Основы систем вентиляции. Общие принципы и назначения


1) Вентиляция санузлов предусматривается естественной для климатических районов с наружной температурой холодной пятидневки теплее -40 градусов. В идеале - отдельный канал для каждого санузла, с выходом наружу с вентзонтом наверху. Расход воздуха 50м3/ч с унитаза, 75м3/ч с душа. В принципе достаточно канала 150х150 для унификации и простоты.
2) Отдельный канал - однозначно. На мой взгляд, логичнее взять вытяжку с производительным вентилятором и от него выводить на крышу. Не забыть вент. зонт, конечно же. Ставить крышный вентилятор - по вашему усмотрению.
3) Сечения воздуховодов рассчитываются из условий возникновения шума. Скорость в воздуховоде не более 5м/с во избежании возникновения шума. Исходя из скорости и сечения вы узнаете расход максимальный для данного сечения. Расход (G) равен G=S*3600*v, где S - площадь воздуховода в м2, а v - скорость в м/с. При необходимости сброшу вам табличку для удобного подбора. Для естественной вентиляции скорость принимается не более 1,5м/с. Горизонтальный участок воздуховода естественной вентиляции не должен быть более 5 метров.
4) Равномерность достигается установки шиберных заслонок (в идеале - клапанов регулирующих) на ответвлениях и регулировка диффузорами. Монтажники при помощи оборудования замеряют расходы и перепады давления, таким образом регулируют систему.
5) Разницу в производительности вы узнаете исходя из воздушного баланса здания. Если вы хотите использовать приточно-вытяжную машину, то вам необходимо посчитать аэродинамику. Да даже если не будете, всё равно нужно считать - для правильного подбора оборудования. Не забудьте, что нужно предусматривать расход тепла на обогрев воздуха в зимнее время.
Для справки, необходимый воздухообмен для поддержания комфортный условий: 60м3/ч приточного и вытяжного воздуха на 1 человека в помещении; но не менее 2х кратного воздухообмена. Принимаете то, что больше (если больше по людям - то первое, если по кратности - второе). Для компенсации вытяжки из санзулов и недопускания перетока воздуха с запахом в коридор, туда необходимо делать подпор воздуха, равный воздуху, удаляемого из санузла. Для должного эффекта можно установить переточные решетки АП в двери.
6) Приточный дефлектор (ы) стоит размещать у окон, не ближе 0,5-1м от окна (чтоб занавеска не колыхалась). Вытяжной по возможности в противоположном углу комнаты. Не следует размещать вытяжной у окон, т. к. в него будет уходить часть тепла от отопительных приборов. Не уверен, что возможно отапливать только теплыми полами дом, не могу конечно говорить без расчетов на 100%, но такое бывает редко.
Воздухораспределители подбираются по той же методике, что и воздуховоды, площади живого сечения дефлекторов и решеток можно посмотреть в соответствующих каталогах фирм. Скорость на выходе из воздухораспределителя не более 2м/с

Если у вас остались вопросы, или вам нужны дополнительные материалы, обращайтесь.

При уборке и стирке мельчайшие частицы чистящих средств попадают в воздух, которым мы дышим. Если циркуляция воздуха недостаточна, то возникает реальная опасность для здоровья.

Еще одна проблема наших помещений - повышенная влажность , которая неизбежна не только в санузлах, но и в кухне, где постоянно парят, жарят и моют.

К вышеперечисленным загрязнениям воздуха можно добавить продукты горения , производимые газовыми плитами, каминами и печами. Вывод напрашивается сам - самые загрязненные зоны дома - кухня и санузел. Об их вентиляции мы и поговорим.

Естественная вентиляция

Простейший метод вентиляции помещения - естественный . Этот вид вентиляции требует минимум затрат, поскольку циркуляция воздуха в помещении происходит без использования каких-либо электромеханических устройств, и, следовательно, без затрат электроэнергии. Перемещение воздуха в системах естественной вентиляции происходит:

  • Вследствие разности температур наружного (атмосферного) воздуха и воздуха в помещении, так называемой аэрации.
  • Вследствие разности давлений «воздушного столба» между нижним уровнем (обслуживаемым помещением) и верхним уровнемвытяжным устройством, установленным на кровле здания. Этот вид вентиляции называется конвекцией.
  • В результате воздействия, так называемого ветрового давления.

