SMD компоненты. Поверхностный монтаж печатных плат


Изготовление и поверхностный монтаж печатных плат - это задачи, которые требуют современного и высокотехнологичного оборудования. Продукция компании «ДИАЛ» полностью соответствует этим требованиям. В каталоге компании вы найдете большой выбор оборудования для монтажа печатных плат, соответствующего самым высоким стандартам качества:

  • Высокая точность
  • Максимальная производительность
  • Длительный срок службы
  • Повышенная повторяемость

Современное оборудование для поверхностного монтажа компонентов в Москве

Компания «ДИАЛ» выпускает оборудование для монтажа печатных плат. Современные технологии, применяемые нашими специалистами, позволяют организовать промышленный процесс на предприятии с учетом ваших пожеланий и поставленных задач.

Также в нашем каталоге представлены системы для быстрой и качественной установки компонентов. СМТ оборудование «ДИАЛ» – это широкая линейка продукции, безупречное качество и разумная ценовая политика.

Надежное оборудование для поверхностного монтажа компонентов на печатные платы, предназначенное для нанесения паяльной пасты на печатную плату. В линейке продукции представлены модели для мелко-, средне- и крупносерийных производств, а широкий ассортимент продукции с различными вариантами исполнения позволяет найти вариант для любых задач.

Печи конвекционного оплавления с конвейерной транспортировочной системой обеспечат равномерный нагрев SMD компонентов, что позволит упростить поверхностный монтаж компонентов. Оборудование позволяет комбинировать зоны охлаждения, предварительного и пикового нагрева, а также создавать инертную среду в зоне пайки. В каталоге вы можете подобрать оптимальный тип конвейера и полностью адаптировать печь под нужды производства.

Монтаж электронных компонентов на плату подразумевает транспортировку элементов в течение всех этапов производства. Функциональные конвейерные системы и погрузчики обеспечат автоматизацию процесса, начиная от загрузки печатных плат на линию, и заканчивая укладкой в подготовленные магазины. Мы подготовили для вас конвейеры различной ширины и длины, чтобы упростить процесс выбора оборудования с учетом всех особенностей производства.

Ремонтный центр - механизм, способный выполнять целый комплекс операций, в том числе демонтаж и монтаж компонентов для их замены, а также ремонт и восстановление печатных плат при поломках любой сложности.

Сушильный шкаф - незаменимое оборудование для поверхностного монтажа печатных плат. Обеспечивает равномерную и быструю просушку любых материалов, которым необходима термическая обработка в процессе применения, а также используется при выполнении промежуточных работ.

Приобрести все необходимое оборудование для SMD монтажа в Москве гораздо проще, если вы обратитесь к производителю напрямую. Продукция компании «ДИАЛ» - это низкие цены и широкий ассортимент. Все компоненты производятся на территории России, что позволяет нам сохранять действительно выгодные условия сотрудничества для каждого заказчика.

Наши менеджеры готовы ответить на ваши вопросы о монтаже электронных компонентов на плату в любое время, а также помочь с подбором оборудования.

Министерство образования и науки РФ

Томский государственный университет систем управления и радиоэлектроники (ТУСУР)

Кафедра радиоэлектронных технологий и экологического мониторинга (РЭТЭМ)

Отчет по летнему практическому заданию

Технология поверхностного монтажа.

Выполнил студент гр. 232-5

Кравченко К.В.

«__» ___________ 2005 г.

Принял проф. каф. РЭТЭМ:

Зиновьев Г. В.

«__» ___________ 2005 г.

Томск 2005 -

Введение.

    Типы печатных плат.

    1. Односторонние печатные платы.

      Двухсторонни печатные платы.

      Многослойные печатные платы.

      Гибкие печатные платы.

      Рельефные печатные платы.

      Высокоплотная печатные платы.

    Сборка и монтаж элементов на печатные платы.

    1. Типы SMT сборок.

      Нанесение припойной пасты.

      1. Выбор припойной пасты.

        Трафаретный метод нанесения припойной пасты.

        Дисперсный метод нанесения припоя.

    2. Установка компонентов на плату.

      1. Автоматическая установка компонентов.

        Ручная установка компонентов.

    Поверхностно монтируемые компоненты.

    1. Пайка волной припоя.

      Пайка расплавлением дозированного припоя с инфракрасным (ИК) нагревом.

      Пайка расплавлением дозированного припоя в парогазовой фазе (ПГФ).

      Лазерная пайка.

      Пайка в глухие отверстия.

Список использованной литературы.

Введение.

При современном развитии радиоэлектронной промышленности, особенно микроэлектронной и появлением больших интегральных схем (БИС) и сверхбольших интегральных схем (СБИС) стало очевидно, что прежние методы конструкции и монтажа печатных узлов радиоэлектронных устройств не могли обеспечить, те требования, которые предъявляли им, те же корпуса БИС и СБИС с числом выводом более 100 и шагом между ними менее 0,6 мм, поэтому был предложен новый метод, так называемого поверхностного монтажа, когда элементы располагаются не на штыревых выводах вставленных в соответствующие отверстия в печатной плате или припаянные к соответвующим лепесткам, а непосредственно к контактным площадкам на печатной плате, сформированными токоведущими дорожками. Это позволило не только добиться огромной миниатюризации собранных таким образом устройств, но и к значительному снижению массы и стоимости, т.к. данная технология подразумевает наличие полностью автоматизированного производства, практически без участия человеческой силы.

В данном отчете я представляю материал, который был изучен мной по заданию на летнюю технологическую практику.

    Типы печатных плат.

Появление печатных плат (ПП) в их современном виде совпадает с началом использования полупроводниковых приборов в качестве элементной базы электроники. Переход на печатный монтаж даже на уровне одно- и двухсторонние плат стал в свое время важнейшим этапом в развитии конструирования и технологии электронной аппаратуры.

