Теплотехнический расчет котла. Теплотехнический расчет с примером


Отопление - это одна из важнейших систем в доме, от которой зависит возможность комфортного проживания круглый год.

При устройстве отопления важно учесть все нюансы, выбрать максимально эффективную систему отопления, которая лучше всего подходит для вашего дома.

И если сбои в водо- или электроснабжении можно пережить, то перебои тепла зимой - явление весьма малоприятное.

Учитывая всю важность системы отопления, ее надежность и эффективность должна быть определена уже на стадии проектирования дома. Необходимо подсчитать нужное количество радиаторов отопления в жилых комнатах, чтобы избежать вариантов, при которых либо чересчур жарко, либо, наоборот, слишком холодно. Кроме того, необходимо добиться равномерного распределения тепла в помещениях и на этажах. Для решения всех этих вопросов высчитывается расход тепла на отопление здания или теплотехнический расчет.

Теплотехнический расчет здания

Теплотехнический расчет - это расчет потребления тепла на отопление, необходимого для создания комфортных условий проживания в помещениях. Теплотехнический расчет является основной для расчета всей системы отопления.

Таблица расчетов расхода тепла на отопление при использовании разных типов котлов.

Необходимо принимать во внимание, что любой дом при эксплуатации теряет тепло, отдавая его в окружающую среду. Причем объемы расхода тепла зависят от конструктивных особенностей здания. Данные потери тепла следует равнозначно восстанавливать.

Практически невозможно подсчитать компенсацию расхода тепла на глаз. Для точного определения расхода тепла на отопление необходим теплотехнический расчет. Иначе можно допустить ошибки, которые на порядок превышают или понижают реальные данные. При теплотехническом расчете учитывается обычно множество факторов, которые могут повлиять на потери тепла. К таким факторам относятся, как уже говорилось ранее, конструктивные особенности здания, кроме них на потери тепла влияют используемые материалы для строительства и отделки здания, расположение здания относительно сторон света и преобладающих ветров, температурные особенности региона строительства и другие строительные решения, применяемые в возведении здания.

Необходим ли точный теплотехнический расчет?

Для чего необходим точный теплотехнический расчет?

Во-первых, на основании расчета производится подбор оборудования для системы отопления, включая расчет мощности котла отопления, определение количества радиаторов в комнатах и секций каждого радиатора, планирование теплого пола и подбор объема воды как теплоносителя в системе отопления и вентиляции. Если вы потратили значительные средства на систему отопления и не получили достаточно теплого дома, приятного будет мало.

Во-вторых, проведя такой расчет, можно быть уверенным в том, что не было переплаты как за закупленное оборудование, так и за работу по его установке. То есть на основе расчета можно подобрать именно то оборудование, которое способно отапливать ваш дом, не образуя излишней теплоты. Конечно, лишняя теплота может быть использована на другие нужды, однако это несет и дополнительные расходы на отопление. К тому же продавцы теплового оборудования склонны завышать необходимое вам количество оборудования, так как это напрямую влияет на их заработок, потому расчет поможет вам избежать переплат. Как показывает практика, правильно рассчитанное количество оборудования снижает расходы на систему отопления на 20-25%.

В-третьих, теплотехнический расчет необходим при подключении газового хозяйства, как того требуют правила. Он нужен для подбора конкретного теплового агрегата и объемов потребляемого газа. При этом расчет выполняется на первоначальном этапе, так как в проекте газификации уже должны быть указаны марка и мощность газового котла.

Что включает в себя теплотехнический расчет

Правильный теплотехнический расчет проводится в два этапа. На первом этапе подсчитываются теплопотери здания, выполняется расчет мощности отопительного оборудования и подбор количества радиаторов отопления.

Расчет расхода тепла

Чтобы точно рассчитать количество тепла, нужного для поддержания оптимальной температуры в жилых помещениях (+20…+22°С) в холодное время года, следует знать объем расхода тепла домом в условиях низких температур (-30…-35°С). Соответственно, количество тепла будет равно количеству расхода тепла.

При подсчете расхода тепла учитываются толщина стен, пола и потолков, материалы, используемые для строительства и отделки, наличие подвала и чердака, показатели теплопроводности окон и дверей. Итогом общего подсчета всех этих показателей является общая потеря тепла домом (в кВт).

Для расчетов следует принять минимальную температуру в зимний период, равную -40°С. Комфортной же температурой в жилых помещениях принято считать +20°С. Исходя из этих значений перепад температур составляет 60°С.

Если нет возможности подсчитать абсолютно все теплопотери, включая те, которые появляются из-за неоднородности материала стен или потолков, или те, которые возникают при мостиках холода или больших площадях дверей и окон, то можно определить порядок расхода тепла и в данном прядке подбирать отопительное оборудование. Все неоднозначности при расчете трактуются в сторону увеличения расхода тепла, что приведет, соответственно, к увеличению мощности теплового оборудования.

При расчетах используются разные величины, так как мощность приборов измеряется в Ваттах (Вт) или киловаттах (кВт), а теплотворность оборудования или теплота, выделяемая при сгорании топлива, - в Джоулях (Дж) или килокалориях (ккал). Поэтому нужно соотношение между этими величинами для правильности расчетов:

1 Вт/м 2 *град = 0,86 ккал/м 2 *час*град = 3600 Дж/м 2 *час*град.

