Какой спектр поглощают растения. Какие лампы использовать для выращивания растений в домашних условиях


Ответ на этот вопрос кажется очевидным. Растениям нужен солнечный свет, а если это искусственный свет, то, наверное, спектр излучения "хорошей" лампы должен быть как можно ближе к солнечному. Так ли это?

Лучевая энергия солнца, которая доходит до поверхности земли, состоит из ультрафиолетового излучения (длина волны короче 380 нм), видимого света (от 380 нм до 780 нм) и инфракрасного, т.е. теплового излучения (длина волны больше 780 нм). Пик солнечного света лежит в голубой части спектра при 475 нм.

Глаз человека не воспринимает ни ультрафиолетовые, ни инфракрасные волны, а из видимого спектра наиболее чувствителен к желто-зеленому (555 нм) свету. Красный свет (650 нм) человеческий глаз чувствует в 10 раз хуже, т.е. нужно в 10 раз больше красного света, чем зеленого, чтобы человек воспринял оба света как равные по интенсивности.

А к какому свету более всего чувствителен "глаз" растения, т.е. хлорофилл и другие пигменты, улавливающие свет для фотосинтеза? Наиболее активно фотосинтез идет под действием оранжево- красного света (610-700 нм) с максимумом в красной зоне (675 нм). Второй пик активности находится в сине-голубой части спектра (400-510 нм). Рост растений обеспечивается фотосинтезом, значит, растениям в первую очередь требуется свет, обогащенный теми длинами волн, которые нужны для фотосинтеза.

Таким образом, лампа для освещения рассады совсем не обязательно должна имитировать солнечный свет. Желательно использовать более экономичные лампы, спектр излучения которых обогащен красным и синим светом.

Производительность всей системы выращивания определяет количественный критерий оценки – например, полезная масса сухого вещества или объем целевого экстракта из листьев/корней. Для качественной оценки можно анализировать химический состав растений и морфология (отклонение формы и размеров стебля/листьев/плода).

Для большинства культур лучший урожай и качество продукции могут быть получены при обеспечении растениям комфортных условий, где все основные физиологические потребности максимально приближены к естественным уровням.

Таким образом, в большинстве практических задач за эталон для сравнения и оценки результатов искусственного выращивания можно брать растение, выращенное в естественных условиях. Естественные условия для конкретной культуры, как правило, соответствуют климату в регионе его изначального происхождения.

Основы

Рассматривая процесс выращивания растений как замкнутую систему, можно выделить следующие основные факторы, влияющие на результат (см. рис. 1):

Солнечный свет, основной источник энергии
- содержание диоксид углерода (СО2) в воздухе (углерод - основной элемент, используемый для формирования новых клеток)
- вода, в основном, как источник кислорода, входящего в ее состав, необходимого для реакции фотосинтеза
- температура окружающего воздуха.

Рис. 1

Оптимальная температура фотосинтеза для большинства растений средней полосы составляет примерно 20-25°С. Например, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза.

Так, при фотосинтезе за счет энергии света происходит образование органических веществ (углеводов) при участии хлорофилла. Хлорофилл (от греч. χλωρός, «зелёный» и φύλλον, «лист») - зелёный пигмент, окрашивающий хлоропласты растений в зелёный цвет .

Таким образом, количество света является важным фактором, влияющим на интенсивность роста растений.

Также на протяжении многих лет эволюции этот процесс адаптировался к суточному циклу “день/ночь”. Днем под воздействием света вода разделяется на кислород и водород, а растение запасает энергию и питательные вещества. Ночью, в темноте углекислый газ под воздействием запасенной энергии соединяется с водородом, образуя молекулы углеводов, т.е. происходит собственно рост культуры.

Таким образом, при искусственном выращивании растений важно обеспечить не только высокую освещенность, но и правильную цикличность включения света, чтобы получить лучший результат.

О спектрах

Современные светодиодные технологии позволяют форматировать сложные спектры освещения растений. Рассмотрим, каким образом спектр влияет на процесс роста.

На рис. 2 детально показаны энергетические спектры поглощения базовых пигментов растения.


Рис. 2

Видно, что помимо традиционно упоминаемых пигментов хлорофилла с пиками поглощения в диапазоне 400-500 нм и 650-700 нм, на процессы роста также влияют вспомогательные пигменты из семейства светособирающих фикобилипротеинов.

В некоторых исследованиях спектры поглощения основных пигментов суммируются для формирования “универсального” спектра, форма которого показана на рис. 3.


Рис. 3

Для количественной оценки светового воздействия на растения используется фотосинтетически активная радиация (ФАР). В англоязычной литературе - Photosynthetic Photon Flux (PPF). Поток ФАР/PPF измеряется как число фотонов, излучаемых источником света, которые могут быть поглощены растением при фотосинтезе (диапазон длин волн от 400 до 700 нм).

Величина PPF рассчитывается без учета неравномерного поглощения растением различных энергии различных длин волн. Поэтому в дополнение к PPF иногда используется величина YPF – Yield Photon Flux - т.н. усваиваемый растением поток фотонов. Для расчета YPF используется взвешенное значение ФАР и спектр эффективности фотосинтеза как весовые коэффициенты.

Спектр эффективности фотосинтеза показан на рис. 4.


Рис. 4

Кривая весового коэффициента для фотонов (Photon-weighted) позволяет перевести PPFD в YPF; кривая весового коэффициента энергии (energy-weighted) позволяет сделать то же самое для ФАР, выраженной в ваттах или джоулях.

Рассмотрим подробнее, как влияет на растения излучение в различных участках этого диапазона.

Ультрафиолет C (280 - 315 нм)

Облучение растений таким излучением имеет негативные последствия, может приводить к гибели клеток и обесцвечиванию листьев/плодов.

Ультрафиолет B (315- 380 нм)

Это излучение не имеет видимого эффекта на растения.

Ультрафиолет A (380 - 430 нм)

Передозировка ультрафиолетового излучения может быть опасна для листвы, однако малые дозы излучения поглощаются в процессе цветения и созревания плодов и влияют на цвет и биохимический состав (вкус). Как правило, дозы, получаемые растением под воздействием естественного света, достаточны для поддержания этих процессов.