Разработка очередных поколений элементной базы (интегральная, затем функциональная микроэлектроника), ужесточение требований к электронным устройствам, потребовали развития техники печатного монтажа и привели к созданию многослойных печатных плат (МПП), появлению гибких, рельефных печатных плат.

Многообразие сфер применения электроники обусловило совместное существование различных типов печатных плат:

    Односторонние печатные платы;

    Двухсторонние печатные платы;

    Многослойные печатные платы;

    Гибкие печатные платы;

    Рельефные печатные платы (РПП);

    Высокоплотная односторонняя печатная плата

      Односторонние печатные платы.

Односторонние платы по-прежнему составляют значительную долю выпускаемых в мире печатных плат. В предыдущем десятилетии в США они составляли около 70% объема выпуска плат в количественном исчислении, однако, лишь около 10 % в стоимостном. В Великобритании такие платы составляют около четверти от объема всего производства.

Маршрут изготовления односторонних плат традиционно включает сверление, фотолитографию, травление медной фольги, защиту поверхности и подготовку к пайке, разделение заготовок. Стоимость односторонних плат составляет 0,1 - 0,2 от стоимости двухсторонних плат, это делает их вполне конкурентными, особенно в сфере бытовой электроники.

Отметим, однако, что для современных электронных устройств, даже бытового назначения, односторонние платы часто требуют контурного фрезерования, нанесения защитных маскирующих покрытий, их сборка ведется с посадкой кристаллов непосредственно на плату или поверхностным монтажом.

Пример такой платы в сборе, используемой в цифровом спидометре - альтиметре горного велосипеда, показан на рисунке 1.1.

Рисунок 1.1 – Пример односторонней печатной платы.

Типовые параметры плат:

    Макс. размеры заготовки - 400 мм x 330 мм

    Минимальный диаметр отверстия - 0,6-0,4 мм

    Минимальная ширина проводника - 0,15 мм

    Минимальный зазор - 0,15 мм

    Толщина фольги - 36 мкм

    Толщина платы - 0,4 - 1,6 мм

      Двухсторонние печатные платы.

Двухсторонние платы составляют в настоящее время значительную долю объема выпуска плат, например, в Великобритании до 47 %. Не претендуя на однозначность оценок, а опираясь лишь на собственную статистику последних трех лет, можно оценить долю двухсторонних плат в российском производстве в 65 - 75%.

Столь значительное внимание разработчиков к этому виду плат объясняется своеобразным компромиссом между их относительно малой стоимостью и достаточно высокими возможностями. Технологический процесс изготовления двухсторонних плат, также как односторонних, является частью более общего процесса изготовления многослойных ПП. Однако для двухсторонних плат не требуется применять прессования слоев, значительно проще выполняется очистка отверстий после сверления.

Вместе с тем, для большинства двухсторонних плат за рубежом проектные нормы "проводник / зазор" составляют 0,25 / 0,25 мм (40% от объема выпуска), 0,2 / 0,2 мм (18%) и 0,15 / 0,15 мм (18%). Это позволяет использовать такие платы для изготовления широкого круга современных изделий, они вполне пригодны как для монтажа в отверстия, так и для поверхностного монтажа. Нередко на проводники двухсторонних плат наносится золотое покрытие, рисунок 1.2, а для металлизации отверстий используется серебро рисунок 1.3.

Рисунок 1.2 – Двухсторонняя печатная плата с золотым покрытием проводников.

Рисунок 1.3 – Двухсторонняя печатная плата с металлизироваными серебром отверстиями.

Типовые параметры двухсторонних плат:

    Максимальные размеры заготовки - 300x250...500х500 мм;

    Минимальный диаметр отверстия - 0.4...0,6 мм;

    Минимальная ширина проводника - 0,15 мм;

    Минимальный зазор - 0,15 мм;

    Толщина фольги - 18..36 мкм;

    Толщина платы - 0,4 - 2,0 мм;

Опираясь на опыт многих фирм занимающимся производством печатных плат, прототипы от отечественных заказчиков двухсторонних плат, можно констатировать, что запросы отечественных разработчиков удовлетворяются пока диапазоном проектных норм 0,2 / 0,2 - 0,3 / 0,3 мм, норма 0,15 / 0,15 мм встречается не более, чем в 10% случаев.

Отметим, что отечественные разработчики, точно также как их зарубежные коллеги, закладывают в технические задания на изготовление двухсторонних плат нанесение паяльной маски, маркировку, весьма часто - фрезерование плат по сложному контуру. Как правило, сборка таких плат предусматривает поверхностный монтаж компонентов.

      Многослойные печатные платы.

Многослойные печатные платы (МПП) составляют две трети мирового производства печатных плат в ценовом исчислении, хотя в количественном выражении уступают одно- и двухсторонним платам.

По своей структуре МПП значительно сложнее двухсторонних плат. Они включают дополнительные экранные слои (земля и питание), а также несколько сигнальных слоев. На рисунке 1.4 представлена структурная схема многослойной печатной платы.

Для обеспечения коммутации между слоями МПП применяются межслойные переходы (vias) и микропереходы (microvias).

Межслойные переходы могут выполняться в виде сквозных отверстий, соединяющих внешние слои между собой и с внутренними слоями, применяются также глухие и скрытые переходы.

Глухой переход - это соединительный металлизированный канал, видимый только с верхней или нижней стороны платы. Скрытые же переходы используются для соединения между собой внутренних слоев платы. Их применение позволяет значительно упростить разводку плат, например, 12-слойную конструкцию МПП можно свести к эквивалентной 8-слойной. коммутации.