Из этого соотношения видно, что если коэффициент теплового сопротивления стены из керамзитобетона с утеплением ее пенополистиролом составляет около 0,2 Ватт/град, то участок такой стены площадью 1 квадратный м будет отдавать при разнице температур, равной 60°С, около 12 Вт тепла, или 43200 Дж, или 10,3 ккал.

Однако в реальных условиях тепло уходит не только через стены, но и через крышу и пол. Если в доме не предусмотрен оборудованный чердак, то потери тепла через крышу равны потерям через стены, то есть те же 12 Вт тепла на каждый квадратный м крыши.

Если взять для расчетов площадь крыши, равную 200 м 2 , потери тепла через такую крышу составят 2400 Вт, или 8,64 МДж, или 2064 ккал.

Теплопотери через пол тоже не являются нулевыми. И хотя при наличии подвала, в котором обычно сохраняется положительная температура, разница температур будет не больше 20°С, то потери тепла все равно составят величину, равную 1 кВт или 3,6 Мдж, или 860 ккал.

Однако, несмотря на теплопотери через крыши и пол, потери тепла через стены обычно самые значительные. При расчетах учитываются только те стены, которые контактируют с внешней средой, так как внутри здания в разных комнатах сохраняется примерно одинаковая температура, а значит, потери тепла не идут. Для расчетов можно взять общую площадь наружных стен в 150 квадратных метров. Теплопотери через них составят 12 Вт/м 2 *150 м 2 =1800 Вт.

Итоговые потери тепла такого здания составят 2400 Вт + 1000 Вт + 1800 Вт = 5200 Вт =5,2 кВт = 4472 ккал = 18,72 МДж каждый час.

Как говорилось ранее, мощность отопительного оборудования равна потерям тепла домом. Получается минимальная мощность системы отопления в 5,2 кВт. Однако эта цифра применима лишь в том случае, если тепло распределяется равномерно. Такой сценарий развития в современном доме практически нереален. Все современные дома имеют множество стен и перегородок, межкомнатных дверей и источников конвекции воздуха, значит, минимальную мощность теплового оборудования можно увеличить на 50%. Поэтому мощность котла должна быть на уровне 7-8 кВт при наиболее равномерном распределении тепла и правильно спроектированной системе отопления.

Является данная мощность большой или маленькой для загородного дома? В приведенных расчетах использовался дом с общей площадью около 200 м 2 . Для такого здания эта цифра весьма невелика. Выделяемое системой тепло соответствует тому, какое можно получить в 40-градусный мороз при сжигании 2-3 кг дров или 1 л топлива.

Кроме того, при расчетах не были учтены другие источники тепла в доме, такие как бытовые приборы или камин. Однако даже такой приблизительный расчет поможет выбрать отопительное оборудования для загородного дома. Еще одной возможностью для снижения расхода тепла домом и экономии топлива или электроэнергии является распределенная система отопления, когда температура в разных помещениях здания регулируется индивидуально. К примеру, в большом доме необязательно поддерживать одинаковую температуру во всех комнатах, достаточно иметь оптимальную температуру в жилых помещениях, а в тех комнатах, где нет постоянного проживания, поддерживать температуру на уровне +10°С. Распределенная система отопления может в большей степени использовать дополнительные источники тепла, такие как солнечный обогрев, водяной теплоаккумулятор или электрокотел меньшей мощности.

Расчет количества радиаторов отопления

Когда рассчитаны необходимое количество тепла и мощность отопительного оборудования, определяется необходимое число радиаторов отопления для каждой комнаты. Это нужно для равномерного распределения тепла и возмещения расхода тепла каждой комнаты по отдельности.

Методика расчета количества радиаторов довольно проста. В строительных нормах и правилах рекомендуется наличие источника тепла мощностью не менее 100 Вт на каждый квадратный м площади для поддержания оптимальной температуры.

Количество радиаторов отопления вычисляется по формуле:

  1. I=S*100/P, где.
  2. I - количество радиаторов отопления.
  3. S - площадь помещения (м 2).
  4. P - тепловая мощность одной секции радиатора, которая определяется изготовителем.

Однако эта формула не учитывает другие факторы, влияющие на количество источников тепла в помещении:

  • тип окон (k1) - современные пластиковые стеклопакеты снижают потери тепла;
  • число наружных стен (k2) - чем больше стен выходят наружу, тем больше потери тепла через них;
  • наличие помещения над рассчитываемой комнатой (k3) - при наличии чердака теплопотери уменьшаются, как и количество радиаторов, а при его отсутствии, соответственно, увеличиваются;
  • высота потолков помещения (k4) - данный коэффициент равен 1 при высоте потока 2,5 м. При увеличении высоты потолка коэффициент увеличивается;
  • количество окон (k5).

Тепловая мощность радиатора (Р) зависит от материала, из которого он изготовлен. Так, для чугунных радиаторов значение Р=145 Вт, а для биметаллических - Р=185 Вт. Самыми теплотворными являются алюминиевые радиаторы, их тепловая мощность Р=190 Вт.