Синий свет (430-450 нм)

Как показано выше, эта часть спектра хорошо поглощается большинством основных пигментов растения. Эта часть спектра может влиять на морфологию растения: размер и форму куста/листьев, длину стебля. Ряд исследований показывает лучшую эффективность синего цвета на раннем этапе развития растения (вегетативная фаза).
Синий свет способствует открытию устьиц, увеличению количества белка, синтезу хлорофилла, делению и функционированию хлоропластов, сдерживанию роста стебля.

Зеленый свет (500-550 нм)

Значительная часть этого диапазона отражается от листьев, однако нельзя недооценивать роль и этого участка спектра на полноценное развитие растений. Так, например зеленое излучение, отражаясь от верхних листьев растения, обладает лучшей проникающей способностью и способствует более равномерному развитию листьев, на нижних уровнях, находящихся в тени более крупных соседей (рис. 5) .


Рис. 5

Также, управление уровнем зеленого в спектре облучения позволяет контролировать время наступления и длительность фаз прорастания и цветения.

Оранжевый свет (550-610 нм)

С точки зрения рассмотренных выше спектров поглощения хлорофиллов, этот диапазон имеет незначительный уровень отклик. Однако, успешный опыт применения натриевых ламп, излучение которых в основном лежит в этом диапазоне, подтверждает, что фактически растения способны развиваться даже при не оптимальном спектральном составе освещения.

Красный (610-720 нм)

Наиболее эффективный диапазон, с точки зрения количества фотонов, поглощаемых растением в процессе на всех этапах развития.
Красный свет способствует цветению, прорастанию почек, росту стеблевых листьев, опадению листьев, спячке почек, этиоляции и т.д.

Дальний красный (720-1000 нм)

Несмотря на незначительный отклик в спектрах поглощения основных пигментов, дальний красный диапазон выполняет своего рода “сигнальную” функцию – как и в случае с зеленым цветом, корректировка уровня дальнего красного позволяет повлиять на время наступления и длительность фазы цветения и плодоношения.

Инфракрасный (1000 нм и выше)

Все излучение в этом диапазоне конвертируется в тепло, дополнительно влияющее на температуру растения.

Следует помнить, что для естественного солнечного света более 50% энергии излучается именно в инфракрасном диапазоне. Если растение в искусственных условиях облучается только в диапазоне 400-700 нм, то нужно дополнительно предусмотреть запас мощности в системе отопления для поддержания комфортной температуры.


Потребности растения на разных этапах роста

Как было отмечено выше, свет является не только источником энергии, контролирующим фотосинтез. Различные участки спектра воспринимается растением как сигналы, влияющие на многие аспекты роста и развития (прорастания, деэтиоляция) Изменения в развитии растений, связанные со светом являются результатом фотоморфогенеза.

На схеме на рис.6 показаны основные эффекты, стимулируемые различными цветами на протяжении жизненного цикла растения.


Рис. 6

Рассмотрим более подробно влияние света на различных этапах

Синтез хлорофилла

Самое большое количество хлорофилла вырабатывается при синем свете, меньшее – при белом и красном, самое меньшее - при зеленом свете и в тени. При разном свете, соотношение хлорофилла A и B также не одинаковое. Самая большая разница в соотношении А и B при желтом и синем свете. Красный свет способствует большой выработке хлорофилла типа A.

Для светолюбивых растений подходит синий свет, для тенелюбивых растений подходит красный свет.

Цветение

Соотношение между длительностью светового периода и периода темноты называется фотопериодом. Общая протяженность суток – 24 часа, однако в зависимости от разной широты и времени года, протяженность дня и ночи неодинаковая. В зависимости от разных климатических условий и места произрастания, фотопериод у разных растений неодинаков. Цветение, опадение листьев, спячка почек – всё это является реакцией растения на изменение фотопериода.

Растения, которые готовы начать цвести, зацветут при наступлении подходящего фотопериода. Количество дней до начала цветения определяется возрастом растения. Чем старше растение, тем оно быстрее зацветет. Под воздействием фотопериода оказываются листья растений. Чувствительность листьев к изменению фотопериода связана с возрастом растения. Чувствительность старых листьев и молодых листьев неодинаковая. Наиболее чувствительными к изменению фотопериода являются растущие листья.

Накопление питательных веществ и рост растений регулируются излучением в красном и дальним красном диапазоне. Размножение определяется, синим светом. Фитохром, содержащийся в листьях, может принимать сигналы красного света и дальнего света. Растение готовое к цветению, зацветет, если последнее излучение будет красным дальним светом.

На рис. 7 показаны спектры поглощения растений при синтезе хлорофилла, фотосинтезе и фотоморфогенезе.


Рис. 7

Светодиоды

Современные мощные светодиоды, применяемые в искусственном освещении растений, позволяют сформировать монохромное излучение фактически в любой части спектра, рассмотренной выше.
Примеры спектров светодиодов показаны на рис. 8


Рис. 8

Стоит отметить светодиоды с длиной волны 450 нм (“глубокий синий”) и 660 нм (“дальний красный”), как составляющие, совпадающие с пиками поглощения хлорофиллов. Как было отмечено выше, наличие светодиодов пиком излучения в других частях спектра, позволяет дополнительно стимулировать другие участки спектра поглощения. Белые люминофорные светодиоды (серая кривая на рис. 8) имеют в составе своего спектра относительно широкую область излучения люминофора, а также синий пик непоглощенного люминофором излучения синего кристалла.

Комбинация светодиодов различных цветов в одном светильнике с возможностью независимого управления позволяет сформировать фактически любой спектр для конкретной культуры и фазы ее развития.
Примеры спектров, используемых в различных сценариях освещения растений,показаны на рис. 9

Рис. 9

Отдельно стоит рассмотреть спектр облучения, получаемый растением, когда на него воздействует одновременно естественное излучение и излучение системы светодиодной досветки.
Предположим. что в светильнике для досветки используются синие и красные светодиоды в соотношении примерно 1:2 (по уровню энергии), для стимуляции хлорофиллов на стадии вегетативного роста.