Рисунок 1.4 – Структура многослойной печатной платы.

Специально для поверхностного монтажа разработаны микропереходы, соединяющие между собой контактные площадки и сигнальные слои.

Для изготовления МПП производится соединение нескольких ламинированных фольгой диэлектриков между собой, для чего используются склеивающие прокладки - препреги. Поэтому толщина МПП растет непропорционально быстро с ростом числа сигнальных слоев.

Рисунок 1.6

В связи с этим необходимо учитывать большое соотношение толщины платы к диаметру сквозных отверстий. Например, для МПП с диаметром отверстий 0,4 мм и толщиной 4 мм это соотношение равно 10:1, что является весьма жестким параметром для процесса сквозной металлизации отверстий.

Тем не менее, даже учитывая трудности с металлизацией узких сквозных отверстий, изготовители МПП предпочитают достигать высокой плотности монтажа за счет большего числа относительно дешевых слоев, нежели меньшим числом высокоплотных но, соответственно, более дорогих слоев.

В современных МПП широко применяется поверхностный монтаж всех видов современных интегральных схем, включая, как это показано на рисунке, бескорпусных схем, заливаемых компаундом после разварки выводов.

Рисунок 1.7 – Пример разтолщинки 8-слойной печатной платы.

      Гибкие печатные платы.

Использование гибких диэлектрических материалов для изготовления печатных плат дает как разработчику, так и пользователю электронных устройств ряд уникальных возможностей. Это прежде всего - уменьшение размеров и веса конструкции, повышение эффективности сборки, повышение электрических характеристик, теплоотдачи и в целом надежности.

Если учесть основное свойство таких плат - динамическую гибкость - становится понятным все возрастающий объем применения таких плат в автомобилях, бытовой технике, медицине, в оборонной и аэрокосмической технике, компьютерах, в системах промышленного контроля и бортовых системах.

Гибкие печатные платы (ГПП) изготавливаются на полиимидной или лавсановой пленке и поэтому могут легко деформироваться даже после формирования проводящего рисунка. Большая часть конструкций гибких ПП аналогична конструкциям печатных плат на жесткой основе.

Односторонние ГПП - наиболее распространены в этом классе плат, поскольку проявляют наилучшую динамическую гибкость. Контактные площадки таких плат расположены с одной стороны, в качестве материала проводящей фольги чаще всего используется медь.

Односторонние ГПП с двухсторонним доступом имеют один проводящий слой, контактные площадки к которому выполнены с обеих сторон платы.

Двухсторонние ГПП имеют два проводящих слоя, которые могут быть соединены сквозными металлизированными переходами (на рисунке проводники нижнего слоя идут перпендикулярно проводникам верхнего слоя). Платы этого типа обеспечивают высокую плотность монтажа, часто применяются в электронных устройствах с контролируемым полным сопротивлением (импедансом) плат.

Многослойные ГПП содержат не менее трех проводящих слоев, соединенных металлизированными отверстиями, которые обеспечивают межслойное соединение. В таких платах проще реализовывать высокую плотность монтажа, поскольку не требуется обеспечивать большие значения соотношений "высота/диаметр отверстия". Прогнозируется применение таких ГПП для сборки на них многокристальных интегральных схем.

Жестко-гибкие ПП являются гибридными конструкциями и содержат как жесткие, так и гибкие основания, скрепленные между собой в единую сборку и электрически соединенные металлизированными отверстиями. Наиболее распространены в изделиях оборонной техники, однако расширяется их применение и в промышленной электронике.

ГПП с местным ужесточением (укреплением) .В таких платах возможно размещение внутри гибкой основы жестких металлических деталей. Получаются многоэтапным процессом фотолитографии и травления.

      Рельефные печатные платы (РПП).

Конструкция и технология изготовления РПП существенно отличаются от традиционных двухсторонних (ДПП) и многослойных (МПП) плат. Заметим, что авторами большинства конструкций и технологий РПП в нашей стране являются А.В. Богданов и Ю.А. Богданов.

РПП (рисунок 1.8) представляет собой диэлектрическое основание, в которое углублены медные проводники, выполненные в виде металлизированных канавок, и сквозные металлизированные отверстия, имеющие форму двух сходящихся конусов. Такие канавки и отверстия заполняются припоем. Обычно РПП имеют два проводящих и один изоляционный слой.

Рисунок 1.8 – Рельефная печатная плата.

Как видно из рисунка 1.9, элементы проводящего рисунка могут быть следующих видов:

    прямолинейные проводники на первом и втором слоях; переходные металлизированные отверстия (для электрического соединения элементов рисунка на проводящих слоях);

    сквозные монтажные металлизированные отверстия (для монтажа штыревых выводов электронных компонентов;

    металлизированные ламели (для монтажа планарных выводов электронных компонентов;

    глухие монтажные металлизированные отверстия (для монтажа планарных выводов электронных компонентов, формованных для пайки встык).

Проводники прямолинейны и параллельны осям Х и У, что связано с особенностью технологического оборудования изготовления канавок.

Рисунок 1.9 – Рисунок проводящих элементов.

Характеристики рельефных плат.

Диаметр переходных металлизированных отверстий на поверхности диэлектрического основания не превышает ширины проводника. При этом контактные площадки вокруг переходных отверстий отсутствуют. Это обеспечивает возможность установки переходов в шаге трассировки (в соседних дискретах трассировки) без всяких ограничений. Обычно трассировка РПП проводится в строго ортогональной системе, что означает проведение горизонтальных проводников на одном проводящем слое, а вертикальных проводников - на другом. Это обеспечивает большие трассировочные возможности, чем при других системах, но при этом появляется большое число переходов. Однако для РПП, в отличие от любых других, переходы повышают, а не понижают надежность платы.