Общая же формула количества радиаторов имеет вид:

I=S*k1*k2*k3*k4*k5*100/P

Следует отметить, что чем лучше будет утеплен дом и отдельные его элементы, такие как окна или двери, тем меньше будет расхода тепла, а значит, тем меньше расходы на отопление.

Проектирование разводки труб

После подсчета расхода тепла и количества радиаторов проектируется разводка труб для всех помещений.

Основным принципом, на котором работает отопление, является принцип циркуляции теплоносителя, в большинстве случаев - воды. Теплоноситель доставляет тепло от источника нагрева, коим является котел, до радиаторов отопления. В радиаторах вода остывает, передавая тепло помещению, и возвращается обратно к котлу.

Температура в комнатах зависит при этом от скорости воды в трубах и от температуры воды. Если при проектировании разводки труб будут допущены ошибки, то скорость воды может быть ниже необходимой, что приведет к снижению температуры в дальних участках отопительной системы при котле, работающем на полную мощность. Для преодоления данной проблемы необходимо учитывать гидравлическое сопротивление. Гидравлическое сопротивление - это сила, препятствующая распространению воды в системе. Если гидравлическое сопротивление какого-либо участка системы отопления будет высоким, то объем воды, который доходит до этого участка, будет минимальным.

На гидравлическое сопротивление влияет несколько факторов:

  • Количество изгибов труб отопления и длина всей системы. Чем больше их количество, тем сложнее объему воды преодолеть сопротивление;
  • Сечение труб. При большом сечении труб объем проходящей в системе воды будет больше, как и ее скорость, что обеспечит хорошее отопление;
  • Материал, из которого изготовлены трубы и радиаторы. Так, у металлопластиковых труб сопротивление распространению воды меньше, чем у металлических такого же сечения;
  • Температура и тип теплоносителя. Гидравлическое сопротивление тосола будет выше, чем у воды.

Сумма всех этих факторов влияет на общее сопротивление системы и отопление. Эта характеристика высчитывается по специальным таблицам или в компьютерных программах. По величине данной характеристики судят о том, нужен ли циркуляционный насос для перекачивания воды или естественной циркуляции воды будет достаточно. Если отопление достаточно простое, то естественная циркуляция воды обеспечит нормальную работу системы отопления. Если же отопление разветвленное, со множеством изгибов, то мощный насос для воды практически необходим.

Чтобы произвести расчет тепла на отопление здания, необходимо правильно рассчитать потери тепла, подобрать соответствующий котел и радиаторы, а также рассчитать их количество. Кроме того, важным моментом является определение гидравлического сопротивления и подбор циркуляционного насоса.

Только сочетание всех этих факторов и тщательно спланированное отопление позволит вам наслаждаться теплом зимними вечерами.

Тепла вашему дому!

Самые популярные статьи блога за неделю

4.2 Теплотехнический расчет

Расчет теплового баланса котла

Расчет теплового баланса котла на электрообогреве соответственно для нестандартного и стационарного режимов работы производится по формуле:

где- полезно используемое тепло, Дж;

Потери тепла в окружающую среду, Дж;

Потери тепла на разогрев конструкций, Дж.

Полезно используемое тепло определяется для нестационарного, а условно полезно используемое тепло для стационарных режимов работы соответственно по выражениям:


Q יּ 1 = Δ Wיּ * r

где W - максимальное количество воды в варочном сосуде при принятом коэффициенте заполнения г| зал = 0,82, кг;

С - теплоемкость воды, (Дж/(кг°С)), С = 4187 Дж/(кг °С)

(t н t k - соответственно начальная и конечная температура воды, °С; количество испарившейся воды, при нестационарном режиме работы котла

r - теплота теплообразования, кДж/кг.

Потери тепла ограждениями котла в окружающую среду рассчитываются для нестационарного и стационарного режимов работы по формуле:

где- коэффициент теплоотдачи, Вт/(м" °С);

Площадь >го элемента поверхности аппарата, м 2

Температура ^-го элемента поверхности аппарата, С;

т - время работы аппарата, с.

Потери на разогрев конструкции рассчитывают по формуле:

где - масса ] -го элемента аппарата,

Теплоемкость ^-го элемента аппарата, Дж/(кг °С); - конечная и начальная температура соответственно >го аппарата, °С

Полезно используемое тепло при расчете пищеварочных котлов определяется из условий нагревания и кипения воды. Полезно используемое определяется для стационарного, а условно используемое тепло для стационарного режимов работы соответственно по выражениям:

Q 1 = W C (t k вод – t н вод) + W * r

Где pвоз плотность воды, pвоз ~ 1 кг/д 3 , при температуре t вод н = 20 °С; t вод к - температура кипения, t вод к = 100 °С

Для стационарного режима,- для нестационарного;

г= 2257,5 кДж/кг - теплота парообразования.

