастали, растения выросли мелкими и хилыми.

    Горшки с проростками в «марсианской» (M), «лунной» (L) и «земной» (Е) почве из эксперимента Вамелинка. Фото: Wamelink et al. / PLoS ONE / CC BY 4.0

    А вот в марсианском грунте растения чувствовали себя хорошо и дали биомассу не хуже, чем у контрольных растений, выращенных в земном грунте с речного дна. А кресс-салат и дикорастущее растение полевая горчица даже дали семена. То есть в марсианской почве вполне реально пытаться вырастить растения, что будет полезно для будущих обитателей марсианской колонии. Но необходимы еще эксперименты, которые бы учли не только состав марсианской почвы, но и гравитацию, освещенность, состав атмосферы и другие условия.