Рисунок 1.10 – Основные размеры РПП.

Основным параметром конструкции РПП, определяющим другие ее параметры, является минимальный шаг трассировки minH. Здесь существенно использование переменного шага трассировки. Первоначально это диктовалось применяемым технологическим оборудованием, обеспечивавшим перемещение с дискретностью 10 мкм. В дальнейшем обнаружилось, что это повышает трассировочные возможности за счет симметричного прохождения трасс через большинство монтажных точек. Кроме того, переменный шаг позволяет повысить технологичность путем смещения центров переходных отверстий от краев монтажных точек.

На рисунок 1.11 приведены варианты используемых постоянных и переменных шагов трассировки для РПП с микросхемами, имеющими следующие типы и шаги внешних выводов: штыревые - 2,5 мм, планарные - 1,25 мм и планарные - 1,0 мм.

Рисунок 1.11 - Варианты используемых постоянных и переменных шагов трассировки.

В таблице 1 приведены типовые значения конструктивных параметров РПП для minH рис 3. И таблицы видно, что особенностью РПП является их малая толщина по сравнению с ПП. Это в сочетании с насыщенностью металлом диэлектрического основания обеспечивает хорошую теплопроводность. Сечение меди в канавках обеспечивает погонное сопротивление 3-3,5 Ом/м и предельный ток по проводнику 300-400 мА. Эти параметры следует принимать во внимание при проектировании цепей питания, а так же сильноточных сигнальных цепей.

Таблица 1 - Типовые значения конструктивных параметров РПП.

Малый шаг трассировки в сочетании с переходными отверстиями в шаге трассировки обеспечивает высокие трассировочные возможности РПП.

Сравнение технологических и стоимостных характеристик рельефной и многослойной печатной платы:

Трассировочная способность

Плотность размещения элементов на РПП эквивалентна 6-8 слоям МПП. Например, между выводами стандартного DIP корпуса можно проводить до 5 проводников. Высокая трассировочная способность объясняется, в частности тем, что переходные отверстия могут быть расположены в шаге проводников.

Электрические характеристики

Так как поперечное сечение проводника РПП имеет форму трапеции, то по постоянному току его сопротивление в 1,5 раза меньше, чем у плоских проводников. Характеристики по переменному току у РПП и МПП существенно не отличаются.

Механические характеристики

РПП - принципиально тонкая плата (0,8 мм). Поэтому для установки массивных элементов или для плат большого размера требуется механическая арматура. Но, с другой стороны, РПП очень устойчивы к изгибу. Для РПП не страшны прогибы до 40-50%.

Изготовление ламелей

РПП - тонкие платы, поэтому прямое изготовление ламелей для разъемов типа ISA-РС может не обеспечить достаточно надежного контакта. Для решения указанной проблемы имеется специальный технологический прием, позволяющий получить в районе ламелей удвоенную толщину (1,5 мм), чем и обеспечивается надежное соединение.

Стойкость к воздействию внешних факторов

РПП ничем не уступают по стойкости к воздействию внешних факторов традиционным платам. Более того, металлизация РПП выполняется из химически однородной меди и для РПП проблема контакта в области переходного отверстия отсутствует.

Поддержка САПР

Система изготовления РПП совместима практически с любой САПР: PCAD 4.5 .. 8.5 и др.

Серийноспособность

Изготовление РПП не предполагает какой-либо особенной подготовки производства (фотошаблоны, матрицы). Время изготовления платы средней степени сложности составляет 48 часов. Стоимость РПП заметно ниже стоимости многослойных плат для малых серий до 100 - 1000 шт. Однако при увеличении количества стоимость снижается не столь существенно как для многослойных или двусторонних плат. Поэтому изготовление партий РПП более 10000 должно быть тщательно экономически обосновано.

Стоимостные характеристики

При сравнении восьмислойной МПП с РП по средним показателям стоимости получается уменьшение:

для методы фрезерования - приблизительно в 16 раз;

для метода прессования - приблизительно в 36 раз;

для метода литья - приблизительно в 100 раз.

      Высокоплотные печатные платы.

Пример высокоплотной печатной платы представлен на рисунке 1.13

    Сборка и монтаж элементов на печатные платы.

Особенностью современного производства электронных устройств является все более широкое применение больших и сверхбольших интегральных схем (БИС и СБИС). При этом существенно возрастает количество выводов каждой схемы, расстояния между выводами уменьшаются с 2,5 мм до 0,625 мм и менее.

Установка многовыводных корпусов БИС И СБИС на печатные платы технически и экономически более эффективна не в сквозные отверстия, а на контактные площадки, расположенные на поверхности печатных плат.

Этим объясняется все боле широкий переход от монтажа компонентов в отверстия (PTH - Plated Through Hole) к технологии поверхностного монтажа (SMT - Surface Mount Technology).

Вместе с тем, в в настоящее время в большинстве серийных электронных блоков применяют как поверхностный монтаж, так и монтаж в отверстия. Это связано с тем, что конструкции ряда компонентов не пригодны для поверхностного монтажа. Кроме того, в устройствах, работающих в условиях ударных и вибрационных перегрузок, предпочитают монтаж в отверстия из-за более надежного крепления компонентов.

Процесс монтажа элементов на РП существенно не отличается от стандартных процессов. Возможен монтаж в отверстия и на поверхность с применением ручной пайки, пайки волной, пайки в инфракрасных и конвекционных печах. Единственное, что нужно учесть при формовке и установке элементов - это то, что монтажные ламели заглублены на 0,1 мм относительно поверхности платы.

      Типы SMT сборок.

Surface-Mount Technology (SMT) - технология поверхностного монтажа.