205 * 4187 * (100 - 20) = 68,67 * 10 6 Дж;

2,05 * 2257,2 = 4,63 * 10 6 Дж

Потери тепла ограждениями котла в окружающую среду определяются нестационарного и стационарного режимов по формуле:

Поверхность стенок кожуха котла определяется как боковая поверхность цилиндра по выражению:

F k =п*D к *H общ

Р к = 3,14 * 0,870 2 / 4 = 0,594 (м 2)

Поверхность крышки и верхней горизонтальной поверхности котла определяется приблизительно как площадь круга:

F кр =п*D 2 кр /4

Fкр = 3,14 * 0,8702/ 4 = 0,594 (м2)

Начальная температура ограждений принимается равной температуре воздуха в помещении 11К = 1вод = 20 °С

Коэффициент теплоотдачи, может быть, рассчитал по формуле:

а = 9,74 + 0,07* (I ср] - (воз), (Вт/м2°С) - для нестационарного режима,

а" = 9,74 + 0,07 * (I ку- - 1в03), (Вт/м2оС) - для стационарного режима,

Q5 = *3900 = 3,924 * 106

0"5= *3600 - 8,327 * 106 (Дж)

Потери тепла дном котла незначительны, и ими можно пренебречь.

Потери на разогрев конструкции определяются по выражению


Потери тепла на разогрев варочного сосуда котла определяем по формуле:

где- соответственно теплоемкость материала, масса, конечная температура варочного сосуда котла.

Объем варочного сосуда определяют по формуле:

Плотность материала, кг/м - 7800.

Масса варочного сосуда, кг –

М вн = 0,0036 * 7800 = 28,08кг.

Конечная температура, X ш = 100°С.

Теплоемкость материала элемента, Дж/(кг°С) - 462.

Qвн6 = 462 * 28,08 * (100 - 20) = 1037,8 * 103 Дж

Потери котла на разогрев крышки определяем по формуле:

Где Скр, Мкр, t ккр - соответственно теплоемкость материала, масса, конечная температура крышки котла.

Крышка котла изготовлена из нержавеющей стали.

Теплоемкость нержавеющей стали Сср = 462 Дж/(кг°С).

Плотность материала, кг/м3 - 7800. Конечная температура, °С X ккр = 95.

Вычислим объем крышки по формуле

Потери котла на разогрев наружного котла с парогенератором определяем по формуле:

где Сн, Мн, 1кн - соответственно теплоемкость материала, масса, конечная температура наружного котла с парогенератором. Наружный котел изготовлен из стали углеродистой.

Теплоемкость стали углеродистой Сн = 462 Дж /(кг°С).

Плотность материала, кг/м3 - 7800.

Конечная температура, 1н = 109,3 ~ ^

Вычислим объем наружного котла с парогенератором по формуле:


где Сиз, Миз, I киз - соответственно теплоемкость материала, масса,

конечная температура теплоизоляционной конструкции.

Материал элемента - асфоль.

Теплоемкость асфоли Сиз - 92 Дж/(кг°С).

Плотность асфоли, кг/м 3 20

Конечная температура:

Вычислим объем теплоизоляционной конструкции по формуле:

V= 0,008 * = 0,0138 м3.

Масса теплоизоляционной конструкции, кг

Миз = 0,0138 * 20 = 0,276 кг.

(QИ36 = 92 * 0,276 * (84,65 - 20) = 1,64 * 103 Дж

Потери тепла на разогрев кожуха котла определяем по формуле:


Где Ск, Мк, 1кк - соответственно теплоемкость материала, масса, конечная температура кожуха котла.

Материал кожуха котла - сталь углеродистая. Теплоемкость материала - 462 Дж/(кг°С). Плотность материала - 7800 г/м3.

Конечная температура: t кк =60°С.

Вычислим объем кожуха котла по формуле:

Потери тепла на воду в парогенераторе определяем по формуле:

где Св, Мв, 1кв - соответственно теплоемкость воды, масса, конечная температура воды в парогенераторе. Материал: вода.

Теплоемкость воды, Св = 4187 Дж/(кг°С).

Плотность воды - 1000 кг/м3.

Конечная температура: (3 = 109,3 °С.

Вычислим объем воды в парогенераторе по формуле:


Vв= 0,2* 0,2* 0,4 = 0,016м3

Масса воды в парогенераторе, кг - Мв = Ув *рв

Мв= 0,016 * 1000 = 16кг

Потери тепла на разогрев воды в парогенераторе:

Qв6 = 4187 * 16 * (109,3 - 20) = 5982,38 * 103 Дж.

Потери тепла на разогрев каркаса и арматуры котла определяем по формуле:

где СКар,Мкар, (ккар - соответственно теплоемкость материала, масса, конечная температура каркаса и арматуры котла.

Материал элемента - сталь углеродистая.

Плотность материала - 7800 кг/м3.

Масса элемента: 250% от массы варочного сосуда,

то есть m = 28,08 * 250/ 100 = 70,2кг

Конечная температура: t кар = (t s +t k)/2 = (109,3 + 60) / 2 = 84,65 °С

Теплоемкость материала - 462 Дж/(кг°С).

Qкар6 = 462 * 70,2 * (84,65 - 20) = 2096,75 * 103 Дж


Потери на разогрев конструкции составляют:

Q 6 =1037,8*103+324,3*103+2429,6*103+1,64*103+230,63*103+5982,38 * 103 + 2096,75 * 103 = 12103,1 * 103 Дж

Потери тепла на разогрев постамента не учитываются из-за незначительной величины.