Пример такого спектра показан на рис. 10


Рис. 10

В реальности же на листья растений будет также воздействовать спектр солнечной радиации, и суммарный спектр облучения будет выглядеть следующим образом (рис. 11).


Рис. 11

Видно, что в этом случае растение монохромная досветка в сочетании с широкополосным естественны излучением дает спектр, стимулирующий все основные зоны поглощения растений. Результирующий спектр по форме близок к суммарному спектру поглощения всех основных пигментов растения, рассмотренному выше.

Заключение

Подводя итоги данного обзора можно отметить следующее:

Спектральный состав света является важным фактором для продуктивного выращивания культур в искусственных условия, однако, не первичным. Получить прирост урожая за счет оптимизации спектра можно при обеспечении растению достаточного уровня базовых потребностей (температура, вода, CO2, вентиляция). Количество света также является более приоритетным параметром по сравнению с его спектральным составом.

Современные светодиоды позволяют эффективно сформировать излучение в спектральном диапазоне поглощения растений. Причем возможно применение т.н. монохромных светодиодов с различными цветами (длиной волны излучения) и традиционных белых “люминофорных” светодиодов, обеспечивающих равномерное широкополосное излучение.

Наличие в светильнике светодиодов с различными цветами и технологии независимого управления ими позволяет исследовать влияние спектра на эффективность выращивание отдельно взятой культуры в конкретных условиях и выработать оптимальный баланс цветов для лучшей урожайности.

Список литературы

Физиология растений. Н.И. Якушкина. Издательство: "Владос". Год: 2004

Исследования над образованием хлорофилла у растений. Монтеверде Н. А., Любименко В. Н. Известия Императорской Академии наук. VII серия. - СПБ., 1913. - Т. VII, № 17. - С. 1007–1028.

Создание эффективных светодиодных фитосветильников. Cакен Юсупов, Михаил Червинский, Екатерина Ильина, Владимир Смолянский. Полупроводниковая светотехника N6’2013

Contributions of green light to plant growth and development. Wang, Y. & Folta, K. M. Am. J. Bot. 100, 70-78 (2013).

Комнатные растения нуждаются в достаточном количестве света, без которого они не могут правильно развиваться. Чтобы организовать их правильное освещение, необходимо использовать специальные светодиодные светильники. Но к сожалению, не все знаю .

Лампа с диодами является самым эффективным способом обеспечения необходимого цветового спектра светокультурных растений. Чаще всего оно используется для , в оранжереях, аквариумах, закрытых садах и для комнатных цветов.

LED-светильники стали самой лучшей альтернативой естественного освещения, так как отличаются экономичностью и длительным сроком эксплуатации.

Как подобрать искусственное освещение

Недостаточное освещение способствует замедлению естественного развития растения.

Ствол цветка утончается, между листочками увеличивается шаг, а появившееся листья не достигают нормальных размеров (пеларгония). Листья, которые располагаются у земли становятся вялыми, желтеют и опадают (фикусы и плющ).

По цвету растения видно, что ему не хватает света: оно блекнет, разноцветные листья становятся более зеленными для фотосинтеза. Комнатные цветы, которые выкинули бутоны, не способны развить полноценный цветок. Они мелкие и быстро увядают.

При излишнем освещении растения также испытывают стресс, даже если их хорошо поливают. Чаще всего, комнатный цветок выглядит вялым, а его листья по краям начинает покрываться желтизной. Если не уменьшить поток света направленного на него, то со временем оно засохнет.

Оптимальным решением такого вопроса является светодиодное освещение (часто используют ). Оно способно учесть различные факторы, от которых зависит выращивание светокультурных растений, а также:

  1. Обеспечивает процесс фотосинтеза.
  2. Предоставляет оптимальное световое облучение.

На рынке сегодня представлен широкий ассортимент светодиодных ламп для растений

Для подсветки небольшой домашней оранжереи используют подобные светильники

Оптимальное световое насыщение растение получает при наличии солнечного света, который представляет собой белый свет. Он включает в себя все спектральные цвета, которые можно увидеть. Светодиодные лампы способны создавать белый свет, который так необходим для правильного цветения светокультур.

Пристальное внимание стоит уделить светолюбивым цветам. Для них необходимо:

  1. Интенсивность освещения – 140-220 Вт/м2.
  2. Спектральное насыщение: зеленого цвета – 490-600 нм; красного цвета – 600-700 нм; синего цвета – 380-490 нм.

Кроме основных биологических потребностей, должны удовлетворяться условия светового насыщения различных светокультур. Основными требованиями для растения являются:

  • тепловой режим;
  • продолжительность светового дня;
  • наличие искусственного светового освещения;
  • световой спектр.

Полноспектральная светодиодная фитолампа

Характеристики LED ламп

Важную роль в том, какое количество света будет получать растение, играет высота подвесного освещения. При правильном расположении светодиодной лампы можно создать естественные условия для роста и цветения светокультур дома.

Для полноценного процесса фотосинтеза необходимо, чтобы длина волны была от 400-700 нм – PAR-диапазона.

Особое значение в освещении играет диапазон спектрального цвета, который нужен для фотосинтеза. Отталкиваясь от этого показателя, определяется количество ламп, их высота над цветами. При использовании люминесцентных добиться полноспектрального свечения практически не возможно

Cтоит учесть, что существуют волны, которые не участвуют в фотосинтезе. Они могут провоцировать быстрое старение, появление излишних побегов и разрастанием. К таким волнам относят инфракрасный свет и ультрафиолет. Поэтому не рекомендуется использовать для выращивания растений.

Наиболее важными волнами, которые помогают комнатным цветам правильно расти, являются синие и
красные.

Диодный светильник не накаливается и обладает свойством равномерно распространять синий и красный цвет. Он может излучать фиолетово-синий и красно-оранжевый цвет. Это позволяет интенсивно развиваться растению с фитобиологической стороны.