В электронной промышленности существует шесть общих типов SMT сборки, каждому из которых соответствует свой порядок производства. Когда разработчик выбирает тип сборки, его целью должна быть минимизация числа операций, так как каждая операция может увеличивать промышленную стоимость. Существует специальный стандарт, в котором представлены основные виды сборок, разбитые по классам.

SMC и IPC документация по поверхностному монтажу на платы, IPC-7070, J-STD-013 и National Technology Roadmap for Electronic Interconnections включают следующие классификацию следующих схемы поверхностного монтажа:

Тип 1 - монтируемые компоненты установлены только на верхнюю сторону или interconnecting structure

Тип 2 - монтируемые компоненты установлены на обе стороны платы или interconnecting structure

Класс А - только through-hole (монтируемые в отверстия) компоненты

Класс В - только поверхностно монтируемые компоненты (SMD)

Класс С - смешанная: монтируемые в отверстия и поверхностно монтируемы компоненты

Класс Х - комплексно-смешанная сборка: through-hole, SMD, fine pitch, BGA

Класс Y - комплексно-смешанная сборка: through-hole, surface mount, Ultra fine pitch, CSP

Класс Z - комплексно-смешанная сборка: through-hole, Ultra fine pitch, COB, Flip Chip, TCP

Операции используемы при различных типах сборки:

    Нанесение пасты и установка SMT компонентов на верхнюю сторону платы.

    Нанесение пасты и установка SMT на нижнюю сторону платы.

    Нанесение клея и установка SMT компонентов на нижнюю сторону платы с последующем его высыханием.

    Автоматическая установка DIP компонентов.

    Автоматическая установка координатных компонентов (такие как светодиоды и т.п.).

    Ручная установка других компонентов.

    Пайка волной или пайка инфракрасным излучением.

    Промывка плат.

    Ручная пайка компонентов.

Ниже будут рассмотрены основные варианты размещения компонентов на плате, применяемые разработчиками. Варианты, где используются корпуса компонентов типа: Ultra fine pitch, COB, Flip Chip, TCP пока не рассматриваются, так как российскими разработчиками печатных плат они почти не используются.

Тип 1В: SMT Только верхняя сторона

Этот тип не является общим так как большинство разработок требует некоторых DIP компонентов. Его называют IPC Type 1B.

Порядок проведения процесса: нанесение припойной пасты, установка компонентов, пайка, промывка.

Тип 2B: SMT Верхние и нижние стороны

На нижней стороне платы размещаются чип-резисторы и другие компоненты небольших размеров. При использовании пайки волной, они будут повторно оплавляться за счет верхнего (побочного) потока волны припоя. При размещение больших компонентов с обеих сторон, типа PLCC, увеличивают издержки производства, потому что компоненты нижней стороны должны устанавливаться на специальный токопроводящий клей. Данный тип называется IPC Type 2B.

Порядок проведения процесса:

    нанесение припойной пасты, установка компонентов, пайка, промывка нижней стороны;

    нанесение припойной пасты на верхнюю сторону печатной платы, установка компонентов, повторная пайка, промывка верхней стороны.

Хорошая пайка хотя и не так важна, как правильно размещение радиоэлементов, но она тоже играет немалую роль. Поэтому мы рассмотрим SMD монтаж - что для него нужно и как его следует проводить в домашних условиях.

Запасаемся необходимым и проводим подготовку

Для качественной работы нам нужно иметь:

  1. Припой.
  2. Пинцет или плоскогубцы.
  3. Паяльник.
  4. Небольшую губку.
  5. Бокорезы.

Для начала необходимо включить паяльник в розетку. Затем смочите водой губку. Когда паяльник нагреется до такой степени, чтобы он мог плавить припой, то необходимо покрыть им (припоем) жало. Затем протрите его влажной губкой. При этом следует избегать слишком длительного контакта, поскольку он чреват переохлаждением. Для удаления остатков старого припоя можно протирать жало об губку (а также чтобы поддерживать его в чистоте). Подготовка проводится и по отношению к радиодетали. Делается все с помощью пинцета или плоскогубцев. Для этого необходимо согнуть выводы радиодетали так, чтобы они без проблем могли войти в отверстия платы. Теперь давайте поговорим о том, как проводится монтаж SMD компонентов.

Начало работы с деталями

Первоначально необходимо компоненты вставить в отверстия на плате, которые предназначаются для них. При этом внимательно следите за тем, чтобы была соблюдена полярность. Особенно это важно для таких элементов, как электролитические конденсаторы и диоды. Затем следует немного развести выводы, чтобы деталь не выпадала из установленного места (но не перестарайтесь). Непосредственно перед тем как начинать пайку, не забудьте протереть жало губкой ещё раз. Теперь давайте рассмотрим, как происходит монтаж SMD в домашних условиях на этапе паяния.

Закрепление деталей

Необходимо расположить жало паяльника между платой и выводом, чтобы разогреть место, где будет проводиться пайка. Чтобы не вывести деталь из строя, это время не должно превышать 1-2 секунды. Затем можно подносить припой к месту пайки. Учитывайте, что на этом этапе на человека может брызнуть флюс, поэтому будьте внимательны. После того момента, когда требуемое количество припоя успеет расплавиться, необходимо отвести проволоку от места, где паяется деталь. Для его равномерного распределения необходимо жало паяльника подержать на протяжении секунды. Потом, не сдвигая деталь, необходимо убрать прибор. Пройдёт несколько мгновений, и место пайки остынет. Всё это время необходимо следить за тем, чтобы деталь не меняла свое местоположение. Излишки можно отрезать, используя бокорезы. Но смотрите за тем, чтобы не было повреждено место пайки.