Расход тепла на нестационарный и стационарный режим работы котла соответственно равен:

Q зат = 68,67 * 106 + 3,924 * 106 + 12,10 * 106 = 84,694 * 10б Дж

Q / зат =4,63 * 106 + 8,327 * 106 = 12,957 * 106 Дж

Расчет поверхности нагрева пищеварочного котла. Расчет необходимой площади нагрева пищеварочного котла определяется по формуле:

где Q – количество тепла, которое надо передать через поверхность нагрева в единицу времени, Вт/(Дж/с);

к - коэффициент теплоотдачи от теплоносителя к нагреваемой среде, Вт/(м2оС);

Δtсрлог - среднелогарифмическая разность температур, определяется по формуле:

где Δtб, Δtм - соответственно наибольшая и наименьшая разности между температурой теплоносителя и нагреваемой средой, °С.

Количество тепла, переданное через поверхность нагрева, равно:

ГдеQ-полезно-используемоетепло,Дж;

QВН6 - потери тепла на разогрев варочного сосуда, Дж;

QВН6 - потери тепла на разогрев крышки котла, Дж;

QВН6 - потери тепла кожухом котла в окружающую среду, Дж.

Потери тепла кожухом котла в окружающую среду определяют по формуле:

где ак, Рк, *кк - соответственно коэффициент теплоотдачи, площадь поверхности кожуха котла, конечная температура поверхности кожуха котла.

Qк5 = 11,14 * 3,28 * (40 - 20) * 3900 = 2850 * 103 Дж.

Количество тепла, переданное через поверхность нагрева, равна:

Q = 68,67 * 106 + 1037,8 * 103 + 324,3 * 103 +2850,0 * 103 = 72,88 * 106 Дж.

Среднелогарифмическая разность температур равна:

Δtcpлог = (109,3 - 20) - (109,3 - 100))/ 2,31g* ((109,3 - 20) /(109,3 - 100)) = 35°С.

Коэффициент теплопередачи для случая передачи тепла от конденсирующихся водяных паров к воде приблизительно равен К = 2900 Вт/(м2°С).

Необходимая поверхность нагрева будет равна:

F = 72,88 * 106/ (2900 * 3900 * 35) = 0,184м2

Фактическая поверхность нагрева рассчитывается о формуле:

F = 3,14 * 0,743 * 0,594+ 3,14 * 0,7432 / 4 = 1,819 м2,

то есть значительно больше необходимой.

Расход тепла на нестационарный и стационарный режимы работы котла соответственно равен:

Q3aT = 84,694 * 106 Дж,

Q"3aT =12,957 * 106 Дж.

Коэффициент полезного действия котла при нестационарном режиме работы равен:


η = 68,67 * 10б/ 84,694 * 106 = 0,81 или81%

Удельные металлоемкости и расход тепла определяем по формулам

где, Мм - масса металлоконструкции аппарата, кг

где Мп - масса готового продукта или полуфабриката

Найдем массу постамента: она составляет 400% от массы варочного сосуда

Мпосг = 28,08 * 400 / 100 = 112,32 кг

Мм= 28,08 + 9,36 + 58,89 + 0,276 + 12,48 + 70,2 + 112,32 = 291,61кг.

Удельная металлоемкость равна

Мм = 291,61 /250 = 1,17 кг/дм3.

Удельный расход тепла

Q = 84,694 * 106 / 205 =413,14 * 103 Дж/кг


Металлоемкость рассчитываемого аппарата ниже металлоемкости серийно выпускаемых аппаратов, что объясняется некоторыми упрощением его конструкции (одинарная крышка, отсутствие арматуры у варочного сосуда, меньшая масса противовеса крышки и т.д.).

Что касается удельного расхода электроэнергии, то он несколько выше ввиду низкого коэффициента заполнения котла (ηзап ~ 0,82), когда как для серийно выпускаемых аппаратов он принимается равным 0,9.

4.3 энергетический расчет

Мощность нагревательных элементов при нестационарном и стационарных режимах работы соответственно составит:

Р = 84,694 * 106 / 3900 = 21,72 * 103 Вт = 21,72 кВт

Р" = 12,957 * 106 / 3600 = 3,60 * 103 Вт = 3,60 кВт

Соотношение мощности котла при нестационарном и стационарном равно:

Р/Р" = 21,72/3,60

Учитывая мощность тэнов принимаем максимальную мощность Р = 24кВт минимальную Р" = 4 кВт. В этом случае время разогрева составит

Траз = 84,694 * 106/24 * 103 = 3529 ~ 59 мин

Электрические пищеварочные котлы присоединяются к трехфазной сети поэтому с точки зрения равномерной нагрузки фаз тэны целесообразно устанавливать в количестве, кратное трем.

Для рассчитываемого котла максимальную мощность Р целесообразно равной 24 кВт (при параллельно включенных шести тэнах по 4 кВт каждый), а минимальную Р" равной 4 Вт (два последовательно соединенных тэна, один тэн отключен). В этом случае соотношение мощности котла при нестационарном и стационарных режимах: Р/Р" = 24/4 = 6


Заключение

Темой курсового проекта было задание разработать котел электрический пищеварочный типа КПЭ полезной емкостью 250 л.

