Ожившие после «смертельного замерзания. Подготовьте сообщение и насекомых, способных возвращаться к жизни после промерзания Если на Земле наступит апокалипсис, в живых останутся не люди




Иван Иванович Шишкин. Пасека в лесу. Какие насекомые живут в специальных домиках, изображенных на картине? Какие насекомые живут в специальных домиках, изображенных на картине? Как называются эти домики? Зачем их ставят в лесу? Как называются эти домики? Зачем их ставят в лесу? ТРИЗ-Чита




Так жужжит тяжелый жук: жу-жу-жу, жу-жу-жу! Так поет пчеле пчела: ла-ла-ла, ла-ла-ла! Не моргает стрекоза: за-за-за, за-за-за! Так танцует таракан: кан-кан-кан, кан-кан-кан! На носу сидит комар: мар-мар-мар, мар-мар-мар! Обхохочется блоха: ха-ха-ха, ха-ха-ха! ТРИЗ-Чита


Жук-бомбардир стреляет во врагов горячей ядовитой жидкостью.Жук-бомбардир стреляет во врагов горячей ядовитой жидкостью. Если бы человек мог прыгать, как блоха, он бы перепрыгнул футбольное поле! Если бы человек мог прыгать, как блоха, он бы перепрыгнул футбольное поле!




Узнай больше о необычных насекомых! neobychnye-nasekomye-v-mire-11- foto.html






Ян ван КЕССЕЛЬ. Старший. Насекомые и ягоды смородины Ян ван КЕССЕЛЬ. Старший. Насекомые и ягоды смородины. Рассмотри на картине насекомых. Назови тех, кого ты знаешь. Какие части тела насекомых можно хорошо рассмотреть? Найди ошибки, которые допустил художник при рисовании. Крылья насекомых это тонкие пластинки. Они могут быть лёгкими и прозрачными, как у стрекоз. А бывают жёсткими и разноцветными, как у жуков. ТРИЗ-Чита



ПЧЕЛА ДОМАШНЯЯ пчела медоносная (Apis millifera) – одомашненный вид перепончатокрылых насекомых из семейства пчелиных. Имеют большое значение как опылители растений и поставщики мёда, воска, прополиса, маточного молочка, пчелиного яда Ту́тутовый шелкопряд́д – это домашнее насекомое. Гусеницы шелкопрядда завивают коконы, оболочки которых состоят из непре-рывной шёлковой нити длиной м. Гусеницы поедают листья без остановки и днём, и ночью, из-за чего очень быстро растут. Тутутовый шелкопрядд

Ниже представлен список 10 удивительно выносливых существ, которые способны выжить в таких условиях в каких ни одно существо не может выжить.

Пауки-скакунчики - семейство пауков, содержащее в себе более 500 родов и около 5 000 видов это примерно 13% от всех видов пауков. Пауки-скакунчики обладают очень хорошим зрением, они также способны прыгать на расстояние, намного превышающее размер их тела. Эти активные дневные охотники, широко распространены по всему миру, включая пустыни, тропические леса и горы. В 1975 году представитель этого семейства был обнаружен даже на пике самой высокой горы в мире - Эвересте.


Девятое место в списке занимает Гигантский кенгуровый прыгун - грызун, находящийся под угрозой исчезновения и встречающийся только в штате Калифорния, США. Продолжительность его жизни составляет 2–4 года. За всю свою короткую жизнь грызун способен обходится без единой капли питьевой воды. Влагу необходимую для существования они получают из пищи, а это в основном семена.

Помпейский червь (Alvinella pompejana)


Помпейский червь - вид глубоководных червей, который был обнаружен в начале 1980-х годов в северо-восточной части Тихого океана. Эти черви бледно-серого цвета способны вырастать до 13 см в длину. Помпейский червь долгое время оставался неизученным, так как при попытке поднять его на поверхность он неизбежно умирал. Объясняется это тем, что во время подъёма привычное давления для Помпейского червя уменьшалось. Однако недавно французскими учёными с помощь специальной техники, которая поддерживала необходимое давление среды, удалось живыми и здоровыми доставить несколько особей в лабораторию. Выяснилось, что эти черви способны выжить при довольно-таки высоких температурах. Оптимальная температура для них составляет 42 °C, но при нагреве до 50-55 °C червь погибал.


Гренландские акулы являются одними из самых больших и наименее изученных акул в мире. Обитают в водах Северной Атлантики при температуре от 1–12 °С и глубине до 2 200 метров на которой примерное давление составляет 220 атмосфер или около 9 700 килограмма на квадратный сантиметр. Гренландские полярные акулы очень медлительны, их средняя скорость составляет 1,6 км/ч, а максимальная - 2,7 км/ч, отсюда и второе название «спящие акулы». Питаются почти всем, что могут поймать. Самые крупные особи этих акул могут достигать до 7,3 м и весить до 1,5 т, однако средняя длина варьируется от 2,44 до 4,8 м, а средний вес не превышает 400 кг. Точная продолжительность их жизни неизвестна, хотя есть теория, что они способны доживать до 200 лет. Является одним из самых долгоживущих животных на планете .


На протяжении десятилетий учёные считали, что только одноклеточные организмы могут выжить на очень больших глубинах под землёй из-за большого давления, недостатка кислорода и экстремальных температур. Однако после того как в 2011 году Гаэтаном Боргони и Таллисом Онстоттом в руде на золотодобывающих шахтах «Беатрикс» и «Префонтейн» в ЮАР на глубинах 0,9 км, 1,3 км и 3,6 км под поверхностью Земли были обнаружены эти многоклеточные организмы, гипотеза была опровергнута. Обнаруженные черви длиной в 0,52–0,56 мм обитали в небольших скоплениях воды температура, которой составляла 48 °C. Halicephalobus mephisto, возможно, самые глубокоживущие многоклеточные организмы на планете.


Некоторые виды лягушек были найдены буквально замороженными, но с наступлением весны они «оттаивали» и продолжали свою жизнедеятельность. В Северной Америке насчитывается пять известных видов таких лягушек. Наиболее распространённой является древесная лягушка, которая чтобы перезимовать просто прячется под листья и замерзает. Самое интересное то, что на время такой спячки сердце лягушки останавливается.