Мощность светодиодного освещения рассчитывается в ваттах на м2. Для определения количества ламп учитывают:

  • площадь освещения;
  • высоту лампы;
  • вид светокультуры.

Подача света может быть: периодической, по циклам, постоянной.

Оригинальный диодный модуль для подсветки молодых растений

Современный LED светильник позволяет размещать комнатные растения в любом уголке квартиры

Как выбрать оптимальный вариант

Для комнатных цветов следует использовать следующие режимы освещения:

  • 1000 -3000 лк – для растущих в затемненном помещении, далеко от окна;
  • 3000 – 4000 лк – для нуждающихся в рассеянном потоке света;
  • 4000 – 6000 лк – для нуждающихся в прямом освещении;
  • 6000 – 12 000 лк – для экзотических видов, плодоносящих.

Красивые цветы – залог уюта в вашем доме

Найти подробную информацию о свойствах и правилах выбора фитоламп для рассады можно .

Красные светодиоды необходимы растениям, когда они плодоносят или цветут. Существует две волны красного светодиода: слабопоглащаемая и дальняя. Способствует образованию хлорофилла группы А. В диодных светильниках используют больше ламп красного цвета, чем белого или синего.

Производители светодиодов

Проверенными и надежными российскими производителями являются:

  • Оптоган;
  • Оптрон;
  • Артледс.

Мировыми производителями:

  1. Agilent Technologies – компания, которая не первый год выпускает светодиодные лампы высокого качества. Производитель дает гарантию на лампы не менее 10 лет и выпускает светильники с различной комбинацией ламп.
  2. Optek Technology – производитель высокого уровня. На мировом рынке прочно занял свое место в изготовлении светодиодного освещения. Выпускает различные лампы отличного качества.
  3. Edison – известный производитель, который ничем не уступает своим конкурентам. Изготавливает специализированные светодиодные лампы широкого круга использования: в медицине, косметологии, а также для выращивания палисадников.
  4. Philips Lumileds – за многие годы, эта компания завоевала доверие у многих покупателей. Выпускает лучшие лампы для светодиодного освещения. Предоставляет длительную гарантию на всю продукцию.
  5. Toshiba – компания, которая успешно изготавливает различной конфигурации и видов светодиодные лампы. Качество товара на высшем европейском уровне.

Опыт применения

  1. Ярослав, 26 лет. Санкт-Петербург. «Я установил светильник с двумя рядами светодиодов: красными и синими лампами. Был доволен результатом: растения стали более сильными и плодоносными. Рекомендую такие лампы для светокультур».
  2. Светлана, 42 года. Нижний-Новгород «Занимаюсь разведением светокультурных растений. Специально установила светильник с синими и красными лампами производителя Артледс. Уже через несколько дней заметила, что цветы приобрели более сочный цвет, стебли стали более крепкими и листья перестали желтеть по краям».
  3. Ирина, 22 года. Москва «Специально занимаюсь выращиванием цветов на продажу. Для большей эффективности установила светодиодные лампы, которые помогают цветам всегда быть в отличном состоянии. Советую всем цветочникам не экономить на правильном освещении».
  4. Андрей, 34 года, Тюмень «Используя светодиодные лампы уже не первый год. Сначала относился скептически, но на собственном опыте убедился в результативности такого освещения. Главное правильно расположить светильник и своевременно поливать цветы».

хороший способ благотворно влиять на рост и цветение комнатных цветов в зимний период , а также в помещениях, где свет плохо проникает.

Большое значение в освещении играет: спектр, высота подвеса и режим подсветки растений.

Если хотите, чтобы комнатные цветы были здоровыми и красивыми, необходимо учесть световые параметры и потребность определенных видов растений в искусственном светодиодном освещении.

Видео

Данное видео расскажет Вам про преимущества и недостатки светодиодного освещения для растений.

В листьях содержится пигмент, (пигмент - окрашенное вещество в организме, участвующее в его жизнедеятельности и придающее цвет коже, волосам, чешуе, цветкам, листьям) называемый хлорофиллом, и именно через него растение поглощает световую энергию.

Активный рост растения, увеличение листьев происходит путем питания растения углеводородами - обычными органическими соединениями. Их вырабатывает растение в процессе фотосинтеза. Углеводороды - результат реакции воды и двуокиси углерода. Однако продуктом, который вырабатывается в завершении фотосинтеза, является кислород - соединение, без которого не могут существовать живые организмы.

Факторы влияющие на фотосинтез

Существует ряд факторов, напрямую влияющих на процесс фотосинтеза растений. Прежде всего, интенсивность процесса напрямую зависит от

Температуры окружающего воздуха,

Достаточного обеспечения растения водой

Интенсивности света.

Однако для того, чтобы растение развивалось оптимально, важно не только наличие световой энергии, но и спектр света, а также длительность светового периода, когда растение бодрствует, и темного периода, когда оно отдыхает.

Если правильно регулировать длительность светового дня, то стадиями роста растения можно управлять. Так, у растений длинного дня можно регулировать их вегетативную стадию, а также время цветения. В свою очередь, для растений короткого дня световой период должен оставаться на определенном уровне, ведь слишком длительный период света может существенно нарушить время его цветения. Существует и категория растений, которые растут в зависимости от наличия света, но при этом продолжительность темного и светлого периода суток на них не влияет.

Таким образом, правильно регулируя свет, можно достичь качественных результатов в процессе выращивания разных видов растений.

Дополнительно освещение для растений вы можете купить прямо сейчас в нашем онлайн магазине, в разделе

Что же такое спектр света, и как он влияет на развитие растений?

Солнечный свет не является однородным, если рассматривать его спектральный состав. Свет солнца - это лучи, которые имеют разную длину волны. Таким образом, свет - это частица спектра электромагнитных волн, которую человек может видеть. При этом различать человеческие глаза способны область электромагнитного спектра, которая пребывает в промежутке примерно от 400 до 700 нанометров. В нанометрах измеряется длина, и именно эту единицу наиболее часто используют для измерения малых длин.


Но в жизни растений наиболее важное значение имеет физиологически активная и фотосинтетическая активная радиация.