Разработанный пищеварочный котел с электрообогревом отвечает требованиям технологии приготовления пищи; обеспечивает тепловую обработку продуктов при минимальной затрате энергии, так как у него нет тепла в результате механического и химического недожога и с уходящими газами как у твердотопливных и газовых пищеварочных котлов, удельный расход тепла за счет относительно меньших потерь его в окружающую среду и на разогрев конструкции; обладает высокой степенью надежности, создает оптимальные условия работы для обслуживающего персонала, облегчает их труд; повышает качество приготовления пищи и обслуживания посетителей; повышает производительность и требованиям техники безопасности и производственной санитарии, обеспечивая безопасность обслуживающего персонала.


Список используемой литературы

1)Богданов Г.А. и др. Оборудование предприятий общественного Учебник для сред. проф.-техн. училищ / Г.А. Богданов, З.М. А.М. Богданова. - 3-е изд., перераб. - М.: Экономика, 1991. - 303

2)Гуляев В.А., Иваненко В.П., Исаев Н.И. и др. Оборудование предприятий торговли и общественного питания. Полный курс: Учебник / проф. В.А. Гуляева. - М.: Т4ВФРА, 2004. - 543 с.

3)Золин В.П. Технологическое оборудование предприятий общественного питания. - М.: 14РПО, Академия, 2000. - 256 с.

4) Литвина Л.С, Фролова З.С. Тепловое оборудование предприятий общественного питания: Учебник для мех. отделений техникумов. - 3-е изд, и доп. - М.: Экономика, 1980. - 248 с.

5)Лунин О.Г., Вельтищев В.Н., Калошин Ю.А. и др. Курсовое и дипломное проектирование. - М.: Пищевая промышленность, 1990.

6)Титова А.П., Шляхтина А.М. Торгово-технологическое оборудование: Учебник для технол. отделений техяикумов. - М.: Экономика, 1983.-296 с.

Теплотехнический расчет электрического котла КПЭ-250С 3.1 Расчет теплового баланса и определение мощности КПЭ-250С Исходные данные приведены в таблице, а схема котла КПЭ-250 – на рисунке 5 Рисунок 5 – Расчетная схема электрического пищеварочного котла: - диаметр крышки, =; - диаметр кожуха; - диаметр наружного котла; - диаметр варочного сосуда; - общая высота аппарата; - высота...

Работник, и автоматизированные, где контроль за безопасной работой и режимом тепловой обработки обеспечивает сам тепловой аппарат при помощи приборов автоматики. На предприятиях общественного питания тепловое оборудование может использоваться как несекционное или секционное, модулированное. Несекционное оборудование, это оборудование, которое различно по габаритам, конструктивному исполнению и...

А. Примеры расчетов тепловых схем котельных

В качестве примера приводится расчет принципиальной тепловой схемы котельной с паровыми котлами (см. рис. 5.5), со следующими исходными данными и условиями эксплуатации.

Котельная предназначена для отпуска пара технологическим потребителям и для подогрева горячей воды для отопления, вентиляции и горячего водоснабжения жилых и общественных зданий. Система теплоснабжения - закрытая. Пар, вырабатываемый в паровых котлах, расходуется на технологические нужды: с параметрами 14 кгс/см 250°С - 10 т/ч с параметрами 6 кгс/см 2 , 190°С - 103 т/ч; на подогреватели сетевой воды с параметрами 6 кгс/см 2 , 190°С (расчетная тепловая нагрузка в виде горячей воды 15 Гкал/ч), а также на собственные нужды и восполнение потерь в котельной. Температурный график тепловых сетей для жилого района 150 - 70°С. Расчетная минимальная температура наружного воздуха - 30°С. Для расчетов принимается температура сырой воды зимой 5°С, летом - 15°С, подогрев воды перед водоподготовительной установкой до 20°С. Деаэрация питательной и подпиточной воды осуществляется в атмосферных деаэраторах при температуре 104°С; питательная вода имеет температуру 104°С, подпиточная 70°С.

Возврат конденсата от технологических потребителей пара 50% и его температура 80°С. Предусматривается непрерывная продувка паровых котлов с использованием отсепарированного пара в деаэраторе питательной воды. По характеру работы котельная является производственной. Отопительная нагрузка невелика, продолжительность стояния минусовых температур: - 30°С - 10ч; - 20°С - 150 ч; - 15°С - 500 ч; -10°С - 1100 ч; - 5°С - 2400 ч и 0°С - 3500 ч при общей длительности отопительного периода в 5424 ч .

Примеры расчетов тепловых схем котельных, выполненые для максимально зимнего режима.

Расход пара на подогреватели сетевой воды

где G - расход сетевой воды, т/ч; Q ов = 15 Гкал/ч - расход теплоты на отопление, вентиляцию на горячее водоснабжение с учетом потерь по заданию; i poy - энтальпия редуцированного пара, ккал/кг; i K - энтальпия конденсата после охладителя конденсата, ккал/кг; i l - энтальпия воды после подогревателя, ккал/кг; i 2 - энтальпия воды перед подогревателем, ккал/кг.