Многие знают, что глубочайшей точкой Мирового океана, а также наименее исследованным местом на планете является «Марианский жёлоб» глубиной в 11 км, где давление примерно в 1072 раза больше нормального атмосферного давления. В 2011 году, учёные с помощью камеры высокого разрешения и современного батискафа обнаружили на глубине 10 641 метров гигантских амёб, которые в несколько раз крупнее (10 см) своих родственников.

Bdelloidea


Bdelloidea - животное из класса коловраток, живущее в пресной воде, влажной почве и мокром мхе по всему миру. Являются микроскопическими организмами, длина которых не превышает 150–700 мкм (0,15–0,7 мм). Для невооружённого глаза они невидимы, но если смотреть через лупу животное Bdelloidea можно увидеть в виде маленьких белых точек. Они способны выжить в жёстких, сухих условиях благодаря ангидробиозу, состояние, которое позволяет организму этого животного быстро обезводится и, таким образом, противостоять высыханию. Как выяснилось, в этом состоянии животное способно пробыть до 9 лет, ожидая благоприятных условий для возвращения. Интересно, что с момента открытия ещё не был найден ни один представитель мужского пола.

Таракановые


Популярный миф гласит, что в случае ядерной войны, единственными выжившими на Земле будут тараканы . Не удивительно ведь они считаются одними из самых выносливых насекомых, способные жить без пищи и воды в течение одного месяца. А смертельная доза излучения радиации для этих насекомых больше в 6-15 раз, чем, например, для людей. Однако они всё же не настолько стойки к радиации, как, например, плодовые мушки. Найденные окаменелости таракана, показывают, что они жили 295–354 млн. лет назад опередив тем самым динозавров, хотя внешним видом эти тараканы, безусловно, отличались от современных тараканов.


Тихоходки - микроскопические животные, впервые описанные немецким пастором Иоганном Августом Эфраимом Гёце в 1773 году. Распространены по всему миру, включая дно океана и полярные регионы на экваторе. Чаще всего населяют лишайниковые и моховые подушки. Размер тела этих полупрозрачных беспозвоночных составляет 0,1-1,5 мм. Тихоходки обладают неимоверной выносливостью. Учёными было установлено что тихоходки способны выжить в течение нескольких минут при температуре 151 °С, а также могут жить несколько дней при температуре минус 200 °С. Они также поддавались излучению в 570 000 рентген и примерно 50% тихоходок остались живыми (для человека смертельная доза в 500 рентген). Ещё их помещали в специальную камеру высокого давления, заполненную водой и, поддавали воздействию 6 000 атмосфер, что в 6 раз больше чем давление на дне «Марианского жёлоба» - животные остались живы. Известен случай, когда мох, взятый с пустыни спустя примерно 120 лет после его иссушения, разместили в воду, и одна с пребывавших в нём тихоходок подала признаки жизни.

Поделится в соц. сетях

Многочисленные наблюдения и опыты, проведенные с целью выявления действия субнулевых температур на пойкилотермных животных, опровергли некоторые ранее разработанные общепринятые теории, и в последние годы вся проблема в целом подверглась пересмотру.

Многие исследователи получили данные, что насекомые различных сильно отличающихся друг от друга видов переживают замораживание при низких температурах. Например, Сколендер и сотрудники показали, что личинки комара-звонца (Chironomus), которых обнаруживали на Аляске замерзшими во льду или в иле на дне арктических водоемов при температуре -20°, всегда оживали после оттаивания, даже после замораживания при -40°. Они переживали также неоднократное охлаждение до -16°. Определяли количество льда и воды в этих замороженных, но живых личинках при различных температурах. Отношение содержания воды к сухому весу резко уменьшалось по мере падения температуры. При -15° вымерзало до 90% воды. При -35°, т. е. наиболее низкой температуре, применявшейся в данных исследованиях, в личинке оставалось еще какое-то небольшое количество свободной воды. Иногда личинку переохлаждали, но это не влияло на переживание ею низких температур. С помощью микрометода определяли потребление кислорода частично замороженной личинки при различных температурах. В интервале температур от 0 до -15° у отдельных личинок наблюдалось резкое уменьшение потребления О 2 . Поразительные изменения коэффициента Q 10 для потребления О 2 обнаружены в личинках, охлажденных до температур, лежащих выше точки замерзания, а также между точкой замерзания и -5°. Некоторое количество кислорода они потребляли и при -15°, но когда температура падала до -40°, потребность в кислороде сводилась к нулю. В опытах определяли интенсивность диффузии кислорода и СО 2 через лед, и она оказывалась достаточной для поддержания дыхания личинок, находившихся в мелких замерзших водоемах при температуре, преобладающей в естественных условиях.

Очень интересное изучение выживаемости замороженных насекомых провел японский ученый Асэхина с сотрудниками. Они сообщили, что предкуколки бабочки Монета flavescens (более известной как Cnidocampa flavescens Walk.) переживали замораживание при -30°, будучи переохлажденными примерно до -20°. Типичная кривая показывает постепенное понижение температуры насекомого во время охлаждения до -20°.

Затем следует резкое и быстрое повышение температуры, совпадающее с наступлением процесса замораживания и обусловленное выделением скрытой теплоты кристаллизации. После этого температура постепенно понижается и достигает уровня температуры окружающего воздуха, тогда как жидкости организма постепенно вымерзают. Когда зимующих предкуколок освобождали от коконов, они переживали замораживание при таких низких температурах, как -30°, что подтвердилось восстановлением у них сокращений сердца после оттаивания. Они переживали также неоднократное замораживание и оттаивание с интервалами в 1 день. Будучи на той же стадии развития, но в интактных коконах, предкуколки переживали и нормально развивались после замораживания и пребывания в течение 100 дней при температуре -15°. В противоположность этому гусеницы, вылупившиеся в летние месяцы, не переживали даже кратковременного замораживания при -10°.