Самые важные лучи для растений - оранжевые (620-595 нм) и красные (720-600 нм). Эти лучи поставляют энергию для процесса фотосинтеза, а также «отвечают» за процессы, влияющие на скорость развития растения. Например, пигменты с пиком чувствительности в красной области спектра отвечают за развитие корневой системы, созревание плодов, цветение растений. Для этого в теплицах используются натриевые лампы, у которых большая часть излучения приходится на красную область спектра.

Так, к примеру, слишком большое количество красных и оранжевых лучей могут задержать цветение растения.

Также в фотосинтезе непосредственное участие принимают и синие, а также фиолетовые лучи (490-380нм). Кроме того, в их функции входит стимулирование образования белков и регулирование скорости роста растения. Те растения, которые растут в природных условиях короткого дня, быстрее зацветают именно под воздействием этих лучей.

Пигменты с пиком поглощения в синей области отвечают за развитие листьев, рост растения и т.д. Растения, выросшие с недостаточным количеством синего света, например, под лампой накаливания, более высокие - они тянутся вверх, чтобы получить побольше "синего света". Пигмент, который отвечает за ориентацию растения к свету, также чувствителен к синим лучам.

Лучи, которые имеют длинную волну (315-380 нм), не позволяют растению чрезмерно «вытягиваться» и отвечают за синтез ряда витаминов. В то же время ультрафиолетовые лучи, которые имеют длину волны 280-315 нм, могут повышать холодостойкость растений.

Таким образом, жизненно важными для развития растений не являются только желтые и зеленые лучи (565-490 нм).

Следовательно, при организации искусственного осветления растений необходимо в первую очередь учитывать их потребность в особенном спектре света.

Данный спектр, нужный растению выдаю специльно разработанные лампы для досветки растений, которые вы можете приобрести в нашем магазине в разделе

Если рассматривать растения с точки зрения их «отношения» к свету, то их принято делить на три категории:

Светолюбивые

Теневыносливые

Тенеиндифферентные.

Для выращивания растений круглый год в условиях своей квартиры приобретайте -

Популярные статьи

Сектор промышленных цветочных теплиц, использующий метод интенсивной светокультуры растений, является одним из самых энергоёмких (по удельным электрическим параметрам) и, одновременно, самых энергоэффекивных, среди различных областей использования искусственного освещения.

Гидропоника дает основу для получения более высокой урожайности от культивируемых растений по сравнению с обычными способами выращивания. На сегодняшний день вы найдете выращенные гидропонным методом зелень, ягоды, овощи в любом среднем или крупном супермаркете.

Какими должны быть современные Лампы для растений? В сельском хозяйстве индукционные лампы для растений широко используются в теплицах и других местах, где необходимо заменить, либо дополнить естественное солнечное освещение при выращивании различных типов сельскохозяйственных культур, таких как фрукты, овощи, зелень или цветы.

В светильнике ПРА встроенного исполнения, Конденсаторы компенсации реактивной мощности и ИЗУ расположены в едином уплотненном корпусе, состыкованным с арматурой для крепления патрона с лампой и отражателем.

Глобальное и круглогодичное выращивание необходимых растительных продуктов в условиях всевозрастающего жизнеобеспечения 7-10 миллиардного населения земли в XXI веке в значительной мере зависит от продвинутого защищенного грунта, а, следовательно, и расширения использования искусственного света в нем.

Интенсивность фотосинтеза под красным светом максимальна, но под одним только красным растения гибнут либо их развитие нарушается. Например, корейские исследователи показали, что при освещении чистым красным масса выращенного салата больше, чем при освещении сочетанием красного и синего, но в листьях значимо меньше хлорофилла, полифенолов и антиоксидантов. А биофак МГУ установил, что в листьях китайской капусты под узкополосным красным и синим светом (по сравнению с освещением натриевой лампой) снижается синтез сахаров, угнетается рост и не происходит цветения.

Рис. 1 Леанна Гарфилд, Tech Insider - Aerofarms

Какое нужно освещение, чтобы при умеренном энергопотреблении получить полноценно развитое, большое, ароматное и вкусное растение?

В чем оценивать энергетическую эффективность светильника?

Основные метрики оценки энергетической эффективности фитосвета:

  • Photosynthetic Photon Flux (PPF ), в микромолях на джоуль, т. е. в числе квантов света в диапазоне 400–700 нм, которые излучил светильник, потребивший 1 Дж электроэнергии.
  • Yield Photon Flux (YPF ), в эффективных микромолях на джоуль, т. е. в числе квантов на 1 Дж электроэнергии, с учетом множителя - кривой McCree .
PPF всегда получается немного выше, чем YPF (кривая McCree нормирована на единицу и в большей части диапазона меньше единицы), поэтому первую метрику выгодно использовать продавцам светильников. Вторую метрику выгоднее использовать покупателям, так как она более адекватно оценивает энергетическую эффективность.

Эффективность ДНаТ

Крупные агрохозяйства с огромным опытом, считающие деньги, до сих пор используют натриевые светильники. Да, они охотно соглашаются повесить над опытными грядками предоставляемые им светодиодные светильники, но не согласны за них платить.

Из рис. 2 видно, что эффективность натриевого светильника сильно зависит от мощности и достигает максимума при 600 Вт. Характерное оптимистичное значение YPF для натриевого светильника 600–1000 Вт составляет 1,5 эфф. мкмоль/Дж. Натриевые светильники 70–150 Вт имеют в полтора раза меньшую эффективность.


Рис. 2. Типичный спектр натриевой лампы для растений (слева) . Эффективность в люменах на ватт и в эффективных микромолях серийных натриевых светильников для теплиц марок Cavita , E-Papillon , «Галад» и «Рефлакс» (справа)

Любой светодиодный светильник, имеющий эффективность 1,5 эфф. мкмоль/Вт и приемлемую цену, можно считать достойной заменой натриевого светильника.

Сомнительная эффективность красно-синих фитосветильников

В этой статье не приводим спектров поглощения хлорофилла потому, что ссылаться на них в обсуждении использования светового потока живым растением некорректно. Хлорофилл invitro , выделенный и очищенный, действительно поглощает только красный и синий свет. В живой клетке пигменты поглощают свет во всем диапазоне 400–700 нм и передают его энергию хлорофиллу. Энергетическая эффективность света в листе определяется кривой «McCree 1972 » (рис. 3).


Рис. 3. V (λ) - кривая видности для человека; RQE - относительная квантовая эффективность для растения (McCree 1972); σ r и σ fr - кривые поглощения фитохромом красного и дальнего красного света; B (λ) - фототропическая эффективность синего света

Отметим: максимальная эффективность в красном диапазоне раза в полтора выше, чем минимальная - в зеленом. А если усреднить эффективность по сколько-нибудь широкой полосе, разница станет еще менее заметной. На практике перераспределение части энергии из красного диапазона в зеленый энергетическую функцию света иногда, наоборот, усиливает. Зеленый свет проходит через толщу листьев на нижние ярусы, эффективная листовая площадь растения резко увеличивается, и урожайность, например, салата повышается .

Освещение растений белыми светодиодами

Энергетическая целесообразность освещения растений распространенными светодиодными светильниками белого света исследована в работе .

Характерная форма спектра белого светодиода определяется:

  • балансом коротких и длинных волн, коррелирующим с цветовой температурой (рис. 4, слева);
  • степенью заполненности спектра, коррелирующей с цветопередачей (рис. 4, справа).


Рис. 4. Спектры белого светодиодного света с одной цветопередачей, но разной цветовой температурой КЦТ (слева) и с одной цветовой температурой и разной цветопередачей R a (справа)

Различия в спектре белых диодов с одной цветопередачей и одной цветовой температуры едва уловимы. Следовательно, мы можем оценивать спектрозависимые параметры всего лишь по цветовой температуре, цветопередаче и световой эффективности - параметрам, которые написаны у обычного светильника белого света на этикетке.

Результаты анализа спектров серийных белых светодиодов следующие:

1. В спектре всех белых светодиодов даже с низкой цветовой температурой и с максимальной цветопередачей, как и у натриевых ламп, крайне мало дальнего красного (рис. 5).


Рис. 5. Спектр белого светодиодного (LED 4000K R a = 90) и натриевого света (HPS ) в сравнении со спектральными функциями восприимчивости растения к синему (B ), красному (A_r ) и дальнему красному свету (A_fr )

В естественных условиях затененное пологом чужой листвы растение получает больше дальнего красного, чем ближнего, что у светолюбивых растений запускает «синдром избегания тени» - растение тянется вверх. Помидорам, например, на этапе роста (не рассады!) дальний красный необходим, чтобы вытянуться, увеличить рост и общую занимаемую площадь, а следовательно, и урожай в дальнейшем.

Соответственно, под белыми светодиодами и под натриевым светом растение чувствует себя как под открытым солнцем и вверх не тянется.

2. Синий свет нужен для реакции «слежение за солнцем» (рис. 6).


Рис. 6. Фототропизм - разворот листьев и цветов, вытягивание стеблей на синюю компоненту белого света (иллюстрация из «Википедии»)

В одном ватте потока белого светодиодного света 2700 К фитоактивной синей компоненты вдвое больше, чем в одном ватте натриевого света. Причем доля фитоактивного синего в белом свете растет пропорционально цветовой температуре. Если нужно, например, декоративные цветы развернуть в сторону людей, их следует подсветить с этой стороны интенсивным холодным светом, и растения развернутся.

3. Энергетическая ценность света определяется цветовой температурой и цветопередачей и с точностью 5 % может быть определена по формуле:

где - световая отдача в лм/Вт, - общий индекс цветопередачи, - коррелированная цветовая температура в градусах Кельвина.

Примеры использования этой формулы:

А. Оценим для основных значений параметров белого света, какова должна быть освещенность, чтобы при заданной цветопередаче и цветовой температуре обеспечить, например, 300 эфф. мкмоль/с/м2:


Видно, что применение теплого белого света высокой цветопередачи позволяет использовать несколько меньшие освещенности. Но если учесть, что световая отдача светодиодов теплого света с высокой цветопередачей несколько ниже, становится понятно, что подбором цветовой температуры и цветопередачи нельзя энергетически значимо выиграть или проиграть. Можно лишь скорректировать долю фитоактивного синего или красного света.

Б. Оценим применимость типичного светодиодного светильника общего назначения для выращивания микрозелени.

Пусть светильник размером 0,6 × 0,6 м потребляет 35 Вт, имеет цветовую температуру 4000 К , цветопередачу Ra = 80 и световую отдачу 120 лм/Вт. Тогда его эффективность составит YPF = (120/100)⋅(1,15 + (35⋅80 − 2360)/4000) эфф. мкмоль/Дж = 1,5 эфф. мкмоль/Дж. Что при умножении на потребляемые 35 Вт составит 52,5 эфф. мкмоль/с.

Если такой светильник опустить достаточно низко над грядкой микрозелени площадью 0,6 × 0,6 м = 0,36 м 2 и тем самым избежать потерь света в стороны, плотность освещения составит 52,5 эфф. мкмоль/с / 0,36м 2 = 145 эфф. мкмоль/с/м 2 . Это примерно вдвое меньше обычно рекомендуемых значений. Следовательно, мощность светильника необходимо также увеличить вдвое.

Прямое сравнение фитопараметров светильников разных типов

Сравним фитопараметры обычного офисного потолочного светодиодного светильника, произведенного в 2016 году, со специализированными фитосветильниками (рис. 7).


Рис. 7. Сравнительные параметры типичного натриевого светильника 600Вт для теплиц, специализированного светодиодного фитосветильника и светильника для общего освещения помещений

Видно, что обычный светильник общего освещения со снятым рассеивателем при освещении растений по энергетической эффективности не уступает специализированной натриевой лампе. Видно также, что фитосветильник красно-синего света (производитель намеренно не назван) сделан на более низком технологическом уровне, раз его полный КПД (отношение мощности светового потока в ваттах к мощности, потребляемой из сети) уступает КПД офисного светильника. Но если бы КПД красно-синего и белого светильников были одинаковы, то фитопараметры тоже были бы примерно одинаковы!

Также по спектрам видно, что красно-синий фитосветильник не узкополосен, его красный горб широк и содержит гораздо больше дальнего красного, чем у белого светодиодного и натриевого светильника. В тех случаях, когда дальний красный необходим, использование такого светильника как единственного или в комбинации с другими вариантами может быть целесообразно.

Оценка энергетической эффективности осветительной системы в целом:


Рис. 8. Аудит системы фитоосвещения

Следующая модель UPRtek - спектрометр PG100N по заявлению производителя измеряет микромоли на квадратный метр, и, что важнее, световой поток в ваттах на квадратный метр.

Измерять световой поток в ваттах - превосходная функция! Если умножить освещаемую площадь на плотность светового потока в ваттах и сравнить с потреблением светильника, станет ясен энергетический КПД осветительной системы. А это единственный на сегодня бесспорный критерий эффективности, на практике для разных осветительных систем различающийся на порядок (а не в разы или тем более на проценты, как меняется энергетический эффект при изменении формы спектра).

Примеры использования белого света

Описаны примеры освещения гидропонных ферм и красно-синим, и белым светом (рис. 9).


Рис. 9. Слева направо и сверху вниз фермы: Fujitsu , Sharp , Toshiba , ферма по выращиванию лекарственных растений в Южной Калифорнии

Достаточно известна система ферм Aerofarms (рис. 1, 10), самая большая из которых построена рядом с Нью-Йорком. Под белыми светодиодными лампами в Aerofarms выращивают более 250 видов зелени, снимая свыше двадцати урожаев в год.


Рис. 10. Ферма Aerofarms в Нью-Джерси («Штат садов») на границе с Нью-Йорком

Прямые эксперименты по сравнению белого и красно-синего светодиодного освещения
Опубликованных результатов прямых экспериментов по сравнению растений, выращенных под белыми и красно-синими светодиодами, крайне мало. Например, мельком такой результат показала МСХА им. Тимирязева (рис. 11).


Рис. 11. В каждой паре растение слева выращено под белыми светодиодами, справа - под красно-синими (из презентации И. Г. Тараканова, кафедра физиологии растений МСХА им. Тимирязева)

Пекинский университет авиации и космонавтики в 2014 году опубликовал результаты большого исследования пшеницы, выращенной под светодиодами разных типов . Китайские исследователи сделали вывод, что целесообразно использовать смесь белого и красного света. Но если посмотреть на цифровые данные из статьи (рис. 12), замечаешь, что разница параметров при разных типах освещения отнюдь не радикальна.


Рис 12. Значения исследуемых факторов в двух фазах роста пшеницы под красными, красно-синими, красно-белыми и белыми светодиодами

Однако основным направлением исследований сегодня является исправление недостатков узкополосного красно-синего освещения добавлением белого света. Например, японские исследователи выявили увеличение массы и питательной ценности салата и томатов при добавлении к красному свету белого. На практике это означает, что, если эстетическая привлекательность растения во время роста неважна, отказываться от уже купленных узкополосных красно-синих светильников необязательно, светильники белого света можно использовать дополнительно.

Влияние качества света на результат

Фундаментальный закон экологии «бочка Либиха» (рис. 13) гласит: развитие ограничивает фактор, сильнее других отклоняющийся от нормы. Например, если в полном объеме обеспечены вода, минеральные вещества и СО 2 , но интенсивность освещения составляет 30 % от оптимального значения - растение даст не более 30 % максимально возможного урожая.


Рис. 13. Иллюстрация принципа ограничивающего фактора из обучающего ролика на YouTube

Реакция растения на свет: интенсивность газообмена, потребления питательных веществ из раствора и процессов синтеза - определяется лабораторным путем. Отклики характеризуют не только фотосинтез, но и процессы роста, цветения, синтеза необходимых для вкуса и аромата веществ.

На рис. 14 показана реакция растения на изменение длины волны освещения. Измерялась интенсивность потребления натрия и фосфора из питательного раствора мятой, земляникой и салатом. Пики на таких графиках - признаки стимулирования конкретной химической реакции. По графикам видно что исключить из полного спектра ради экономии какие-то диапазоны, - все равно что удалить часть клавиш рояля и играть мелодию на оставшихся.


Рис. 14. Стимулирующая роль света для потребления азота и фосфора мятой, земляникой и салатом (данные предоставлены компанией Фитэкс)

Принцип ограничивающего фактора можно распространить на отдельные спектральные составляющие - для полноценного результата в любом случае нужен полный спектр. Изъятие из полного спектра некоторых диапазонов не ведет к значимому росту энергетической эффективности, но может сработать «бочка Либиха» - и результат окажется отрицательным.
Примеры демонстрируют, что обычный белый светодиодный свет и специализированный «красно-синий фитосвет» при освещении растений обладают примерно одинаковой энергетической эффективностью. Но широкополосный белый комплексно удовлетворяет потребности растения, выражающиеся не только в стимуляции фотосинтеза.

Убирать из сплошного спектра зеленый, чтобы свет из белого превратился в фиолетовый, - маркетинговый ход для покупателей, которые хотят «специального решения», но не выступают квалифицированными заказчиками.

Корректировка белого света

Наиболее распространенные белые светодиоды общего назначения имеют невысокую цветопередачу Ra = 80, что обусловлено нехваткой в первую очередь красного цвета (рис. 4).

Недостаток красного в спектре можно восполнить, добавив в светильник красные светодиоды. Такое решение продвигает, например , CREE . Логика «бочки Либиха» подсказывает, что такая добавка не повредит, если это действительно добавка, а не перераспределение энергии из других диапазонов в пользу красного.

Интересную и важную работу проделал в 2013–2016 годах ИМБП РАН : там исследовали, как влияет на развитие китайской капусты добавление к свету белых светодиодов 4000 К / Ra = 70 света узкополосных красных светодиодов 660 нм.