Суммарный расход редуцированного пара для внешних потребителей

Суммарный расход свежего пара на внешних потребителей, т/ч,

где D т = 10 т/ч — расход свежего пара;

i nв - энтальпия питательной воды, ккал/кг; i′ poy - энтальпия свежего пара, ккал/кг.

Подставив указанные величины, получим:

Количество воды, впрыскиваемой в пароохладитель РОУ, при получении редуцированного пара для внешних потребителей, определяем по формуле:

При расчете редукционно-охладительной установки потери теплоты в окружающую среду из - за их незначительности не учитываются.

Расход пара на другие нужды котельной предварительно, с последующим уточнением, принимается в размере 5 % внешнего потребления пара:

Суммарная паропроизводительность ко-тельной с учетом потерь, принимаемых равными 3 %, и расхода пара на другие нужды котельной:

Потеря конденсата с учетом 3 % его потерь внутри котельной будет:

Расход химически очищенной воды при величине потерь воды в тепловых сетях 2% общего расхода сетевой воды равен сумме потерь конденсата и количества воды для подпитки тепловых сетей:

Принимая расход воды на собственные нужды водоподготовительной установки равным 25% расхода химически очищенной, получим расход сырой воды:

Расход пара на пароводяной подогреватель сырой воды может быть определен после уточнения температуры сырой воды за охладителем продувочной воды паровых котлов.

Количество воды, поступающей от непрерывной продувки:

где р пр = 3 % - принятый процент продувки котлов, определяемый в зависимости от качества исходной воды и способа химводоподготовки.

Количество пара на выходе из расширителя непрерывной продувки по формуле (5.9)

где х - степень сухости пара, выходящего из расширителя. Количество воды на выходе из расширителя:

Выполненные расчеты позволяют определить температуру сырой воды после охладителя продувочной воды:

где i охл =50 ккал/кг - энтальпия продувочной воды после охладителя.

Расход пара на пароводяной подогреватель сырой воды определяется по формуле (5.14):

Подогрев химически очищенной воды производится: в водяном теплообменнике до деаэратора подпиточной воды за счет охлаждения воды от 104°С до 70°С; в пароводяном подогревателе до деаэратора питательной воды за счет теплоты редуцированного пара.

Подогрев химически очищенной воды в охладителях выпара из деаэраторов в данном случае незначителен и не учитывается, так как практически не сказывается на точности расчета схемы. Температура воды, поступающей в деаэратор за теплообменником для охлаждения подпиточной воды, определяется из уравнения теплового баланса теплообменника:

где t′ хов = 18 °С - температура воды после ВПУ; G подп = 188*0,02 = 3,8 т/ч - расход подпиточной воды; G подп/хов = 3,5 т/ч - предварительно принятый расход химически очищенной воды, поступающей в деаэратор для подпитки тепловых сетей.

Расход пара на деаэратор подпиточной воды:

С учетом количества пара, идущего на подогрев воды, фактический расход химически очищенной воды, поступающей в деаэратор для подпиточной воды, будет:

что мало отличается от предварительно принятой величины в 3,5 т/ч.

Расход пара на пароводяной подогреватель химически очищенной воды, поступающей в деаэратор питательной воды, определен аналогично предыдущему:

где G пит/хов = G к.noт = 60,9 т/ч - расход химически очищенной воды, идущей в подогреватель; i" xов - энтальпия воды после подогревателя, ккал/кг; i хов - энтальпия воды перед подогревателем, ккал/кг.

Суммарное количество воды и пара, поступающее в деаэратор для питательной воды, за вычетом греющего пара,

средняя температура будет равна:

Эти расчеты позволяют определить расход пара на деаэратор питательной воды:

Тогда суммарный расход редуцированного пара внутри котельной для собственных нужд:

Паропроизводительность котельной с учетом внутренних потерь:

Расхождение с величиной D, принятой в предварительном подсчете, равно 7,3 т/ч, что составляет 4,8 %, поэтому следует уточнить расчет, принимая увеличенный расход пар. на собственные нужды котельной.

Уточненный расход пара:

Расчет тепловой схемы котельной для других режимов производится аналогично рассмотренному. Для установки в котельной, с учетом коэффициента совпадения максимумов потребностей пара К = 0,95 - 0,98, принимаются три паровых котла паропроизводительностью по 50 т/ч со следующими параметрами: давление 14 кгс/см 2 , температура 250°С. Такие котлы выпускает Белгородский завод "Энергомаш".

Б. Примеры расчетов тепловых схем котельных для закрытой системы теплоснабжения.