Процесс замораживания зимующих предкуколок Cnidocampa flavescens изучали под микроскопом. Куколкам вскрывали брюшную полость и охлаждали их на столике микроскопа до -10 или -20°. Вымерзание начиналось в нескольких местах с поверхности крови. Постепенно кристаллы разрастались в радиальном направлении, пока не заполняли все пространство, занятое кровью. Когда сердца зимующих предкуколок изолировали и охлаждали в крови непосредственно под микроскопом, кристаллы льда образовывались вне клеток сердечной мышцы. Отдельные клетки и целые органы сморщивались, но после оттаивания они вновь приобретали нормальный вид, а сердечная деятельность восстанавливалась. При таком же замораживании сердец летних гусениц в крови, а также при замораживании сердец зимующих гусениц в 0,15 М растворе хлористого натрия отдельные клетки замораживались изнутри при температуре около -15°. Внутри клеток были видны кристаллы льда, а все сердце в целом темнело. Сердца, в которых происходила внутриклеточная кристаллизация льда, после оттаивания не возобновляли ритмических сокращений. Вполне возможно, что у насекомых, замерзших в естественных зимних условиях, кристаллы льда образовались вне клеток, которые обезвоживались и сморщивались.

В следующих опытах Асахина и Аоки охлаждали зимующих предкуколок Cnidocctmpa flavescens до -90° в специальной холодильной камере, где температура за 1,5 час снижалась от -5 до -90° Спустя 45 мин предкуколок согревали при комнатной температуре, причем из 60 ожило 20. Предкуколок, извлеченных из коконов, погружали в жидкий кислород с температурой -180°. Предварительно их замораживали при -30° и выдерживали при этой температуре в течение одного дня. После оттаивания при комнатной температуре у них восстанавливались сокращения сердца и некоторые предкуколки продолжали развиваться, но не завершали полностью метаморфоза до стадии имаго. Предкуколки, которых до погружения в жидкий кислород выдерживали в течение 1 дня при температуре -10 или -20°, не выживали после оттаивания. Зимующие гусеницы бабочки боярышницы A porta crataegi adherbal Fruhstorfer также переживали погружение в жидкий кислород при условии предварительного замораживания при -30°. После оттаивания у них восстанавливалась нормальная подвижность и они продолжали расти. Можно полагать, что выживание при температуре -180° зависело в каждом отдельном случае от внеклеточного вымерзания воды при -30°.

Еще не выяснены основные факторы, способствующие выживанию этих и других видов насекомых при низких температурах на определенной стадии цикла развития, а также отличие их от насекомых, которые неизбежно погибают при действии замораживания. Новую струю внесли исследования Уайетта и сотрудников, которые установили, что глицерин является основным растворимым компонентом в плазме куколки бабочки Hyalophora cecropia и родственного ей вида сатурнии Telea polyohemus; глицерин обнаружен также в яйцах тутового шелкопряда (Bombyx mori) и в личинках лугового мотылька (Loxostege stictlcalts) и золотарниковой мухи-пестрокрылки (Eurosta solidaglnis). В каждом случае стадия развития насекомого, во время которой в организме находили глицерин, представляла собой зимнюю стадию. Отсюда можно было сделать вывод, что своей устойчивостью к холоду некоторые насекомые обязаны именно накоплению глицерина. Более ранние исследования показывали, что присутствие глицерина в гемолимфе и тканевых жидкостях не всегда связано с устойчивостью к холоду. Солт, например, обнаружил, что личинки лугового мотылька (Loxostege stictlcalts), не переживающие замораживания, имеют почти такую же концентрацию глицерина (2-4%), как и личинки золотарниковой мухи-пестрокрылки (Eurosta solidagints), которые переживают храпение в течение 18 дней при температуре -55°.

Интересно отметить, что концентрация глицерина в личинках Bracon cephi увеличивалась осенью при хранении их как в естественных условиях, так и при температуре -5°. Одновременно с этим понижалась температура переохлаждения и таяния. В, этот же период у насекомых наблюдалась способность переживать воздействие температур от -40 до -47° в переохлажденном состоянии, а также переживать замораживание. Весной и ранним летом происходил обратный процесс - концентрация глицерина в крови понижалась и исчезала устойчивость к холоду. В гемолимфе и других тканевых жидкостях зимующих личинок В. cephi, помимо глицерина, присутствовали также какие-то другие, еще не идентифицированные растворенные вещества. Когда концентрация глицерина достигала 5 М, она не соответствовала наблюдавшемуся в это время понижению температуры таяния примерно на одну моляльную единицу. Не может быть никаких сомнений в том, что исключительная устойчивость личинок В. cephi к холоду в осеннее время связана главным образом с их способностью обеспечивать высокую концентрацию глицерина. Концентрация глицерина в личинках в середине зимы достигала 20-27%, и этого было достаточно для обеспечения переохлаждения до такой низкой температуры, что насекомые не замерзали в своих естественных местах обитания. Концентрация глицерина была также достаточной для защиты отдельных клеток и тканей от повреждения, если личинки В. cephi все-таки замерзали. В чувствительных же к холоду личинках Loxostege sticticalis его концентрация была, видимо, недостаточно высокой для оказания защитного действия. Как бы то ни было, исследования на Bracon cephi показали, что благодаря изменению метаболических процессов с наступлением холодов у ряда насекомых развивалась повышенная устойчивость к холоду. Примечательно, что раньше сам Солт сомневался в существовании такого основного фактора, повышающего устойчивость к холоду.

Впоследствии глицерин обнаружили в зимующих личинках жуков-древоточцев Melandra striata и кукурузного мотылька (Pyrausta nubilalis). Впадающие в спячку пенсильванские муравьи-древоточцы (Camponotus pennsilvanicus) и их яйца содержали зимой 10% глицерина. Когда муравьев, постепенно согревая до комнатной температуры, выводили из состояния спячки, они вновь становились подвижными и приблизительно через 3 дня в их организме уже нельзя было обнаружить глицерина. Как только у насекомых посредством охлаждения вызывали состояние спячки, глицерин вновь появлялся и снова каждый раз исчезал, когда муравьев выводили из этого состояния. Таким образом, нет никаких сомнений в том, что глицерин играет главную роль в устойчивости этих видов насекомых к зимним холодам.

Однако оставалось еще много неясных моментов. Так, например, не известно, откуда берут глицерин личинки Bracon cephi и Camponotus pennsilvanicus в осеннее время. Чино установил, что глицерин и сорбит в находящихся в диапаузе яйцах тутового шелкопряда (Botbyx mori) образуются из гликогена. Уайетт и Мейер полагают, что глицерин является продуктом ферментативного гидролиза глицерофосфатов во время диапаузы у куколок Hyalophora cecropia. Другой невыясненный вопрос касается причины повреждений чувствительных к холоду видов насекомых во время замораживания и оттаивания. Повышение концентрации электролитов, наступающее в процессе вымерзания воды, представляет собой основную причину повреждения эритроцитов и сперматозоидов некоторых видов млекопитающих и, вероятно, различных других клеток в организме млекопитающего. Глицерин в соответствующей концентрации защищает их, по крайней мере частично, действуя как солевой буфер. Однако многие насекомые не так уж богаты электролитами. Глицерин в маленьких количествах может оказывать защитное действие на некоторые липопротеидные компоненты оболочек, находящиеся как внутри, так и вне клеток. Необходимо провести еще много исследований, чтобы выявить роль глицерина в гемолимфе насекомого, в частности в отношении повышения устойчивости к холоду.

Было сделано еще одно важное наблюдение. Крупные клетки жирового тела устойчивой к холоду золотарниковой мухи-пестрокрылки (Eurosta solidaginis) переживают внутриклеточную кристаллизацию льда. Солт изучал процессы замораживания и оттаивания этих клеток непосредственно под микроскопом. Замерзая, они сохраняли свою сферическую форму и первоначальный размер, не сжимаясь, как это обычно бывает с клетками при наступлении внеклеточной кристаллизации. При неоднократном замораживании и оттаивании отдельные капельки жира внутри клеток сливались друг с другом. В естественных условиях зимой клетки жирового тела личинки Е. solidaginis округлялись, а после наступления теплой погоды процесс развития продолжался. Следовательно, можно предположить, что внутриклеточное замораживание и оттаивание представляют собой нормальное явление у этого насекомого на стадии личинки. Так это или нет, но Солт первый наблюдал (причем совершенно отчетливо) выживание живых клеток после внутреннего замораживания. Возможно, различные клетки других холодоустойчивых пойкилотермных животных также переживали внутриклеточную кристаллизацию льда в естественных условиях. Вновь возникает вопрос: всегда ли внутриклеточное замораживание влечет за собой летальный исход?

Давно известно, что многие насекомые для полного развития нуждаются на определенной фазе их жизненного цикла в пребывании в течение какого-то периода времени на холоду. Например, озимая муха (Leplohylemyia. coarctata (Fall.)) откладывает яйца на землю в самое жаркое время года, в июле или августе, а ее личинки вылупляются зимой следующего года, между январем и мартом. Таким образом, они переносят воздействие температур от +30° и выше в августе до -5° и ниже в январе и феврале. Первая стадия развития (морфогенез до диапаузы) протекает при температурах от +3 до +30°. За этим следует диапауза с верхним температурным пределом около +12° и оптимальной, как предполагали ранее, температурой примерно +3°. Уэй установил заметное увеличение длительности диапаузы при -6°, как показало сокращение числа личинок, вылупившихся из яиц через 6, 14 и 34 дня, по сравнению с результатами, полученными, когда яйца инкубировали при +3°. Уэй провел специальный опыт для определения минимальной температуры диапаузы. Яйца, отложенные в середине августа, оставляли в земле, на открытом воздухе, до второй недели ноября, а затем их переносили в сосуды с температурой +3, -6, -18, -22 и -24°. Через определенные промежутки времени яйца извлекали из сосудов и инкубировали при +20°. Регистрировали время вылупления личинок, причем получили неожиданные результаты. При падении температуры ниже -6° диапауза заканчивалась быстрее. Так, из инкубированных при +3° яиц 50% личинок вылупилось через 20 дней, а из инкубированных при температуре -6° - через 45 дней. Однако после воздействия температурой -24° те же 50% личинок вылупилось уже через 6 час, а 88% - через 24 час. При -24° диапауза длилась в 80 раз меньше, чем при общепризнанной ранее оптимальной температуре +3°, и в 180 раз меньше, чем при -6°. Находящиеся в диапаузе яйца повреждались, когда их выдерживали при низких температурах дольше, чем это требовалось для завершения диапаузы. Например, Уэй наблюдал, что после выдерживания при температуре -24° в течение б дней вывелось 98% личинок, а после выдерживания в течение 20 дней - только 32%. После инкубации при температуре -18° в течение 63 дней вылупилось 97%, а после инкубации в течение 206 дней - лишь 36%. Для того чтобы добиться быстрого окончания диапаузы, необходимо было до хранения яиц при -18 или -24° инкубировать их 50-80 дней при +5°. Совершенно ясно, что существуют по крайней мере две фазы в диапаузе. Первая наступает сравнительно быстро при температуре около +5° и может наступить при +20°, но никогда при -18 или -20°. Вторая быстрее всего наступает при температуре от -18 до -24° и может наступить при -5°, но никогда при +20°. Уэй показал, что яйца в диапаузе переохлаждались даже до таких низких температур, как -25 и -28°, и замораживание не было причиной быстрого окончания диапаузы в яйцах, на которых действовали температурой от -18 до -24°. Переохлажденные до -26,5° и затем замороженные яйца при оттаивании оказывались погибшими. До настоящего времени попытки ввести в яйца глицерин терпели неудачу. Еще неясны физиологические процессы, происходящие во время диапаузы, и неизвестны средства, с помощью которых их можно было бы ускорить, используя низкие температуры. Это, по-видимому, один из немногих примеров, когда течение биологического процесса ускоряется за счет понижения температуры животного до -20 или -24°.

Изучая воздействие низких температур на насекомых и другие живые организмы, важно помнить об основных экологических принципах. Мелланби подчеркивает, что при охлаждении насекомых их возможное переживание и смерть не является ни единственным, ни даже самым важным фактором, которые следует иметь в виду. Выживание вида зависит от многих сторон активности, связанных с жизненным циклом, в том числе от питания и способности размножаться. Выживаемость же отдельной особи связана с ее способностью избегать непосредственно угрожающей ей опасности. Так, например, личинки желто-лихорадочного комара (Aedes aegypti) обычно находятся у поверхности воды, но немедленно уходят на дно, как только их встревожит появление какой-либо тени или сотрясение воды. Реакция тревоги исчезает при охлаждении воды до 9-14° (в зависимости от того, к какой температуре привыкли личинки). Последующее охлаждение приводит к тому, что личинки становятся неподвижными, хотя они еще в состоянии реагировать на механическое раздражение. Затем достигается температура Холодовой комы, а при дальнейшем понижении температуры насекомые уже находятся в состоянии холодового наркоза. Показано действие акклиматизации при различных температурах на личинки A. aegypti у согретых после Холодовой комы и оживших личинок восстанавливается реакция тревоги.

Многие насекомые погибают при температурах выше нуля. Личинки комара А. aegypti, например, погибают при +0,5° через различные сроки в зависимости от температуры, при которой они раньше жили. Все личинки, культивированные при +30°, погибали менее чем через 17 час при температуре +0,5°. Если же их предварительно выдерживали при температуре 17°, они переживали такой срок хранения при +0,5°. Через 18 час наступала полная акклиматизация к окружающей холодной среде при условии, что температура была все же выше, чем та, при которой наступает холодовая кома.

В отношении некоторых насекомых можно добиться того, что они привыкнут к действию низких температур, бывших ранее летальными. Так, пребывание при относительно высокой температуре +15° помогает черным тараканам (Blatta orientalis) переживать кратковременное пребывание при такой низкой температуре, как -6,8°, которая детальна для насекомых этого вида, предварительно инкубированных при +30°. Механизм такой быстрой акклиматизации еще не известен, но вряд ли можно сомневаться в наличии приспособительных изменений во всех тканях активного насекомого в ответ на колебания температуры. Насекомые, впадающие под влиянием холода в состояние наркоза, не акклиматизируются. Более того, они подвергаются опасности быть уничтоженными другими животными или различными механическими и физическими силами, помимо самого замерзания. Замерзание не всегда является главной причиной гибели охлажденных насекомых. Для выживания многих видов существенное значение имеет продолжительное пребывание их ежегодно при температуре значительно выше нуля.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Вконтакте

Дьявольский червь



Этот вид нематод обнаружен лишь недавно, в 2011 году. Ему нипочем всесокрушающее давление, недостаток кислорода и высокая температура. Места обитания червя расположены до 3,5 километров ниже поверхности планеты. Выбрав себе такой «дом», животное установило новый «мировой рекорд», улучшив прежнее «достижение» многоклеточных организмов сразу полтора километра. Черви проводят жизнь в полной темноте, поедая простейших бактерий и запивая их водой, возраст которой 12 тысяч лет.

Гималайский прыгучий паук




Прыгучий паук – полная противоположность дьявольского червя. Его «дом» расположен на высоте свыше 6,5 км над уровнем моря. Обычная «погода» для паука – чрезвычайно низкое атмосферное давление и температура, при которой замерзает все живое. Крошечные насекомые, которых заносят в горы ветра – единственная пища гималайского паука, да и та попадается не часто.

Бессмертная медуза



Кто из взрослых людей не хотел бы ненадолго вернуться в детство, когда все проблемы можно решить, поплакавшись в мамин подол? Оказывается это не фантастика, а естественный природный процесс. В соответствующих условиях эта похожая на светодиод или полицейскую "мигалку" медуза способна вернуться к младенческому состоянию, что делает ее практически бессмертной. Ученые пока не обнаружили каких-то ограничений на количество превращений. К сожалению, каждый раз, когда бессмертная медуза «впадает в детство», она становится очень уязвимой для насекомых и болезней, что ограничивает теоретическое бессмертие на практике.

Красный плоский короед




Это насекомое родом из северных районов Аляски и Канады, способно противостоять морозам до -150 градусов Цельсия. Организм жука производит природный антифриз, белок, который препятствует кристаллизации крови. Кроме того, в крови есть глицерин, который также останавливает замораживание.

Помпейский червь




Места обитания помпейского червя расположены на океаническом дне. Однако их главная способность не в том, что они успешно противостоят глубине и давлению. Червь живет в горячих термальных источниках, где температура воды достигает 80-100 градусов Цельсия. Свое тело он прячет в «домике», но голова торчит снаружи. В результате разница температуры окружающей среды для хвоста и головы составляет более 60 градусов.

Тихоходка




Микроскопические, длиной не более миллиметра животные способны выжить буквально везде. Для них не проблема ни широкий диапазон температур, от космического холода до 150 градусов Цельсия, ни давление, в 1200 раз превышающее атмосферное. Тихоходки способны десятилетиями обходиться без воды и выдерживают радиацию, в тысячу раз превышающую смертельные дозы для человека. В 2007 году люди отправили тихоходок в космос, чтобы найти пределы их живучести. Большинство животных успешно вернулись на Землю.
Комментарии: 0

    Александр Марков

    Александр Марков, Яков Кротов

    С христианской точки зрения

    Человек происходит от обезьяны, а религия - от невежества? Или как? Где проходит граница между научным и христианским пониманием человека? Гость программы "С христианской точки зрения" - биолог Александр Марков. Ведёт программу Яков Кротов.

    Трансгенные растения имеют тенденцию распространяться "сами по себе", это уже довольно известный факт. И именно как к факту к этому следует относиться. Как это происходит? И кто со всей определенностью может сказать, к чему это может привести? С этими и другими вопросами мы обратились заместителю директора по научной работе Института физиологии растений им. К. А. Тимирязева Российской Академии наук, Владимиру Дылыковичу Цыдендамбаеву.

    Многие люди испытывают невралгические боли в детском возрасте, но для молодых морских ежей рост означает выворачивание наизнанку. В новом исследовании выяснена ключевая роль распространенного и знакомого вещества гистамина для впечатляющего видоизменения, когда свободно плавающая личинка превращается в более привычную покрытую иглами взрослую особь, обитающую на морском дне.

    Математики из Университета Аризоны разработали модель, которая позволяет объяснить особую спиральную структуру, которая часто встречается в живой природе - у подсолнухов, артишоков, капусты и других растений.


У низших насекомых, которые живут только во влажных местах, кутикула проницаема для воды и газов, они дышат всей поверхностью тела. Кожное дыхание играет важную роль и в жизни личинок, обитающих в воде, в сырой почве, в тканях растений.
У большинства других насекомых - особая респираторная (дыхательная) система. Все их тело пронизано тончайшими канальцами или трубочками-трахеями. Они ветвятся многократно, переплетаются друг с другом. Воздух попадает в трахеи через крохотные отверстия - дыхальца. Они располагаются на боках тела насекомого, на груди и брюшке. Их может быть десять пар (у взрослых) либо всего одна пара (у некоторых личинок).
Воздух через дыхальца и далее по трахеям распространяется путем простой диффузии. Даже большие гусеницы получают таким простым способом весь необходимый им кислород. Но наиболее активные насекомые, быстро бегающие или летающие, нагнетают воздух в трахеи дыхательными движениями брюшка. Оно то расширяется, то сжимается. При расширении воздух засасывается в трахеи.

Когда брюшко сжимается, особые клапаны закрывают дыхальца и воздух наружу не выпускают. Он проталкивается дальше по трахейной системе, наполняет воздушные мешки, расширения трахей. Дыхальца открываются и закрываются не одновременно, а в такой слаженной последовательности, что воздух беспрепятственно и в определенном порядке буквально прокачивается через все тело насекомого.

Температура тела насекомых

У птиц и млекопитающих особые физиологические «механизмы» поддерживают температуру тела на определенном, оптимальном для каждого вида уровне, в пределах от 34 до 42 градусов, у кого как. Насекомые такими способностями не обладают: они холоднокровные животные. Тело их разогревается или охлаждается в зависимости от того, тепло или холодно вокруг них, в окружающей среде. Однако для наиболее активных из шестиногих летунов такое утверждение не вполне справедливо.

Комар. Фото: Eli Christman

Установлено, что крылья насекомых работают наиболее эффективно при температуре 38-40 градусов. Их мышцы сокращаются в очень быстром темпе: взмахи крыльев следуют у пчелы, например, до 200, у обычных комаров - до 600, а у мелких комариков - мокрецов - до 1000 раз в секунду! При всякой работе выделяется тепло. Сами мышцы и грудка насекомого, в которой они помещаются, быстро разогреваются до оптимального «рабочего режима».

Но и перед полетом некоторые насекомые, сидя на месте, быстро-быстро трепещут крыльями. Бражники нередко прогревают таким способом свой «мотор» несколько минут, и за это время температура внутри их грудки повышается до 32-36 градусов, даже если воздух вокруг значительно холоднее.

Другой и главный источник тепла - это, конечно, солнце. Жизнедеятельность насекомых зависит от него полностью. Быстро, за пять минут, температура в грудке шмеля повышается от 28 градусов (когда он сидит в тени) до 41,6 (на солнце) и быстро падает, если снова пересадить его в тень.


Шмель. Фото: Thomas Quine

Как известно, шмель весьма лохматый, его тело густо поросло волосками. «Подстриженный» шмель (с удаленными волосками) остывает в тени гораздо быстрее лохматого. Мелкие чешуйки, которыми покрыты крылья, да и все тело (даже ножки) бабочек и мотыльков, сохраняют тепло, полученное от работы мышц либо от солнца. Под чешуйками залегает тонкий слой воздуха - достаточная теплоизоляция для такого малого животного, как насекомое. При определенных условиях опыта у сиреневого бражника с неповрежденными чешуйками температура тела на 17 градусов выше окружающего его воздуха. Если чешуйки удалить - только на восемь градусов.

Стрекозы - активные летуны. Следовательно, тепловой режим мышц, приводящих в движение крылья, и у них должен поддерживаться на определенном уровне. Однако никаких чешуек или густой поросли волосков на их гладкой кутикуле нет. У стрекоз термоизоляция другого типа: воздушные мешки, расширения трахей, располагаются под хитиновым грудным панцирем довольно плотно друг к другу.

У каждого вида насекомых свои температурные пределы, оптимальные и критические. Одни и при нескольких градусах тепла активны, даже при нуле (например, обитающие в водоемах тундры личинки веснянок и комаров) и ниже (некоторые живущие на снегу), другие только при 20-30 градусах тепла. Для таракана прусака температура 42 градуса уже губительна. Личинки же некоторых комаров-звонцов живут и не умирают в горячих источниках Северной Америки (в Иеллоустонском парке), температура воды в которых 49-51 градус. А личинок африканского комара полипеди-люма находили иногда даже в источниках с температурой 60-70 градусов.

Упомянутый прусак, неприятный наш сожитель, уже при семи градусах тепла не способен двигаться, если незадолго перед тем жил он при температуре 30 градусов. А когда поживет хотя бы один день при 15 или 36 градусах тепла, то теряет подвижность соответственно при 2 и 9,5 градуса.

Зимующие в северных широтах насекомые неделями переносят морозы в минус 20-40 градусов и не погибают (они, конечно, не активны, в глубокой спячке проводят зиму). Как показали некоторые исследования, жидкость, заключенная в клетках их тела, при этом не замерзает. Почему? Возможно, промерзанию препятствуют какие-то вещества, образующиеся осенью в их тканях и действующие как антифриз в радиаторе автомобиля. Концентрация некоторых веществ, глицерина например, в крови зимующих насекомых повышена, у иных до 20 процентов. Не ясно только, сами ли эти вещества обеспечивают морозоустойчивость живых клеток, или они лишь побочный продукт тех физиологических процессов, которые протекают в тканях готовящегося к анабиозу насекомого.

Яйца насекомых

Жизнь свою насекомые начинают из яиц, вид и форма которых весьма разнообразны, но все они богато наделены желтком - питательным продуктом, потребляя который развивается эмбрион. Вода и кислород ему не менее необходимы.
У некоторых насекомых, бабочек и мотыльков, например, яйца укрывает сверху толстая и плотная оболочка. Ее выделяют особые железы яйцекладущей самки, подобно тому, как это происходит и с куриным яйцом. Но оболочка эта проницаема для воды. Если же наступят слишком сухие дни, яйца бабочек, чтобы сохранить запасы влаги, выделяют особые воскоподобные вещества: те тонким, но уже водонепроницаемым слоем покрывают яйцевую оболочку изнутри.
У саранчи и водяных жуков «скорлупа» яиц тонка и непрочна. Она легко рвется. Но чтобы этого не случилось, эмбрион уже на самых ранних стадиях развития укрепляет ее, изнутри покрывая яйца плотной дополнительной оболочкой. Она состоит из хитина, как и внешние покровы насекомых.
Еще Реомюр в XVIII веке заметил: только что отложенные яйца многих насекомых быстро впитывают воду и разбухают почти вдвое. А у пустынной саранчи и больше чем вдвое. Саранча, размножаясь в сезон дождей, закапывает их в сырой песок. Однако это разбухание - процесс вполне контролируемый. Влага поступает в яйцо в одном особом месте - в гидропиле, и, как только яйцо достаточно напитается водой, ее впитывание тут же прекращается. Яйца некоторых наездников, попав в тело хозяина, разбухают в тысячу раз!

Если воды в яйце недостаточно, развитие приостанавливается. Вынужденный покой бывает весьма длительным - до 270 дней, например, у ногохвостки, зеленого сминтура. Яйца саранчи могут пролежать обезвоженные даже три с половиной года. И не погибают! Как только в нужной мере напитаются водой, тут же начинают быстро развиваться. Через пару недель из них выходят личинки.

Случается, что и при достаточной влажности яйца насекомых не развиваются, обмен веществ в них почти прекращается, наступает так называемая диапауза - обязательная стадия покоя.
Комары из рода эдес часто откладывают яйца в наполненные водой пазухи листьев, в дупла деревьев, даже в консервные банки - словом, в микроводоемы, которые быстро пересыхают. Пока в них есть вода, яйца комаров развиваются быстро, и обычно эмбрион успевает созреть до стадии вполне сформированной личинки. Затем, когда «водоем» пересохнет, личинка впадает в длительную спячку, чтобы пробудиться и выйти из яйца, как только вновь (а это случается обычно следующей весной) упомянутые микроводоемы наполнятся водой.

У другого комара-полипедилюма из семейства хирономид, личинки которых в обиходе именуются мотылем, - способность переносить засуху еще более поразительна. Личинки его живут в Западной Африке во всякого рода лужах, обычно в выбоинах, среди скал. В сезон дождей они полны водой, но очень скоро пересыхают. Тогда высыхают и личинки комаров, и так основательно, что, кажется, лишь тонкая шкурка от них осталась. Но в этой «шкурке» таится всемогущая искра жизни: если личинку охладить до минус 190 градусов и продержать при этой температуре три дня, она не умрет. Можно на минуту окунуть ее в кипяток - все равно выживет! Понятно, что африканский зной ей и подавно не страшен, когда, слегка зарывшись в ил, неподвижная и обезвоженная, личинка ждет сезона новых дождей.

Но вернемся к яйцам насекомых. Развиваясь, они дышат. Кислород у некоторых, у яиц саранчи, например, проникает под оболочку диффузно по всей ее поверхности. Но у большинства насекомых развивающееся яйцо обеспечивает кислородом особый респираторный, дыхательный механизм. Обычно это губчатая выстилка внутренней поверхности оболочки яйца. Поры ее заполнены белковым веществом, которое жадно усваивает, словно впитывает в себя, кислород из воздуха. Тонкие канальцы соединяют это вещество с поверхностью яйца.

У водяных скорпионов, клопов непа и ренатра яйца погружены в ткани водяных растений. Наружу торчат только два длинных выроста, похожие на рога или усы: они пористые и заполнены веществом, усваивающим кислород.
Яйца многих насекомых, словно в пакеты, упакованы в оотеки. Оотека саранчи образуется из пенистой жидкости, которую выделяет яйцекладущая самка. Жидкость окружает яйца, цементирует вокруг них землю, получается плотная капсула, которую называют кубышкой. Оотека жука-водолюба - овальный шелковистый кокон с длинным отростком, который наподобие трубы торчит вверх из воды. Сама оотека приклеена снизу к листу водного растения. Через «трубу» поступает в оотеку, к яйцам, воздух.
Оотеки богомолов похожи на еловые шишки, а рыжего таракана - на туго набитый кошелек. Сходство довершает слегка зазубренный шов на одной из длинных сторон оотеки, напоминающий замок «молнию» кошелька. Яйца лежат в оотеке аккуратными рядами, верхними концами к шву. Здесь у яиц возвышаются небольшие бугорки. Они пористы и заполнены усваивающим кислород веществом. Два небольших «рожка» на респираторных бугорках яиц упираются снизу в шов оотеки, как раз в те его места, где тончайшие канальцы пронизывают оотеку насквозь. По ним воздух поступает к дыхательной системе яиц.
Развивающийся эмбрион буквально плавает в жидкости, наполняющей яйцо. Когда он совсем сформируется, то начинает заглатывать эту жидкость. Все это можно разглядеть при небольшом увеличении, через лупу например, если оболочка яйца прозрачна, как у стрекоз, бабочек, постельных клопов, вшей и многих других насекомых. Видно, что рот и глотка эмбрионов на манер насоса работают беспрерывно: глотают и глотают амниотическую жидкость яйца. Их тело «разбухает» буквально на глазах, и вскоре эмбрион заполняет все яйцо. Внутри его нет уже никакой жидкости, лишь тонкая прослойка разделяет оболочку и упирающиеся в нее хитиновые покровы готовой выйти из яйца личинки.

Вылупление

Еще незадолго перед тем обильно напитанные водой, хитиновая кутикула и все ткани личинки теперь быстро подсыхают, наружный скелет личинки становится твердым. Упираясь им изнутри в оболочку яйца, дергаясь рывками из стороны в сторону, всеми силами старается она прорвать стены своего заключения. Яйцо лопается, и личинка выходит из него.
Но не у всех так. Яйца саранчи, например, как мы уже знаем, укреплены изнутри цементирующими выделениями эмбриона и не поддаются давлению стремящейся наружу личинки. Тогда вступают в действие ферменты хитиназа и протеиназа, растворяющие оболочку яйца. Их выделяют железы первого сегмента брюшка личинки.

Не всегда оболочка рвется где попало, у многих насекомых предусмотрены определенные зоны: отделенные круговым швом крышки на вершине яйца либо продольные швы. Здесь «скорлупки» яиц более тонки. Да и личинки действуют по-разному: у комариных, например, особые «яйцевые зубы» - прочные шипы на голове, похожие на рожки, - дырявят и рвут изнутри оболочку яйца. Гусеницы грызут ее челюстями, а у личинок мух есть особые крючья во рту.

У вполне развитых эмбрионов вшей «яйцевые зубы», острые шипы, располагаются сбоку на их теле. Личинка энергично вертится под оболочкой яйца, режущие шипы на ее кутикуле расположены прямо против кольцевого шва, отделяющего крышечку яйца от прочей его поверхности. Они скребут по шву, который становится все тоньше и тоньше. Затем личинка, всосавшая уже всю жидкость внутри яйца, энергично заглатывает ртом имеющийся в нем воздух и выпускает его через анальное отверстие. Таким образом, у заднего ее конца создается повышенное давление. Под его напором личинка выползает из яйца, приподнимая головой крышечку.
Так или иначе, личинка насекомого выбралась из яйца. Она питается и растет. Но растет урывками лишь в определенные периоды своей жизни. Прочный наружный скелет членистоногих не позволяет им увеличивать размеры тела. Только во время линьки, когда старые хитиновые доспехи сброшены, а новые еще мягки и растяжимы, животное может расти. Насекомые, за очень малыми исключениями, растут только в стадии личинки. Взрослые не линяют и, следовательно, не растут (кроме немногих исключений: например, щетинохвосток, поденок).

Линек у личинок высших насекомых обычно 4- 5, иногда и 20 (например, у цикад). А их жизнь до превращения во взрослое насекомое длится от нескольких дней (около десяти у комнатной мухи) до 3-4 лет у майского жука. А у одного жука из рода бупрестис иногда продолжается и 51 год.

Как известно, из правил бывают исключения. Наиболее впечатляющий пример такого исключения - матки в гнездах термитов. Уже взрослые и половозрелые, они продолжают расти. Но увеличивается только брюшко, распираемое многими тысячами созревающих яиц. Размеры головы, груди, ног, скованных прочным и толстым хитином, остаются прежними, но брюшко все полнеет и полнеет, раздувается, пухнет: в длину увеличивается в восемь раз и больше, а его поверхность - в пятьдесят раз!
Растягивается эластичная перепонка, соединяющая толстые щитки брони - склериты. Растягивается так сильно, что склериты заметны на толстом вздувшемся брюшке, как маленькие темные островки.
Мягкая кутикула гусениц складчатая и неплотно прилегает к телу, поэтому они могут расти и между линьками, но до известного предела, пока складки кутикулы не растянутся и тело гусеницы не заполнит весь объем наружного скелета. Так называемые гормоны линьки - вещества, содержащиеся в жидкости, которая заполняет промежуток между старой кутикулой и новой, образовавшейся под ней, - растворяют мягкие покровы гусениц почти на 90 процентов, и гусеница при линьке сбрасывает очень тонкую кожицу.

У насекомых с твердым панцирем «гормоны линьки» растворяют кутикулу только в определенных местах, которые заметны в эту пору в виде тонких белых линий на голове и груди. Вдоль этих линий и рвется старый панцирь.
Закончившее линьку насекомое обычно окрашено бледно. Вскоре, примерно через час, покровы его темнеют и приобретают свойственную виду окраску. Но новая кутикула еще долго - несколько дней или даже недель - остается мягкой. В это время насекомое быстро растет. У жуков только через три недели после метаморфоза толщина кутикулы увеличивается до свойственной взрослому насекомому нормы: нарастают новые слои хитина, втрое и больше увеличивается их массивность.
Щетинохвостки, один из отрядов низших насекомых, выходят из яиц во всем похожие на взрослых, только ростом меньше. От рождения и до смерти ни их внешний вид, ни образ жизни по существу не меняется. Когда насекомые достигнут определенного размера, наступает половозрелость. Самки откладывают яйца, затем снова линяют. Так чередуются у них яйцекладки и линьки, которых бывает и пятьдесят! Поэтому и рост свой, даже после того, когда обретут половозрелость, некоторые щетинохвостки увеличивают втрое.

Если нет необходимого корма, личинка перестает расти. Но линьки не у всех прекращаются. Пробовали содержать без пищи личинку жука из рода трогодерма. Она регулярно линяла, но не росла, а, наоборот, словно усыхала. В начале опыта длина ее была около восьми миллиметров. К концу пятого года вынужденной голодовки рост ее уменьшился в восемь раз, а вес - в шестьсот!
Бывает, что корма достаточно только для поддержания жизни, но не роста. Личинка североамериканского жука эбуриа в таком случае остается живой в сухом дереве, по крайней мере, сорок лет (В. Унглесворт).
Долгие месяцы, иногда годы могут жить насекомые в стадии глубокого покоя, или диапаузы. Наступает она при неблагоприятных условиях: в наших широтах - зимой, в пустынях и тропиках - в сухой сезон. Тогда всякий рост прекращается, обмен веществ падает до самого низкого уровня, накопленные в теле резервы (в основном жир) поддерживают жизнь в покоящемся насекомом.
Насекомые могут впадать в диапаузу на разных стадиях развития: одни покоятся в виде яиц, другие - личинок, куколок и даже взрослых (например, колорадские жуки).

У куколки бабочки эриогастер (из семейства коконопрядов) диапауза длится 2-3 года. Но рекорд принадлежит одной галлице: ее личинка, закопавшись в землю и окутав себя коконом, лишь через восемнадцать лет окукливается и превращается во взрослого комара.

Но это исключительные случаи. Многие насекомые в наших широтах в стадии диапаузы лишь перезимовывают. Примером может служить всем известная бабочка-капустница. За лето две, а если оно жаркое, то и три генерации сменяют друг друга: из яиц выходят гусеницы, растут, окукливаются, превращаются в бабочек, которые снова откладывают яйца. Но в сентябре развитие у куколок останавливается и наступает диапауза. Как узнают они, что близится зима?
Оказывается, главную роль играет длина светового дня. Когда световой день становится 12 часов и меньше, наступает диапауза. Можно искусственным освещением продлить световой день, тогда диапаузы не бывает, и куколка продолжает развиваться.