И выяснили следующее:

  • Под светодиодным светом капуста растет примерно так же, как под натриевым, но в ней больше хлорофилла (листья зеленее).
  • Cухая масса урожая почти пропорциональна общему количеству света в молях, полученному растением. Больше света - больше капусты.
  • Концентрация витамина С в капусте незначительно повышается с ростом освещенности, но значимо увеличивается с добавлением к белому свету красного.
  • Значимое увеличение доли красной составляющей в спектре существенно повысило концентрацию нитратов в биомассе. Пришлось оптимизировать питательный раствор и вводить часть азота в аммонийной форме, чтобы не выйти за ПДК по нитратам. А вот на чисто-белом свету можно было работать только с нитратной формой.
  • При этом увеличение доли красного в общем световом потоке почти не влияет на массу урожая. То есть восполнение недостающих спектральных компонент влияет не на количество урожая, а на его качество.
  • Более высокая эффективность в молях на ватт красного светодиода приводит к тому, что добавление красного к белому эффективно еще и энергетически.
Таким образом, добавление красного к белому целесообразно в частном случае китайской капусты и вполне возможно в общем случае. Конечно, при биохимическом контроле и правильном подборе удобрений для конкретной культуры.

Варианты обогащения спектра красным светом

Растение не знает, откуда к нему прилетел квант из спектра белого света, а откуда - «красный» квант. Нет необходимости делать специальный спектр в одном светодиоде. И нет необходимости светить красным и белым светом из одного какого-то специального фитосветильника. Достаточно использовать белый свет общего назначения и отдельным светильником красного света освещать растение дополнительно. А когда рядом с растением находится человек, красный светильник можно по датчику движения выключать, чтобы растение выглядело зеленым и симпатичным.

Но оправданно и обратное решение - подобрав состав люминофора, расширить спектр свечения белого светодиода в сторону длинных волн, сбалансировав его так, чтобы свет остался белым. И получится белый свет экстравысокой цветопередачи, пригодный как для растений, так и для человека.

Открытые вопросы

Можно выявлять роль соотношения дальнего и ближнего красного света и целесообразность использования «синдрома избегания тени» для разных культур. Можно спорить, на какие участки при анализе целесообразно разбивать шкалу длин волн.

Можно обсуждать - нужны ли растению для стимуляции или регуляторной функции длины волн короче 400 нм или длиннее 700 нм. Например, есть частное сообщение, что ультрафиолет значимо влияет на потребительские качества растений. В числе прочего краснолистные сорта салата выращивают без ультрафиолета, и они растут зелеными, но перед продажей облучают ультрафиолетом, они краснеют и отправляются на прилавок. И корректно ли новая метрика PBAR (plant biologically active radiation ), описанная в стандарте ANSI/ASABE S640 , Quantities and Units of Electromagnetic Radiation for Plants (Photosynthetic Organisms , предписывает учитывать диапазон 280–800нм.

Заключение

Сетевые магазины выбирают более лежкие сорта, а затем покупатель голосует рублем за более яркие плоды. И почти никто не выбирает вкус и аромат. Но как только мы станем богаче и начнем требовать большего, наука мгновенно даст нужные сорта и рецепты питательного раствора.

А чтобы растение синтезировало все, что для вкуса и аромата нужно, потребуется освещение со спектром, содержащим все длины волн, на которые растение прореагирует, т. е. в общем случае сплошной спектр. Возможно, базовым решением будет белый свет высокой цветопередачи.

Благодарности
Автор выражает искреннюю благодарность за помощь в подготовке статьи сотруднику ГНЦ РФ-ИМБП РАН к. б. н. Ирине Коноваловой; руководителю проекта «Фитэкс» Татьяне Тришиной; специалисту компании CREE Михаилу Червинскому

Литература

Литература
1. Son K-H, Oh M-M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes // Hortscience. – 2013. – Vol. 48. – P. 988-95.
2. Ptushenko V.V., Avercheva O.V., Bassarskaya E.M., Berkovich Yu A., Erokhin A.N., Smolyanina S.O., Zhigalova T.V., 2015. Possible reasons of a decline in growth of Chinese cabbage under acombined narrowband red and blue light in comparison withillumination by high-pressure sodium lamp. Scientia Horticulturae https://doi.org/10.1016/j.scienta.2015.08.021
3. Sharakshane A., 2017, Whole high-quality light environment for humans and plants. https://doi.org/10.1016/j.lssr.2017.07.001
4. C. Dong, Y. Fu, G. Liu & H. Liu, 2014, Growth, Photosynthetic Characteristics, Antioxidant Capacity and Biomass Yield and Quality of Wheat (Triticum aestivum L.) Exposed to LED Light Sources with Different Spectra Combinations
5. Lin K.H., Huang M.Y., Huang W.D. et al. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata) // Scientia Horticulturae. – 2013. – V. 150. – P. 86–91.
6. Lu, N., Maruo T., Johkan M., et al. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density // Environ. Control. Biol. – 2012. Vol. 50. – P. 63–74.
7. Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., О.С. Яковлева, А.И. Знаменский, И.Г. Тараканов, С.Г. Радченко, С.Н. Лапач. Обоснование оптимальных режимов освещения растений для космической оранжереи «Витацикл-Т». Авиакосмическая и экологическая медицина. 2016. Т. 50. № 4.
8. Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., Яковлева О.С., Знаменский А.И., Тараканов И.Г., Радченко С.Г., Лапач С.Н., Трофимов Ю.В., Цвирко В.И. Оптимизация светодиодной системы освещения витаминной космической оранжереи. Авиакосмическая и экологическая медицина. 2016. Т. 50. № 3.
9. Коновалова И.О., Беркович Ю.А., Смолянина С.О., Помелова М.А., Ерохин А.Н., Яковлева О.С., Тараканов И.Г. Влияние параметров светового режима на накопление нитратов в надземной биомассе капусты китайской (Brassica chinensis L.) при выращивании со светодиодными облучателями. Агрохимия. 2015. № 11.

Теги:

Добавить метки