Проверка качества работы

Посмотрите на получившийся поверхностный монтаж SMD:

  1. В идеале должна быть соединена контактная площадь и вывод детали. При этом сама пайка должна обладать гладкой и блестящей поверхностью.
  2. В случае получения сферической формы или наличия связи с соседними контактными площадками необходимо разогреть припой и удалить его излишки. Учитывайте, что после работы с ним на жале паяльника всегда есть его определённое количество.
  3. При наличии матовой поверхности и царапин расплавьте припой ещё раз и, не сдвигая детали, дайте ему остыть. В случае необходимости можно добавить его ещё в небольшом количестве.

Для удаления остатков флюса с платы можно воспользоваться подходящим растворителем. Но эта операция не является обязательной, ведь его наличие не мешает и не сказывается на функционировании схемы. А теперь давайте уделим внимание теории пайки. Потом мы пройдёмся по особенностям каждого отдельного варианта.

Теория

Под пайкой понимают соединение определённых металлов с использованием других, более легкоплавких. В электронике для этого используют припой, в котором 40% свинца и 60% олова. Данный сплав становится жидким уже при 180 градусах. Современные припои выпускают как тонкие трубочки, которые уже заполнены специальной смолой, выполняющей функцию флюса. Нагретый припой может создавать внутреннее соединение, если выполнены такие условия:

  1. Необходимо, чтобы были зачищены поверхности деталей, которые будут паяться. Для этого важно удалить все пленки оксидов, которые образовываются со временем.
  2. Деталь должна в месте пайки нагреваться до температуры, которой достаточно, чтобы плавить припой. Определённые трудности здесь возникают, когда есть большая площадь с хорошей теплопроводностью. Ведь элементарно может не хватить мощности паяльника для нагрева места.
  3. Необходимо позаботиться о защите от действия кислорода. Эту задачу может выполнить колофоний, который образует защитную пленку.

Наиболее частые ошибки

Сейчас рассмотрим три самые частые ошибки, а также то, как их исправить:

  1. Места пайки касаются кончиком жала паяльника. При этом подводится слишком мало тепла. Необходимо жало прикладывать таким образом, чтобы между жалом и местом пайки создавалась наибольшая площадь контакта. Тогда SMD монтаж получится качественным.
  2. Используется слишком мало припоя и выдерживаются значительные временные промежутки. Когда начинается сам процесс, уже успевает испариться часть флюса. Припой не получает защитный слой, как результат - оксидная пленка. А как правильно совершать монтаж SMD в домашних условиях? Для этого профессионалы места пайки качаются одновременно и паяльником, и припоем.
  3. Слишком ранний отвод жала от места пайки. Нагревать следует интенсивно и быстро.

Можно взять конденсатор для SMD монтажа и набить на нём руку.

Пайка свободных проводов

Сейчас мы будем проходить практику. Допустим, у нас есть светодиод и резистор. К ним нужно припаять кабель. При этом не используются монтажные платы, штифты и иные вспомогательные элементы. Для выполнения поставленной цели нужно выполнить такие операции:

  1. Снимаем изоляцию с концов провода. Они должны быть чистыми, поскольку были защищены от влажности и кислорода.
  2. Скручиваем отдельные проводки жилы. Этим предотвращается их последующее разлохмачивание.
  3. Залуживаем концы проводов. Во время этого процесса необходимо разогретое жало подвести к проводу вместе с припоем (который должен равномерно распределиться по поверхности).
  4. Укорачиваем выводы резистора и светодиода. Потом необходимо их залудить (независимо от того, старые или новые детали используются).
  5. Удерживаем выводы параллельно и наносим небольшое количество припоя. Как только им будут равномерно заполнены промежутки, необходимо быстро отвести паяльник. Пока припой не затвердеет полностью, деталь трогать не нужно. Если это всё же произошло, то возникают микротрещины, которые негативно сказываются на механических и электрических свойствах соединения.

Пайка печатных плат

В данном случае необходимо прикладывать меньше усилий, нежели в предыдущем, поскольку здесь отверстия платы хорошо играют роль фиксатора для деталей. Но и здесь важен опыт. Часто результатом работы новичков является то, что схема начинает выглядеть как один большой и сплошной проводник. Но дело это несложное, поэтому после небольшой тренировки результат будет на достойном уровне.

Теперь давайте разберёмся, как происходит SMD монтаж в данном случае. Первоначально жало паяльника и припой одновременно подводят к месту пайки. Причем нагреваться должны и обрабатываемые выводы, и плата. Необходимо держать жало, пока припой равномерно не покроет всё место контакта. Затем его можно обвести по полукругу вокруг обрабатываемого места. При этом припой должен перемещаться во встречном направлении. Наблюдаем, чтобы он равномерно распределился на всей контактной площади. После этого убираем припой. И последний шаг - это быстрый отвод жала от места пайки. Ждём, пока припой приобретёт свою окончательную форму и застынет. Вот так в данном случае проводится монтаж SMD. при первых попытках будет выглядеть не ахти, а вот со временем можно научиться делать на таком уровне, что не отличишь и от заводского варианта.

Поверхностный монтаж

Поверхностный монтаж - технология изготовления электронных изделий на печатных платах , а также связанные с данной технологией методы конструирования печатных узлов.

Технологию поверхностного монтажа печатных плат также называют ТМП (технология монтажа на поверхность), SMT (surface mount technology) и SMD-технология (от surface mounted device - прибор, монтируемый на поверхность), а компоненты для поверхностного монтажа также называют чип-компонентами. Данная технология является наиболее распространенным на сегодняшний день методом конструирования и сборки электронных узлов на печатных платах. Основным ее отличием от «традиционной» технологии сквозного монтажа в отверстия является то, что компоненты монтируются на поверхность печатной платы, однако преимущества технологии поверхностного монтажа печатных плат проявляются благодаря комплексу особенностей элементной базы, методов конструирования и технологических приемов изготовления печатных узлов .

Технология

Типовая последовательность операций в технологии поверхностного монтажа включает:

В единичном производстве, при ремонте изделий и при монтаже компонентов, требующих особой точности, как правило, в мелкосерийном производстве также применяется индивидуальная пайка струей нагретого воздуха или азота.

Одним из важнейших технологических материалов, применяемых при поверхностном монтаже, является паяльная паста (также иногда называемая припойной пастой), представляющая собой смесь порошкообразного припоя с органическими наполнителями, включающими флюс. Помимо обеспечения процесса пайки припоем и подготовки поверхностей паяльная паста также выполняет задачу фиксирования компонентов до пайки за счет клеящих свойств .

При пайке в поверхностном монтаже очень важно обеспечить правильное изменение температуры во времени (термопрофиль), чтобы избежать термоударов, обеспечить хорошую активацию флюса и смачивание поверхности припоем .

Разработка термопрофиля (термопрофилирование) в настоящее время приобретает особую важность в связи с распространением бессвинцовой технологии, в которой окно процесса (разница между минимальной необходимой и максимально допустимой температурой термопрофиля) значительно у́же из-за повышенной температуры плавления припоя.

Компоненты, которые используются для поверхностного монтажа называют SMD-компонентами или КМП (компонент, монтируемый на поверхность).

История

Технология поверхностного монтажа начала своё развитие в 1960-х и получила широкое применение к концу 1980-х годов. Одним из первопроходцев в этой технологии была IBM . Элементы были перепроектированы таким образом, чтобы уменьшить контактные площадки или выводы, которые бы паялись непосредственно к поверхности печатной платы. В сравнении с традиционными, платы для поверхностного монтажа имеют повышенную плотность размещения электронных элементов, обладают меньшими расстояниями между проводниковыми элементами и контактными площадками. Часто припоя достаточно для установки компонента на плату, однако элементы на нижней ("второй") стороне платы необходимо приклеивать. Компоненты поверхностного монтажа (Surface-mounted devices (SMDs)) зачастую имеют небольшой вес и размер. Технология поверхностного монтажа зарекомендовала себя в повышении автоматизации производства, уменьшении трудоёмкости и увеличении продуктивности. Компоненты поверхностного монтажа могут быть в 4-10 раз меньше, и на 25-50% дешевле, чем аналогичные компоненты для монтажа в отверстия.

SMD-конденсаторы (слева), против двух обычных конденсаторов (справа)

Компоненты SMD выпускаются различных размеров и в разных типах корпусов:

Примечания

Ссылки

  • Основы технологии и оборудование для поверхностного монтажа

Wikimedia Foundation . 2010 .

Смотреть что такое "Поверхностный монтаж" в других словарях:

    поверхностный монтаж - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN surface mounting … Справочник технического переводчика

    поверхностный монтаж - paviršinis montavimas statusas T sritis radioelektronika atitikmenys: angl. surface mounting vok. Oberflächenmontage, f rus. поверхностный монтаж, m pranc. montage en surface, m … Radioelektronikos terminų žodynas

    ГОСТ Р МЭК 61191-1-2010: Печатные узлы. Часть 1. Поверхностный монтаж и связанные с ним технологии. Общие технические требования - Терминология ГОСТ Р МЭК 61191 1 2010: Печатные узлы. Часть 1. Поверхностный монтаж и связанные с ним технологии. Общие технические требования оригинал документа: 3.1 данные технического задания (objective evidence): согласованная между заказчиком …

    Поверхностный монтаж технология изготовления электронных изделий на печатных платах, а также связанные с данной технологией методы конструирования печатных узлов. SMD компоненты на плате USB Flash накопителя Технологию поверхностного монтажа… … Википедия

    заказчик - 4.9 заказчик (customer): Организация или лицо, получающие продукт или услугу. Примечание 1 Заказчик может быть внутренним или внешним по отношению к организации. Примечание 2 Адаптировано из ИСО 9000:2005. Примечание 3 Другие термины,… … Словарь-справочник терминов нормативно-технической документации Словарь-справочник терминов нормативно-технической документации

    данные технического задания - 3.1 данные технического задания (objective evidence): согласованная между заказчиком и изготовителем документация в бумажной форме, информация в электронном виде, вычислительные алгоритмы, видеоинформация или информация в виде других средств… … Словарь-справочник терминов нормативно-технической документации

Современная радиоаппаратура строится в основном только на так называемых чип компонентах, это чип резисторы, конденсаторы, микросхемы и прочее. Выводные радиодетали, которые мы привыкли выпаивать со старых телевизоров и магнитофонов и которые радиолюбители обычно применяют для сборки своих схем и устройств, все реже применяются в современной радиоаппаратуре.

В чем же заключаются плюсы применения таких чип элементов? Давайте разберемся.

Плюсы данного вида монтажа

Во первых, применение чип компонентов заметно уменьшает размеры готовых печатных плат, уменьшается их вес, как следствие для этого устройства потребуется небольшой компактный корпус. Так можно собрать очень компактные и миниатюрные устройства. Применение чип элементов заставляет экономить печатную плату (стеклотекстолит), а так же хлорное железо для их травления, кроме того, не приходиться тратить время на высверливание отверстий, в любом случае, на это уходит не так много времени и средств.
Платы изготовленные таким образом легче ремонтировать и легче заменять радиоэлементы на плате. Можно делать двухсторонние платы, и размещать элементы на обеих сторонах платы. Ну и экономия средств, ведь чип компоненты стоят дешево, а оптом брать их очень выгодно.

Для начала, давайте определимся с термином поверхностный монтаж, что же это означает? Поверхностный монтаж – это технология производства печатных плат, когда радиодетали размещаются со стороны печатных дорожек, для их размещения на плате не приходится высверливать отверстия, если коротко, то это означает "монтаж на поверхность". Данная технология является наиболее распространенным на сегодняшний день.

Кроме плюсов есть конечно же и минусы. Платы собранные на чип компонентах боятся сгибов и ударов, т.к. после этого радиодетали, особенно резисторы с конденсаторами просто напросто трескаются. Чип компоненты не переносят перегрева при пайке. От перегрева они часто трескаются и появляются микротрещины. Дефект проявляет себя не сразу, а только в процессе эксплуатации

Типы и виды чип радиодеталей

Резисторы и конденсаторы

Чип компоненты (резисторы и конденсаторы) в первую очередь разделяются по типоразмерам, бывают 0402 – это самые маленькие радиодетали, очень мелкие, такие применяются например в сотовых телефонах, 0603 - так же миниатюрные, но чуть больше чем предыдущие, 0805 – применяются например в материнских платах, самые ходовые, затем идут 1008, 1206 и так далее.

Резисторы:

Конденсаторы:

Ниже дана более таблица с указанием размеров некоторых элементов:
- 1,0 × 0,5 мм
- 1,6 × 0,8 мм
- 2,0 × 1,25 мм
- 3,2 × 1,6 мм
- 4,5 × 3,2 мм

Все чип резисторы обозначаются кодовой маркировкой, хоть и дана методика расшифровки этих кодов, многие все равно не умеют расшифровывать номиналы этих резисторов, в связи с этим я расписал коды некоторых резисторов, взгляните на таблицу.

Примечание: В таблице ошибка: 221 "Ом" следует читать как "220 Ом".

Что касается конденсаторов, они никак не обозначаются и не маркируются, поэтому, когда будете покупать их, попросите продавца подписать ленты, иначе, понадобится точный мультиметр с функцией определения емкостей.

Транзисторы

В основном радиолюбители применяют транзисторы вида SOT-23, про остальные я рассказывать не буду. Размеры этих транзисторов следующие: 3 × 1,75 × 1,3 мм.

Как видите они очень маленькие, паять их нужно очень аккуратно и быстро. Ниже дана распиновка выводов таких транзисторов:

Распиновка у большинства транзисторов в таком корпусе именно такая, но есть и исключения, так что прежде чем запаивать транзистор проверьте распиновку выводов, скачав даташит к нему. Подобные транзисторы в большинстве случаев обозначаются с одной буквой и 1 цифрой.

Диоды и стабилитроны

Диоды как и резисторы с конденсаторами, бывают разных размеров, более крупные диоды обозначают полоской с одной стороны – это катод, а вот миниатюрные диоды могут отличаться в метках и цоколевке. Такие диоды обозначаются обычно 1-2 буквами и 1 или 2 цифрами.

Стабилитроны, так же как и диоды, обозначаются полоской с краю корпуса. Кстати, из-за их формы, они любят убегать с рабочего места, очень шустрые, а если упадет, то и не найдешь, поэтому кладите их например в крышку от баночки с канифолью.

Микросхемы и микроконтроллеры

Микросхемы бывают в разных корпусах, основные и часто применяемые типы корпусов показаны ниже на фото. Самый не хороший тип корпуса это SSOP – ножки этих микросхем располагаются настолько близко, что паять без соплей практически нереально, все время слипаются ближайшие вывода. Такие микросхемы нужно паять паяльником с очень тонким жалом, а лучше паяльным феном, если такой имеется, методику работы с феном и паяльной пастой я расписывал в этой .

Следующий тип корпуса это TQFP, на фото представлен корпус с 32мя ногами (микроконтроллер ATmega32), как видите корпус квадратный, и ножки расположены с каждой его стороны, самый главный минус таких корпусов заключается в том, что их сложно отпаивать обычным паяльником, но можно. Что же касается остальных типов корпусов, с ними намного легче.

Как и чем паять чип компоненты?

Чип радиодетали лучше всего паять паяльной станцией со стабилизированной температурой, но если таковой нет, то остается только паяльником, обязательно включенным через регулятор! (без регулятора у большинства обычных паяльников температура на жале достигает 350-400*C). Температура пайки должна быть около 240-280*С. Например при работе с бессвинцовыми припоями, имеющими температуру плавления 217-227*С, температура жала паяльника должна составлять 280-300°С. В процессе пайки необходимо избегать избыточно высокой температуры жала и чрезмерного времени пайки. Жало паяльника должно быть остро заточено, в виде конуса или плоской отвертки.

Печатные дорожки на плате необходимо облудить и покрыть спирто-канифольным флюсом. Чип компонент при пайке удобно поддерживать пинцетом или ногтем, паять нужно быстро, не более 0.5-1.5 сек. Сначала запаивают один вывод компонента, затем убирают пинцет и паяют второй вывод. Микросхемы нужно очень точно совмещать, затем запаивают крайние вывода и проверяют еще раз, все ли вывода точно попадают на дорожки, после чего запаивают остальные вывода микросхемы.

Если при пайке микросхем соседние вывода слиплись, используйте зубочистку, приложите ее между выводами микросхемы и затем коснитесь паяльником одного из выводов, при этом рекомендуется использовать больше флюса. Можно пойти другим путем, снять экран с экранированного провода и собрать припой с выводов микросхемы.

Несколько фотографий из личного архива

Заключение

Поверхностный монтаж позволяет экономить средства и делать очень компактные, миниатюрные устройства. При всех своих минусах, которые имеют место, результирующий эффект, несомненно, говорит о перспективности и востребованности данной технологии.