Примеры расчетов тепловых схем котельных выполняются для приведенной на рис. 5.7 принципиальной тепловой схемы котельной. Котельная предназначена для снабжения горячей водой жилых и общественных зданий для нужд отопления, вентиляции и горячего водоснабжения. Тепловые нагрузки котельной с учетом потерь в наружных сетях при максимально зимнем режиме следующие: на отопление и вентиляцию 45 Гкал/ч; на горячее водоснабжение 15 Гкал/ч. Тепловые сети работают по температурному графику 150 - 70°С. Для горячего водоснабжения принята смешанная схема подогрева воды у абонентов. Расчетная минимальная температура наружного воздуха - 26°С. Подогрев сырой воды перед химводоочисткой до 20°С - от 5°С зимой и 15°С летом. Деаэрация воды осуществляется в деаэраторе при атмосферном давлении. Годовой график нагрузки котельной дай рис. 5.20, где приведены данные о продолжительности стояния наружных температур в сутках.

Примеры расчетов тепловых схем котельных ведутся для пяти характерных режимов работы системы теплоснабжения и для двух температур воды на входе и выходе из котлов. При работе водогрейных котлов на малосернистых каменных углях температура воды на входе в котлы поддерживается постоянной t = 70°C, на выходе из котлов t′ K = 150°С. Основной расчет ведется на максимальный зимний режим. Отпуск теплоты на отопление и вентиляцию Q0.n=45 Гкал/ч. Отпуск теплоты на горячее водоснабжение Q гв = 15 Гкал/ч, что дает общую теплопроизводительность котельной Q K = 60 Гкал/ч.

Расчетный часовой расход сетевой воды для нужд отопления и вентиляции по формуле (5.21) составит:

Рис. 5.20. График нагрузки котельной с водогрейными котлами и данные о длительности стояния наружной температуры.

Расчетный часовой расход воды для нужд горячего водоснабжения по формуле (5.23) будет:

При применении у абонентов смешанной схемы подогрева воды для горячего водоснабжения используется теплота обратной сетевой воды после систем отопления и вентиляции. Расчетом проверяется температура обратной сетевой воды после местных теплообменников горячего водоснабжения, которая по формуле (5.22) равна:

Суммарный расчет на часовой расход сетевой воды по формуле (5.25)

Расход воды на подпитку при потерях 2 % в тепловых сетях:

Расход сырой вода на химводоочистку при собственных нуждах последней 25 % производительности:

Температура химически очищенной воды после теплообменника - охладителя подпиточной воды 9, установленного после деаэратора 10,

где G XOB = 10 т/ч - предварительно принятый расход химически очищенной воды; с в = 1 ккал/кг;

Задаваясь расходом греющей воды G подл/гр = 6 т/ч и температурой на выходе из подогревателя следующей ступени подогрева химически очищенной воды t гр = 108°С, определяем температуру воды, поступающей в деаэратор:

С учетом подсчитанных величин температура сырой воды перед химводоочисткой:

Расход греющей воды на деаэраторною установку определяется из уровня теплового баланса:

При составлении баланса количества вода в котельной установке величину G д/гp следует учитывать при определении расхода воды на подпитку тепловых сетей. Расход химически очищенной воды на подпитку будет:

Потери воды в охладителе незначительны и при составлении баланса без ущерба для точности ими можно пренебречь. При принятой температуре вода на входе в котлы t = 70°С, на выходе из них t К = 150°С расход воды через котлы составит:

При температуре обратной воды t TC = 42,6°С для получения температуры воды на входе в котлы 70°С нужен следующий расход воды на рециркуляцию [см. формулу (5.33)]:

Для режима с максимальной теплопроизводительностью расход воды в перепускную линию отсутствует:

Для проверки правильности выполненного расчета тепловой схемы нужно составить баланс количества воды для всей котельной установки.

Расход через обратный трубопровод сетевой воды:

а расчетный расход воды через котлы будет:

Поскольку часть горячей вода после котлов идет на подогреватели, в деаэратор и на рециркуляцию, расход сетевой воды на выходе из котельной составит:

Разница между найденным ранее и уточненным расходами воды через котлы незначительна (<0,5%), поэтому выполненный расчет.

Таблица 5.2. Результаты расчета тепловой схемы водогрейной котельной.

Примеры расчетов тепловых схем котельных могут считаться законченными. В случае несовпадения величины более чем на 3% необходимо произвести пересчет расходов горячей воды на собственные нужды при той же теплопроизводительности котельной. В данном примере расчета тепловой схемы котельной повышение температуры вода перед сетевыми насосами за счет тепла, вносимого с подпиточной водой и охлажденной водой от подогревателя сырой воды, не учитывалось вследствие их малой величины (меньше 2%).

Для других режимов работы котельной расчет тепловой схемы производится аналогично; результаты его представлены в табл. 5.2. В тех случаях, когда данные о расходе горячей сетевой воды для нужд горячего водоснабжения и подогрева воды у абонентов отсутствуют, можно принять следующий порядок определения этого расхода. При известном расходе воды на горячее водоснабжение,т/ч, тепловая нагрузка подогревателя первой ступени (обратно линии сетевой воды) (см. рис. 5.3) может быть определена из уравнения:

где - Δ t минимальная разность температур подогреваемой и греющей воды, принимается равной 10°С; остальные обозначения в этом уравнении приводились ранее.

Тепловая нагрузка подогревателя второй ступени, Гкал/ч, где вода нагревается прямой сетевой водой, составит:

При известной величине тепловой нагрузки подогревателя второй ступени расход сетевой воды, т/ч, на него составит: