Определение источника шума в котельной. Защита жилых домов, оборудованных крышной котельной, от шума и вибраций


Источником структурного шума может быть оборудование, которое эксплуатируется на кровлях и стенах зданий (крышные котельные, наружный конденсаторные блоки, вентагрегаты антенные усилители сотовой связи и т.д.), технических этажах (вентиляционное и холодильное оборудование, трубопроводы и воздуховоды, металлические шкафы интернета), внутри зданий (мусоропроводы, лифтовое оборудование, системы отопления и водоснабжения, канализования, кондиционирования). Наряду с этим источники структурного шума могут располагаться во встроено-пристроенных нежилых помещениях зданий (электрощитовые, инженерно-технологическое оборудование, трансформаторные подстанции), в подвалах зданий (насосы и элеваторные узлы индивидуальных тепловых пунктов (ИТП), венткамеры, машинные отделения холодильных камер) и в соседних квартирах жилого дома (стиральные машины, пылесосы, различная арматура).

Обычно после обращения жителей в органы Роспотребнадзора производятся измерения уровней вибрации и шума в помещении. В случае необходимости измерения проводят в организациях, расположенных рядом с квартирами, где, например, эксплуатируется «шумящее» оборудование - источник шума (ресторан, кафе, магазин и т.д.). При обнаружении превышений уровней вибрации и шума над допустимыми значениями, согласно СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки», в адрес владельцев источников шума органы Роспотребналзора выдают предписание об устранении выявленных нарушений санитарного законодательства и необходимости выполнения специальных мероприятий по уменьшению распространяющейся вибрации и структурного шума от оборудования.

Каким образом можно снизить шум от перечисленного выше оборудования, чтобы при его эксплуатации не возникали жалобы жильцов дома? Конечно, идеальный вариант – предусмотреть необходимые меры на стадии проектирования жилого здания, тогда и разработка шумопонижающих мероприятий всегда возможна, и внедрение их при строительстве в десятки раз дешевле, чем в тех домах, которые уже построены. Как правило, при проектировании выбирают малошумное оборудование и максимально удаляют его от нормируемых по шуму помещений. Создание конструкций, изолирующих вибрацию, сводится к выбору схемы виброизоляции, подбору параметров и типа виброизоляторов по известным данным, выбору конструкции пола на упругом основании (если потребуется), расчету эффективности данной конструкции (виброизоляции).

Совсем по-другому обстоит дело, если здание уже построено и в нем имеются источники шума, которые превышают действующие нормы. Тогда чаще всего шумные агрегаты заменяют на менее шумные и реализуют мероприятия по виброизоляции агрегатов и подводящих к ним коммуникаций. Далее мы рассмотрим конкретные источники шума и меры по виброизоляции оборудования.

Шум от кондиционера

Приведем пример. После установки на кровле здания чиллера (от англ. chiller – охладитель), который используется для нагревания или охлаждения жидкости в системе кондиционирования, без мер по виброизоляции уровень проникающего шума в квартиру последнего этажа в одном из столичных жилых домов составлял 39 дБА, что выше допустимого СН 2.2.4/2.1.8.562-96 на 14 дБ, и это при наличии верхнего технического этажа! Применение трехзвенной виброизоляции, когда чиллер устанавливают на раму через виброизолятор, а раму – на железобетонную плиту через резиновые прокладки (при этом железобетонная плита устанавливается на пружинные виброизоляторы на кровлю здания), привело к снижению проникающего структурного шума до уровней, допустимых в жилых помещения в ночное время.

Еще один пример. Уровни шума, проникающего в квартиру последнего этажа, составили 35 дБА. Квартира была расположена под вентагрегатом, под расширительной камерой для агрегата и воздуховодом на техническом этаже. При удалении от вентагрегата и камеры на 3-7 м в жилых комнатах уровень шума уменьшился до 30-32 дБА. Для большего снижения шума необходимо, кроме усиления шумовиброизоляции стенок воздуховода и установки глушителя на воздуховод вентагрегата (со стороны помещений), крепить расширительную камеру и воздуховоды к перекрытию через виброизолирующие подвески и прокладки.

Шум от котельной на крыше

Для защиты от шума котельной, расположенной на крыше дома, фундаментную плиту крышной котельной устанавливают на пружинные виброизоляторы или виброизолирующий мат из специального материала. Оборудованные в котельной насосы и котлоагрегаты устанавливают на виброизоляторы и применяют мягкие вставки.

Насосы в котельной нельзя ставить двигателем вниз! Они должны быть смонтированы таким образом, чтобы нагрузка от трубопроводов не передавалась на корпус насоса. Наряду с этим уровень шума выше от насоса более высокой мощности или в случае, если установлено несколько насосов. Для снижения шума фундаментную плиту котельной также можно поставить на пружинные амортизаторы или высокопрочные многослойные резиновые и резинометаллические виброизоляторы.

Шесть ящиков с интернет-оборудованием сразу трех сотовых компаний были установлены на одном из жилых домой на кровле над квартирой. Хозяйку квартиры изводили шум и вибрация. Женщина просыпалась ночью и не могла уснуть до самого утра. Днем звуки стихали, но головная боль, ощущение полной разбитости оставались. Источник звука хозяйка «нехорошей квартиры» нашла не сразу. Как выяснилось, этот «праздник» ей устроила управляющая компания, разрешив оператору сотовой связи установить на кровле жилого дома интернет-оборудование сразу трех провайдеров.

Впрочем, жители, квартиры которых расположены на верхних этажах, при монтаже усилителей на чердаках и технических этажах могут ощущать шум и вибрацию даже при исправной системе вентиляции внутри установки. Чаще всего источником шума и вибрации в усилителе становится вентилятор. Для устранения передачи вибрации металлического шкафа с запорным устройством последний необходимо установить на виброизоляторы.

«Плавающие» полы без специальных виброизоляторов рекомендуется использовать лишь с оборудованием с рабочими частотами не менее 45-50 Гц. Это обычно небольшие машины, у которых виброизоляция может быть обеспечена и другими способами. Эффективность на упругом основании на таких низких частотах мала, поэтому применяют их исключительно в сочетании с иными видами виброизоляторов.

Запрещается проектировать пол машинного отделения лифта как продолжение плиты перекрытия потолка жилой комнаты верхнего этажа. Такой случай был выявлен по жалобе жителей одной из московских квартир. Превышение шума при работе лифта составило до 15 дБА, а эффективных мер по развязке единой плиты – пола в машиннойм отделении и перекрытия, служащего потолком в комнате, не существует.

В одном из столичных жилых домов было установлено, что на момент проведения измерений уровни шума, проникающего в квартиру на первом этаже от работы элеваторного узла в подвале, превышали допустимые для ночного времени. Оказалось, что под жилой комнатой проходили трубопроводы. Казалось бы, оборудование элеваторного узла было смонтировано с учетом виброизоляции от несущих конструкции здания, трубопроводы теплозвукоизолированы. В чем же причина? Дело в том, что элеваторные узлы не должны крепиться к стене, продолжение которой является стеной жилой комнаты. При нахождении трубопроводов систем канализации и водоснабжения в шахтах первые не должны примыкать к помещениям, требующим шумозащиты.

В настоящее время максимально экономичны, эффективны и бесшумны бустерные установки (насосы). Они выполняют роль станций повышения давления в системах пожаротушения, водоснабжения. Бустерные установки создают нужный напор воды в высотных зданиях, жилых районах с низким напором, при производственным процессах в промышленности, то есть везде, где существующий напор недостаточен. Компактная конструкция позволяет производить как оснащение строящихся объектов, так и модернизацию имеющихся, существенно сокращая монтажные площади, эксплуатационные расходы, капитальные вложения. Бустерный агрегат весьма выгоден по сравнению с аналогами. Арендаторы и жильцы нижних этажей нередко жалуются на шум и вибрацию работающих насосов. При использовании бустерного агрегата таких проблем не бывает.

Действующими нормами запрещается размещение крышной котельной на перекрытии жилых помещений (так как перекрытие не может быть основанием для котельной), а также смежно с такими помещениями. Не допускается создание крышных котельных на зданиях детских школьных и дошкольных учреждений, лечебных корпусах поликлиник и больниц с круглосуточным пребыванием пациентов, на спальных корпусах учреждений отдыха и санаториев. При установке оборудования на кровле и перекрытиях рекомендуется располагать его в местах, как можно дальше расположенных от защищаемых объектов.


Шум от интернет-оборудования

Согласно рекомендациям по проектированию систем информатизации, связи и диспетчеризации объектов жилищного строительства, антенные усилители сотовой связи рекомендуется устанавливать в металлическом шкафу с запорным устройством на чердаках, техн. этажах или лестничных клетках верхних этажей. В пункте 5.18 данных рекомендаций сказано, что при необходимости установки домовых усилителей на разных этажах многоэтажных зданий их нужно располагать в металлических шкафах в непосредственной близости от стояка под потолком, как правило на высоте более 2 м от низа шкафа до пола.

Выход – виброизоляторы и «плавающие» полы

Для вентиляционного, холодильного оборудования на технических этажах жилых зданий, гостиниц, многофункциональных комплексов или при соседстве с нормируемыми по шуму помещениями, где постоянно пребывают люди, можно установить агрегаты на заводские виброизоляторы на железобетонную плиту. Эту плиту монтируют на виброизолированном слое или пружинах на «плавающий» пол (дополнительная железобетонная плита на виброизолирующем слое) в техническом помещении. Следует учесть, что вентиляторы, наружные конденсаторные блоки, которые сейчас выпускаются, виброизоляторами комплектуют только по заявке заказчика.

Стяжку плавающего пола необходимо тщательно изолировать от несущей плиты перекрытия и стен, так как образование каких-либо даже маленьких по величине жестких мостиков между ними может сильно ухудшить его виброизолирующие свойства. С учетом этого при создании «плавающего» пола предусматривают меры, исключающие просачивание бетона в упругий слой при конструировании пола. В местах соприкосновения «плавающего» пола к стенам должен быть водонепроницаемый шов из нетвердеющих материалов.

Шум от мусоропровода

Мусоропровод – это потенциальный источник круглосуточного шума. Возникает он чаще всего при сбросе бытового мусора, содержащего мягкие и твердые предметы, в том числе бутылки и банки. Ствол мусоропровода выполняют, как правило, из труб с условным проходом примерно 400 мм. Жаловаться на шум от мусоропровода могут не только жильцы квартир, в которых комнаты примыкают к стволу и мусорокамере, но и всех квартир по всем этажам подъезда, где ствол проходит смежно с квартирой, даже без примыкания к жилым помещениям (дома серии П-44). Максимальный уровень шума, проникающего в квартиру при ударе крышкой мусоропровода и сбросе стеклотары, может достигать 58 дБА.

Для снижения шума нужно соблюдать требования норм и не проектировать ствол мусоропровода рядом с жилыми помещениями. Ствол мусоропровода не должен соприкасаться или располагаться в стенах, огораживающих жилые либо служебные помещения с нормируемыми уровнями шума.

Из мероприятий по уменьшению шума мусоропроводов наиболее распространены следующие:

  • в мусоросборных помещениях предусматривается «плавающий» пол;
  • по согласию жильцов всех квартир подъезда мусоропровод заваривается (или ликвидируется) с размещением в помещении мусорокамеры колясочных, комнаты для консьержки и т.д. (положительный момент в том, что кроме шума исчезают запахи, ликвидируется возможность появления крыс и насекомых, вероятность пожаров, грязь и т.д.);
  • ковш загрузочного клапана монтируют обрамленными резиновыми или магнитными уплотнителями;
  • декоративная облицовка ствола мусоропровода с теплошумозащитными свойствами из строительных материалов отделяется от строительных конструкций здания звукоизолирующими прокладками.

Сегодня многие строительные фирмы предлагают свои услуги, различные конструкции для увеличения звукоизоляции стен и обещают полную тишину. Следует обратить внимание на то, что на самом деле никакие конструкции не смогут снять структурный шум, передающийся по перекрытиям пола, потолка и по стенам при сбрасывании твердых бытовых отходов в мусоропровод.

Шум от лифтов

Источниками шума и вибрации при работе лифта становятся агрегаты, расположенные в шахте лифта и в машинном помещени. К первым относятся башмаки кабины и противовеса, скользящие по направляющим (особенно при проходе их через стыки направляющих), переключатели и механизмы открывания дверей кабины и шахты, ко вторым – подъемные лебедки, панели управления и трансформаторы. Шум от лифта, проникающий в служебные и жилые помещения, - это сумма воздушной и структурной составляющих.

В СП 51.13330.2011 «Защита от шума. Актуализированная редакция СНиП 23-03-2003» сказано, что шахты лифтов лучше располагать в лестничной клетке между лестничными маршами (п. 11.8). При архитектурных решениях жилых зданий нужно предусматривать, чтобы к встроенной шахте лифта примыкали помещения, не требующие повышенной защиты от вибрации и шума (коридоры, холлы, санитарные узлы, кухни). Все шахты лифтов независимо от планировочного решения должны быть самонесущими и иметь самостоятельный фундамент.

Шахты надлежит отделить от остальных конструкций здания акустическим швом 40-50 мм или виброизолирующими прокладками. В качестве материала упругого слоя рекомендованы плиты из минеральной акустической ваты на стекловолокнистой или базальтовой основе и различные полимерные вспененные рулонные материалы.

Для защиты от структурного шума установки лифта ее приводной двигатель с лебедкой и редуктором, устанавливаемые, как правило, на единой общей раме, виброизолируют от поверхности-опоры. Современные приводные агрегаты лифтов комплектуют соответствующими виброизоляторами, расположенными под металлическими рамами, на которых крепят лебедки, двигатели и редукторы, в связи с чем дополнительная виброизоляция приводного агрегата обычно не требуется. При этом дополнительно рекомендуется сделать двухкаскадную (двухзвенную) систему виброизоляции, установив опорную раму через виброизоляторы на железобетонную плиту, которая также отделена от пола виброизоляторами.

Эксплуатация лифтовых лебедок, установленных на двухкаскадных системах виброизоляции, показала, что уровни шума от них не превышают нормативные значения в ближайших жилых помещениях (через несколько стен). В практических целях нужно отслеживать, чтобы виброизоляция не нарушалась какими-либо жесткими мостиками между опорной поверхностью и металлической рамой. Тем не менее работа других элементов лифтовых установок (панели управления, трансформаторы, башмаки кабины и противовеса и т.п.) может сопровождать шумом выше нормативных значений.


Шум от трансформаторных подстанций на первых этажах

Размещать трансформаторные подстанции в проектируемых, заново строящихся и реконструируемых жилых домах запрещено. Это сказано СП 54.13330.2011 «Здания жилые многоквартирные. Актуализированная редакция СНиП 31-1-2003» (п. 4.10). В подвальном, цокольном, на 1 и 2 этажах зданий не допускается размещения пристроенных и встроенных трансформаторных подстанций, отделений (кабинетов) магнитно-резонансной томографии (п. 4.10).

Как сказано в п. 7.4 пособия к МГСН 2.04-97 «Проектирование защиты от шума и вибрации инженерного оборудования в жилых и общественных зданиях», трансформаторы, относящиеся ко встроенным в здания трансформаторным подстанциям, являются источниками вибраций, которые вызывают распространение по конструкциям структурного шума с частотой 100 Гц.

Для защиты от этого шума жилых и других помещений с нормируемыми уровнями шума нужно соблюдать следующие условия:

  • помещения встроенных трансформаторных подстанций не должны соприкасаться с защищаемым от шума помещениям;
  • встроенные трансформаторные подстанции следует располагать на первых этажах или в подвалах зданий;
  • трансформаторы необходимо устанавливать на виброизоляторы, рассчитанные соответствующим образом;
  • электрические щиты, содержащие коммуникационные электромагнитные аппараты, и отдельно установленные масляные выключатели с электрическим приводом должны монтироваться на резиновых виброизоляторах (воздушные разъединители не требуют виброизоляции);
  • вентиляционные устройства помещений встроенных трансформаторных подстанций должны быть оборудованы глушителями шума.

Другим средством снижения шума от встроенной трансформаторной подстанции является обработка ее потолка и внутренних стен звукопоглощающей облицовкой.

Сегодня имеют место «исключительные» случаи размещения пристроенных и встроенных подстанций в жилые здания с использованием сухих трансформаторов. В проектах этих встроенных подстанций выполнены акустические расчеты, которые показывают, что в смежных с трансформаторными жилых помещениях не будет повышенного структурного шума при выполнении следующих мероприятий:

  • устройство двойного перекрытия;
  • применение звукопоглощающей облицовки;
  • установка трансформаторов, шкафов и щитков на виброизоляторы;
  • монтаж шумоглушителей на вентиляционных проемах.

И даже все перечисленные меры, как правило, не дают стопроцентного снижения вибрации и структурного шума. После пуска в эксплуатацию трансформаторной подстанции в жилом доме на втором этаже тональный шум от трансформаторов может субъективно прослушиваться и круглые сутки беспокоить жильцов дома не только смежных квартир, но и всего подъезда. Обращаем ваше внимание на то, что во встроенных трансформаторных подстанциях должна быть выполнена защита от электромагнитного излучения (сетка из специального материала с заземлением для снижения уровня излучения электрической составляющей и стальной лист для магнитной).

Шум от работы магазина, ресторана или кафе в жилом доме

Подъемники, лифты, транспортеры, передвижение тележек, компрессоры холодильных установок во встроено-пристроенных магазинах и на предприятиях общественного питания на первом этаже создают структурный шум, передающийся по конструкциям здания. Шум от движения механических лифтов и подъемников старых конструкций с повышенными уровнями слышен на всех этажах, вплоть до десятого.

В СП 2.3.6.1066-01 «Санитарно-эпидемиологические требования к организациям торговли и обороту в них продовольственного сырья и пищевых продуктов» (с изменениями и дополнениями) указано, что в организациях торговли, расположенных в жилых или иного назначения зданиях, не разрешается оборудовать машинные отделения, грузоподъемники, холодильные камеры непосредственно рядом (под) с жилыми помещениями (п. 5.1). Так, например, в одной из московских квартир структурный шум передавался из торгового зала магазина через смежную стену жилой квартиры. По жалобе жильцов на круглосуточный шум в помещениях магазина на первом этаже был проведен комплекс мероприятий по увеличению звукоизоляции смежной стены. Облицовка стены звукопоглощающим материалом и увеличение ее толщины дали незначительный эффект снижения шума. Только при виброизоляции всего технологического оборудования магазина – прилавков, холодильных шкафов, колес тележек и т.д. – уровни проникающего шума в жилой квартире снизились до допустимого уровня в ночное время суток.

В другом магазине при движении тележек для покупателей без виброизоляции уровень шума в жилой квартире второго этажа составлял 48 дБА, что выше нормативного на 3 дБА (45 дБА для максимального шума). После применения резины на колесах тележек уровень шума в квартире снизился на 6 дБА. О шумозащитных мероприятиях в магазинах, кафе и ресторанах, расположенных на первых этажах жилых домов или рядом с ними, журнал «СЭС» подробно рассказывал в № 5 за 2014 год.

Шум от пристроенных котельных, подвальных насосов и труб

Пристроенные котельные применяются для теплоснабжения общественных, бытовых, производственных, административных и жилых зданий. Оборудование котельных (насосы и трубопроводы, вентагрегаты, воздуховоды, газовые котлы и т.д.) должно быть виброизолировано с применением виброфундаментов и мягких вставок. Вентиляционные установки оснащают глушителями.

Чтоб виброизолировать расположенные в подвалах насосы, элеваторные узлы в индивидуальных тепловых пунктах (ИТП), вентагрегаты, холодильные камеры, указанное оборудование устанавливают на виброфундаменты. Трубопроводы и воздуховоды виброизолируются от конструкций дыма, так как преобладающим шумом в квартирах, расположенных выше, может оказаться не базовый шум от оборудования в подвале, а тот, который передается ограждающим конструкциям через вибрацию трубопроводов и фундаменты оборудования. Устраивать встроенные котельные в жилых зданиях запрещается.

В системах трубопроводов, подсоединенных к насосом, необходимо применять гибкие вставки – резинотканевые рукава или резинотканевые рукава, армированные металлическими спиралями. При наличии участков труб между гибкой вставкой и насосом участки нужно крепить к перекрытиям и стенам помещения на виброизолирующих опорах, подвесках или же через амортизирующие прокладки. Гибкие вставки нужно располагать на самом близком расстоянии к насосной установке как на всасывающей линии, так и на нагнетательной.

Для снижения уровней вибрации и шума в жилых домах от работы систем тепловодоснабжения необходимо изолировать распределительные трубопроводы всех систем от строительных конструкций в местах их прохождения через несущие конструкции (ввода в жилые дома и вывода из них). Зазор между трубопроводом и фундаментом на вводе и выводе должен быть не менее 30 мм.

Также во встроенных насосных, ИТП рекомендуется установить регуляирующий механизм частоты вращения электродвигателя. Эта мера даст ощутимый эффект в том случае, если подобран насос с запасом мощности или же на максимальной мощности работа необходима лишь в пиковые часы.

Очень важно, какие насосы эксплуатируются в системах водоснабжения. Многонасосные, консольные и консольно-моноблочные агрегаты используются для увеличения напора потока жидкости и обеспечения ее циркуляции при холодном и горячем водоснабжении в промышленных сооружениях и жилых домах достаточно давно, однако имеют ряд недостатков. Чтобы установить такой агрегат, необходимо соорудить массивный фундамент в целях снижения уровня вибрации. Агрегаты формируют повышенный шум. Для нормальной эксплуатации такого оборудования нужно монтировать дренажную систему для отвода воды, которая с течением времени начинает просачиваться через сальники, нуждающиеся в регулярной замене и контроле. При их износе смазка попадает в перекачиваемую воду, что недопустимо по санитарным нормам. Эксплуатация агрегата требует систематического технического контроля и штата обученного обслуживающего персонала.

Шум от стиральных машин, пылесосов и холодильников

Шум от эксплуатируемых соседями агрегатов – стиральных машин, пылесосов, холодильников и от работы строительных инструментов при ремонте является временным и не подлежит нормированию и ограничению при их работе. Виброизоляцию указанных агрегатов и контроль за их исправностью проводят хозяева.

Интересный пример самостоятельно проведенной виброизоляции холодильника привел один из пользователей интернета. В частности, его беспокоили сильные «содрогания» компрессора холодильника при отключении, поэтому он под все четыре «ноги» агрегата подложил несолько слоев пенополиэтилена. Результат – вибрация стала почти незаметна, зато шум увеличился, то есть закон сохранения энергии остался законом: если раньше «до амортизаторов» звук образовывался и уходил к соседу по плите пола, то после создания своеобразных амортизаторов половина энергии стала уходит в «воздушную» среду помещения, где стоит холодильник.

14. Защита от вибраций

Допустимый уровень звука А (шум) от оборудования, установленного в теплопунктах или насосных

Согласно PN-87/8-02151/02 п. 3, уровень звука А (шум) от насосов или запорной арматуры, измеренный на расстоянии 1 м от оборудования, не должен превышать 65 дБ.

В книге “Технические условия строительства и приемки газовой или жидкотопливной котельной”, выпущенной Польской корпорацией санитарной, отопительной, газовой техники и кондиционирования (издание ІІ), приводятся допустимые значения уровней звука:

для котлов мощностью 30-120 кВт с атмосферными горелками – ниже 65 дБ (А);

для котлов мощностью 30-120 кВт с вентиляторными горелками – ниже 85 дБ (А);

для котлов мощностью более 120 кВт – не выше 85 дБ (А).

При установке котла мощностью менее 30 кВт в помещении отдельной кухни, уровень звука не должен превышать 51 дБ (А), а в кухне, совмещенной с другим помещением – 45 дБ (А). Источники, на основании которых приводятся указанные величины, авторам не известны. Предположительно их цитируют из инструкций, изданных

в западных странах.

В связи с тем, что польские нормы не содержат указаний относительно значений уровня звука, источником которого является котельная, запаздывая с изменениями на теплотехническом рынке, авторы ссылаются на немецкие указания VDI 2715 относительно понижения шума отопительного оборудования. Эти указания комплексно охватывают проблемы шума, создаваемого котельной.

Несмотря на очень строгие ограничения (даже ниже 25 дБ (А)) к шуму, производимому котельной (как к уровню звука, излучаемого в окружающую среду, так и к уровню звука, проникающего в прилегающие помещения), допустимый уровень звука в самом помещении котельной зависит от номинальной мощности котла и установленной горелки. Для котлов с вентиляторными горелками его значение можно определить по формуле:

Минимальные значения индекса изоляции воздушного шума перекрытием между котельной

и жилыми помещениями

Значение индекса изоляции воздушного шума перекрытием (с учетом всех путей косвенной звукопередачи) между помещением котельной и помещениями квартиры, в соответствии с нормами PN-B-02151-3 от 1999 г., не может быть меньше R’A1 = 55 дБ. Значение индекса приведенного уровня ударного шума, проникающего от пола котельной в квартиры, не должно превышать L’n.w = 58 дБ.

14.4. Шум, создаваемый группой “котел – горелка”

14.4.1. Влияние мощности котла на уровень излучаемого шума

На рис. 14.4 показаны корректированные уровни звука в дБ (А) для котлов различной мощности с вентиляторными горелками. На графике показаны кривые изменения уровня звука по октавным полосам в зависимости от мощности котла. Представленные характеристики получены опытным путем, в результате многочисленных экспериментов с котельными установками. Конечно, могут случаться отклонения, и их нужно учитывать при проектировании защиты от шума. Приведены данные фирмы RAICHLE.

14. Защита от вибраций

давлениязвуковогоУровень

Мощность

звукового

давления, дБ (A)

Рис. 14.4. Распределение уровня звукового давления по октавным полосам для группы “котел – вентиляторная горелка”

различной мощности

14.4.2. Уровень звука котлов различного типа

В настоящее время все чаще применяются котлы с вентиляторными горелками. В пользу такого решения говорит много факторов, но, как правило, решающим оказывается более высокий КПД. Кроме ряда преимуществ, группа “котел – вентиляторная горелка” имеет и недостаток – повышенный уровень шума. Основным источником шума вентиляторной горелки являются завихрения, возникающие в перекачиваемом газе. Интенсивность этого звука прямо пропорциональна средней скорости лопастей в степени, величина которой находится в пределах <5, 6>. Интенсивность звука примерно одинаковая как на всасывании, так и на нагнетании вентилятора.

Согласно , уровень звуковой мощности для вентиляторов, определенный в полупространстве, можно ориентировочно рассчитать по формуле:

14. Защита от вибраций

При известной мощности W двигателя вентилятора (кВт), можно использовать следующие формулы:

L N = 85 + 10logW + 10log∆p

L N = 125 + 20logW – 10log

Для определения точных значений уровня звуковой мощности в зависимости от типа вентилятора и условий его работы можно использовать указания VDI 2081.

Уровни звуковой мощности, производимой вентилятором в зависимости от расходаи разности давлений

∆p , рассчитанные по формуле , представлены на рис. 14.5.

Рис. 14.5. Зависимость звуковой мощностиL N вентилятора от объемного расходаи разности давлений∆p

Как видно из графика, звуковая мощность L N прямо пропорциональна объемному расходупри определенной разности давлений∆p . Для сравнения на рис. 14.6 показан уровень звука А только для вентиляторных горелок различной мощности. Максимальные значения уровня звука для данной мощности котла колебаются в диапазоне частот от 500 до 2000 Гц. Сравнение графиков на рис. 14.4 и 14.6 позволяет сделать вывод о том, что уровень звука группы “котел – горелка” ненамного выше уровня звука одной вентиляторной горелки. Максимальные значения уровня звука группы “котел – горелка” отмечаются в диапазоне более низких частот 63-500 Гц. В этом случае имеем дело с низкочастотным шумом.

Упрощенно можно утверждать, что котел влияет на структуру и уровень звука, производимого вентиляторной горелкой, только качественно, но не количественно.

14. Защита от вибраций

Проведенные авторами исследования показали, что значения звука для котлов малой мощности, как с вентиляторными, так и с атмосферными горелками, практически одинаковые. Разница в излучении шума отмечалась для котлов мощностью выше 100 кВт. Повышение уровня звукового давления связано с ростом производительности вентилятора.

На рис. 14.6 показан уровень звуковой мощности А для вентиляторных горелок в зависимости от мощности котла.

Рис. 14.6. Уровень звуковой мощности А для вентиляторных горелок в зависимости от мощности котла

14.5. Акустическая модель отопительной установки

Изучение путей распространения упругих волн необходимо начать с анализа главного акустического механизма, связанного с отдельными элементами отопительной установки. Сначала нужно локализовать источники, которые генерируют колебания и шум. В отопительных установках – это группа “котел – горелка”, насосы и запорная арматура. Первоначально нужно оценить уровень генерируемого шума. Несмотря на то, что каждое из этих устройств может соответствовать требованиям действующих в этой области норм, суммарное воздействие шума от всего оборудования часто превышает допустимые значения для смежных помещений или окружающей среды.

Следующий этап – определение путей передачи звука. В отопительных установках существует несколько основных путей распространения звука. К ним относятся трубопроводы вместе с теплоносителем (преимущественно водой), дымоходы, вентиляционные каналы и отдельные устройства, которые через точки соприкосновения или крепления участвуют в распространении шума.

Последним этапом является локализация зон, излучающих звук. В результате такого анализа разработана причинно-следственная цепь генерации и распространения шума, представленная на рис. 14.7.

14. Защита от вибраций

Рис. 14. 7. Причинно-следственная цепь генерации и распространения шума

Шум, который возникает в одном из источников, распространяется дальше в виде колебаний частиц среды, с которой данный источник контактирует. В отопительной установке источники, генерирующие упругие волны, контактируют, в большинстве случаев, с веществом во всех физических состояниях – воздухом, жидкостью и твердым телом. Поэтому распространение возникающих колебаний необходимо рассматривать для всех этих трех категорий.

Общая модель отопительной установки представлена на рис. 14.8. Она разделена на динамические факторы, которые активно участвуют в процессе генерации упругих колебаний, и статические факторы, которые распространяют вибрацию и шумы. Динамические факторы – это главные источники шума, перечисленные выше: группа “котел – горелка”, насосы и запорная арматура.

К статическим факторам относятся трубопроводы систем отопления, вентиляционные каналы, дымоходы, корпуса и кожухи оборудования, перегородки и, конечно, конструкция дома в целом.

В зависимости от того, в какой среде происходит генерация или распространение шума, он и носит соответствующее название: воздушные шумы, шумы, распространяющиеся в воде, ударные шумы. Как показано на рис.14.8, не все источники создают упругие волны во всех трех категориях, как и не каждая среда играет ключевую роль в распространении шума от данного источника. Целью выделения факторов шума является идентификация доминирующих источников, путей передачи и излучающих поверхностей.

Конечным эффектом вибрации оборудования являются звуки (шумы), которые распространяются в воздушном пространстве и могут также побуждать вибрацию (колебания) перегородок и других строительных конструкций, находящиеся в окружающей среде.

14. Защита от вибраций

Вентиляци-

оборудования

Конструкции

Дымоходы

Трубопроводы

Перегородки

отопления

Запорная

арматура

Статические

Динамические

Статические

факторы шума

факторы шума

факторы шума

звук, распространяющийся в воздухе

звук, распространяющийся в жидкостизвук ударный

Рис. 14.8. Акустическая модель котельной и системы отопления

Источники шума

Шум при перемещении газов (продуктов сгорания, воздуха) возникает вследствие турбулентных явлений, ударов или пульсаций. Турбулентность является механизмом генерации шума, который может принимать различные формы. Например, может состоять из простых фоновых составляющих, связанных в основном с истечением газов из отверстий, или иметь широкополосный спектр при протекании их по каналам с острыми кромками, с запорными элементами или другими местными сопротивлениями.

Поток с большой скоростью, например на концах лопастей вентилятора или сопла, создает завихрения, способствующие возникновению шума в широком звуковом диапазоне. Его уровень и спектр зависят от скорости потока, вязкости среды и геометрии сопла.

Жидкость, как и воздух, генерирует шум вследствие турбулентности, пульсаций и ударов. Перечисленные выше принципы относятся и к жидкости. Кроме того, в ней может возникать явление кавитации, когда статическое давление опускается ниже давления насыщения пара. Возникновение кавитации – явление, характерное для запорной арматуры и насосов. В зоне падения давления ниже давления насыщения пара появляются кавитационные пузырьки пара. Во время повторного сжатия пузырьки лопаются, создавая зоны значительного повышения давления. В связи с тем, что повторное сжатие (компрессия) часто происходит в пристенном слое потока, кавитация является причиной эрозии. Кавитация генерирует шум обширного диапазона.

Удар является причиной структурного (ударного) шума в трубопроводах системы отопления. Наиболее важными параметрами, влияющими на возникновение ударного шума, являются масса и скорость частиц, которые сталкиваются, и продолжительность удара. Частотный анализ удара показывает, что высокие частоты преобладают над широкополосным шумом в связи с короткой продолжительностью самого удара.

14. Защита от вибраций

Каждый источник звука имеет определенную характеристику, специфический путь распространения и опреде-

ленное возбуждение излучающей поверхности. В современных котельных основным источником шума является

группа “котел – горелка” (особенно вентиляторная горелка). На рис. 14.9 показана котельная, в которой главным

источником шума является группа “котел – горелка”, пути распространения и методы снижения шума.

звук, распространяющийся

в воздухе

Шумоглушитель на

звук, распространяющийся

вытяжной вентрешетке

в жидкости

звук ударный

крепление

Группа "котел – горелка"

как источник

колебаний и шума

Шумоглушитель

на приточной

Шумоглушитель

вентрешетке

на дымоходе

компенсатор

Виброоснование

Рис. 14.9. Пути распространения и методы снижения шума от группы “котел-горелка”

Группа “котел – горелка” генерирует звук всех ранее перечисленных категорий. Пути распространения звука тоже разные: движущаяся жидкость, точки крепления, дымоходы, облицовка и кожухи оборудования. Общая звуковая мощность, излучаемая группой “котел – горелка”, – это сумма всех вышеперечисленных составляющих.

14.6. Снижение уровня шума в воздушном пространстве

В воздушное пространство шум проникает через приточные и вытяжные отверстия. По своей природе шум имеет направление, а наибольшая его интенсивность наблюдается вдоль оси канала. Отсюда следует вывод, что

в отверстии направление шума следует изменить, например с помощью экрана, или в отверстии или канале установить шумоглушитель.

Излучение шума с поверхностей оборудования зависит от размера, формы, упругости, массы и звукопоглощающих свойств поверхности. Поэтому желательно, чтобы оборудование имело компактную конструкцию, так как незначительные размеры, большая жесткость и масса уменьшают излучение шума.

14. Защита от вибраций

Шум, распространяющийся в воздушном пространстве, можно ограничить с помощью:

звукоизолирующих кожухов;

акустических экранов;

шумоглушителей;

звукопоглощающих покрытий.

Звукоизолирующий кожух

Под понятием кожух подразумевается оболочка, внутри которой находится источник шума (рис.14.10). Звукоизолирующий кожух представляет собой пассивное средство, ограничивающее распространение шума. Часто это единственная возможность снижения уровня шума от активных акустических источников – движущихся механизмов или их частей. Особенность кожуха состоит в том, что уровень шума снижается уже в непосредственной близости от источника. Это позволяет защитить также рабочие места, расположенные вблизи источника шума.

Кожух изготавливают преимущественно из тонколистовой стали. Для улучшения звукоизолирующих свойств его покрывают изнутри слоем пористого звукопоглощающего материала. Толщина слоя такого материала зависит от наиболее низкой частоты звука.

Уменьшение передачи ударного шума от источника к кожуху происходит за счет применения материалов, амортизирующих колебания в узлах крепления.

источник

Звукоизоляционный материал

Звукопоглощающий материал

Шумоглушитель на

вентиляционном отверстии

Виброоснование

Рис. 14.10. Разрез звукоизолирующего кожуха и пример звукоизолирующего кожуха горелки котла Vitoplex

Принципы проектирования оболочек вокруг источников звука:

плотная изоляция источника звука; даже небольшие щели или отверстия необходимо закрыть;

использование металла в качестве звукоизоляционного материала с внешней стороны кожуха;

применение звукопоглощающего материала внутри кожуха;

использование шумоглушителей в вентиляционных отверстиях, отверстиях для прохода кабелей, труб и т. п.;

отсутствие жестких соединений между оборудованием и кожухом, уменьшение количества точек крепления.

14. Защита от вибраций

Мерой эффективности звукоизолирующего кожуха является величина звукоизолирующей способности кожуха D кож – разность между средним уровнем звукового давления во всех точках измерения при работающем механизме или оборудовании без кожухаL m1 (дБ) и средним значением уровня звукового давления в тех же точках при работающем механизме, но уже со звукоизолирующим кожухомL m2 (дБ) на среднегеометрических частотах октавных полос от 63 до 8000 Гц. Значение звукоизолирующей способности кожухаD кож в дБ определяется по формуле:

D кож= L m1– L m2[дБ]

Изучая акустическую эффективность кожуха, не нужно смешивать понятия звукоизолирующей способности кожуха и удельной звукоизолирующей способности перегородки R w , определяемой акустическими свойствами элементов, из которых она изготовлена.

Экраны можно устанавливать возле небольших елементов оборудования с высоким уровнем излучения шума. Эффективность их значительно ниже эффективности звукоизолирующих кожухов и зависит от направления и расстояния от источника шума. Вместе с тем экраны могут быть полезны для снижения шума в ограниченных зонах, например на рабочем месте оператора.

Эффективность экранов ограничена частотами, при которых высота и длина экрана такие же, как и длина звуковой волны, передаваемой в воздухе, или больше.

Принципы проектирования экранов:

экраны применяются для защиты от шума рабочих мест операторов;

для изготовления экранов используются плотные звукоизоляционные материалы;

экраны со стороны источника шума покрываются звукопоглощающим слоем.

Шумоглушители

Шумоглушители – это элементы, которые препятствуют прохождению звука, передаваемого воздуховодами. Абсорбционные шумоглушители выполняются в виде “пористого канала”. Они часто встроены в кожухи вентиляторов для обеспечения охлаждения двигателей без снижения эффективности звукоизолирующих свойств.

Принципы проектирования шумоглушителей:

использование абсорбционных шумоглушителей для снижения широкополосного шума;

недопущение скорости движущейся среды выше 12 м/сек в абсорбционных глушителях;

применение реактивных шумоглушителей, действующих по принципу отражения для снижения шума на низких частотах;

использование шумоглушителей-расширителей на выходе сжатого воздуха.

Мероприятия по снижению уровня шума

1. Архитектурно-планировочные

Функциональное зонирование территории населенного пункта;

Рациональная планировка территории селитебной зоны - использование экранирующего эффекта жилых и общественных зданий, расположенных в непосредственной близости к источнику шума. При этом внутренняя планировка здания должна обеспечить ориентацию спальных и других помещений жилой зоны квартиры на бесшумную сторону, а в сторону магистрали должны быть ориентированы помещения, в которых человек находится непродолжительное время - кухни, санузлы, лестничные клетки;

Создание условий для непрерывного движения автотранспорта путем организации бессветофорного движения (транспортные развязки на разных уровнях, подземные пешеходные переходы, выделение улиц с односторонним движением);

Создание объездных дорог для транзитного транспорта;

Озеленение селитебной зоны.

2. Технологические

Модернизация транспортных средств (уменьшение шумности двигателя, ходовой части и т.д.);

Использование инженерных экранов – прокладка автомагистрали или железной дороги в выемке, создание стенок-экранов из различных стеновых конструкций;

Уменьшение проникновения шума через оконные проемы жилых и общественных зданий (использование звукоизолирующих материалов – уплотняющие прокладки из губчатой резины в притворах окон, установка окон с тройными переплетами).

3. Административно-организационные

Государственный надзор за техническим состоянием транспортных средств (контроль соблюдения сроков технического обслуживания, обязательность регулярных техосмотров);

Контроль состояния дорожного полотна.

ТЕСТОВЫЕ ЗАДАНИЯ

ВЫБЕРИТЕ ВСЕ ПРАВИЛЬНЫЕ ОТВЕТЫ

1. ПРИ ВЫБОРЕ ЗЕМЕЛЬНОГО УЧАСТКА ДЛЯ ЗАСТРОЙКИ НАСЕЛЕННОГО ПУНКТА СЛЕДУЕТ УЧИТЫВАТЬ

1) рельеф местности

3) наличие воды и зеленых массивов

4) характер почвы

5) численность населения

2. ОСНОВНЫЕ ТРЕБОВАНИЯ К ПЛАНИРОВКЕ НАСЕЛЕННОГО ПУНКТА

1) размещение функциональных зон на местности с учетом розы ветров

2) наличие функционального зонирования территории

3) обеспечение достаточного уровня инсоляции территории

4) обеспечение удобных путей сообщения между отдельными частями города

5) наличие достаточного количества высотных зданий

3. НА ТЕРРИТОРИИ ГОРОДА ВЫДЕЛЯЮТСЯ СЛЕДУЮЩИЕ ЗОНЫ

1) селитебная

2) промышленная

3) коммунально-складская

4) центральная

5) пригородная

4. ВИДЫ ПЛАНИРОВКИ НАСЕЛЕННЫХ МЕСТ

1) периметральная

2) строчная

3) смешанная

4) паутинная

5) свободная

5. К РАЗМЕЩЕНИЮ ПРОМЫШЛЕННОЙ ЗОНЫ ПРЕДЪЯВЛЯЮТСЯ СЛЕДУЮЩИЕ ТРЕБОВАНИЯ

1) учитывают розу ветров

2) организуют санитарно-защитную зону

3) учитывают рельеф местности

4) учитывают численность населения

5) располагают ниже города по течению реки

6. В СЕЛИТЕБНОЙ ЗОНЕ РАЗМЕЩАЮТ

1) жилые районы

2) торговые склады

3) административный центр

4) автопарки

5) лесопарковую зону

7. НАИБОЛЕЕ ВАЖНЫМИ ГИГИЕНИЧЕСКИМИ ОСНОВАМИ ГРАДОСТРОИТЕЛЬСТВА В НАШЕЙ СТРАНЕ ЯВЛЯЮТСЯ

1) состояние территории для размещения населенного пункта

2) ограничение роста крупных и сверхкрупных городов

3) возможность благоустройства территории

4) функциональное зонирование города

5) использование природно-климатических факторов

8. ПРИГОРОДНАЯ ЗОНА НЕОБХОДИМА ДЛЯ

1) размещения промышленных предприятий

2) отдыха населения

3) размещения объектов коммунального хозяйства

4) организации лесопарковой зоны

5) размещения транспортных узлов

9. Тип застройки населенного пункта определяется

1) рельефом местности

2) ветровым режимом территории

3) численностью населения

4) наличием зеленых насаждений

5) расположением автомобильных дорог

10. НЕДОСТАТКОМ ПЕРИМЕТРАЛЬНОЙ ЗАСТРОЙКИ ЯВЛЯЕТСЯ

1) трудность обеспечения хороших условий инсоляции жилищ

2) сложность организации проветривания территории

3) неудобство для населения

4) трудность с организацией внутренней территории микрорайона

5) невозможность использования в крупных городах

ЭТАЛОНЫ ОТВЕТОВ

1. 1), 2), 3), 4)

3. 1), 2), 3), 5)

7. 1), 3), 4), 5)

9. 1), 2), 4), 5)

ГИГИЕНА ЖИЛИЩА

По оценкам экспертов ВОЗ, в помещениях непроизводственного характера человек проводит более 80% своего времени. Это позволяет считать, что качество внутренней среды помещений, в том числе среды жилища, может влиять на здоровье человека. Гигиенические требования к жилищу регламентируются СанПиН 2.1.2.2645-10 Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях; СанПиН 2.2.1./2.1.1.2585-10, изм. и доп. №1 к СанПиН 2.2.1/2.1.1.1278-03 Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий.

Котельные издают много шума. В них имеется множество элементов, которые издают звуки: это насосы, вентиляторы, помпы и другие механизмы. В принципе, работа в промышленности, с промышленным оборудованием, так или иначе вынуждает специалиста сталкиваться с шумом, и возможности сделать агрегаты полностью беззвучными пока нет. Но можно сделать их в значительной степени менее громкими.

Как снизить шумность котельной при проектировании

К уровню шума объектов электро- и теплоэнергетики предъявляют очень строгие требования, особенно если обозначенные объекты находятся в пределах города. Котельная - это как раз объект теплоэнергетики, и даже будучи компактным, он может причинять окружающим значительный дискомфорт.

Вас также может заинтересовать

Использование котельной с двумя котлами в средней полосе России - наиболее оптимальный вариант, обеспечивающий объект от 500 кв. м.

Любая котельная - и бытовая, и промышленная - начинается с проекта, поэтому вопрос организации промышленного отопления решается еще на стадии проектирования. Специалисты просчитывают абсолютно все, определяют значимые внутренние и внешние факторы влияния. Выбор оптимальной схемы зависит от ее энергоэффективности, экономичности и влияния на производственный процесс.

Под «экспертизой котельной» чаще всего подразумевается экспертиза промышленной безопасности котельной - комплекс мероприятий, предназначенный для выявления дефектов оборудования в случае строительства, ремонта, перестройки или ликвидации котельной, а также после аварий или изменения режима её работы.

Для устранения каждого из этих шумов требуются различные способы. Кроме того, каждый тип шума имеет свои свойства и параметры, и их необходимо учитывать при производстве малошумных холодильных чиллеров .

Можно применить большое количество различной изоляции и не добиться желаемого результата, а можно напротив, применив минимальное количество «правильного» материала в нужном месте, используя изоляцию по технологии, добиться отличной малошумности.

Для пониманию сути процесса звукоизоляции обратимся к основным методам достижения малошумности промышленных водоохладителей.

Для начала необходимо определиться с базовыми терминами.

Шум нежелательный, неблагоприятный для целевой деятельности человека в радиусе его распространения звук.

Звук волновое распространение колеблющихся, вследствие внешнего воздействия частиц в некоторый среде - твердой, жидкой или газообразной.

Есть и другие менее распространенные и существенно более дорогие и громоздкие решения для достижения тишины, приближенной к абсолютной, если этого требует место установки водоохладителя . Например, шумоиззоляции технического помещения, где находится компрессорно-испарительный блока чиллера , использование водяных конденсаторов или мокрых градирен без применения вентиляторов, и некоторые другие более экзотичные, но они крайне редко используются на практике.