Зависимость естественной вентиляции от переменных факторов (температуры воздуха, направления и скорости ветра) делает ее малопригодной.

Искусственная вентиляция

Для повышения эффективности вентилирования помещения в сочетании с естественной вентиляцией используют вентиляцию принудительную.

В случае с экономным решением для повышения качества вентилирования обители принято использовать маломощные канальные вентиляторы.

Посредством их применения можно обеспечить вентиляцию следующих типов:

  • приточного;
  • вытяжного;
  • комбинированного.

Приточные системы служат для подачи в вентилируемые помещения чистого воздуха. В этом случае вентилятор, установленный на приток в одно из окон, нагнетает свежий воздух, который расходиться по всем помещениям.

Да, в холодную пору года придется ограничить такое проветривание, ведь вентилятор не подогревает уличный воздух. Зато при теплой погоде можно проветривать сколько угодно. Главное, чтобы вентилятор был оснащен фильтрами.

Вытяжная вентиляция удаляет из помещения загрязненный или нагретый воздух.

Комбинированная вентиляция - наиболее частый и эффективный вариант устройства вентиляционной системы, при котором воздух в помещение подается приточной системой, а удаляется - вытяжной. Обе системы работают одновременно. При этом их производительность должна быть одинаковой, чтобы исключить разницу воздушного давления внутри и снаружи помещения, приводящей к эффекту «хлопающих дверей».

Воздуховоды

Если воздуховодов, проложенных на этапе постройки дома, недостаточно, можно их дополнить.

Ширина и высота новых воздуховодов должна быть тщательно просчитана специалистами, поскольку от этих параметров напрямую зависит скорость и объем перемещаемого по каналам воздуха.

В зависимости от кубатуры помещения воздуховоды могут быть разных диаметров и сечений.

При монтаже вентиляции воздуховоды прокладывают в скрытых коробах, избегая пробивания несущих стен.

Все стыки и соединения жестких и гибких воздуховодов герметизируются специальными материалами.

При соединении воздуховода с вентилятором важно, чтобы между выходным патрубком вентилятора и трубой воздуховода была размещена специальная прокладка, препятствующая распространению вибрации.

На заключительном этапе монтажа проводится подключение вентиляционной системы и проверка ее работы.


Вентиляторы

Бытовые канальные вентиляторы бывают осевые и центробежные.

Первый, условно говоря, мощнее по количеству прогоняемого воздуха, а второй - по давлению этого самого воздуха (то есть, его уместнее устанавливать там, где воздуховоды очень загрязнены и слабо справляются с «проветриванием»).

Конструкция осевого вентилятора напоминает традиционный «пропеллер», действие которого основано на всасывании воздуха по направлению оси двигателя.

Рабочие показатели таких вентиляторов зависят от числа лопастей и их угла. Они не создают большого давления в вентиляционных каналах, но при этом работают достаточно эффективно и, что важно, бесшумно.

Их можно монтировать в стену, под потолком или в форточку кухонного окна.

Центробежные вентиляторы отличаются бо льшими размерами и довольно сложной структурой. Они состоят из двух основных частей - турбины и вращающегося элемента с характерным расположением изогнутых лопастей, внешне напоминающего улитку. Здесь используется более мощный двигатель, который не только вытягивает воздух из помещения, но и нагнетает его.

Проветриватели

Люди с техническим образованием знают суть функционально-технологического отличия отверстия и дырки. Так вот щели в окнах и дверных проемах - дыры, а проветливатели - отверстия. Первые работают как им вздумается и являются дефектами конструкции, вторые - продуманное решение, позволяющее усовершенствовать процесс вентиляции.

Дверные проветриватели представляют собой пластиковые либо металлические решетки, которые устанавливают в верхнюю либо нижнюю часть двери. Зачастую такая решетка включает в себя механизм для открывания и закрывания пути воздушным потокам.

Оконные проветриватели - более сложная конструкция. Устройства подобного типа используют естественный ток воздуха за счет разницы давлений снаружи и внутри дома. Разница возникает из-за того, что нагревшийся воздух внутри помещения легче холодного воздуха снаружи, а также в результате работы вытяжной вентиляции.

Мощность тока воздуха регулируется самым простым и надежным способом: используются воздушные клапаны, которые закрываются при сильном ветре и открываются полностью в безветренную погоду. Если ветра нет и разница давлений недостаточна, чтобы комнаты быстро проветривались, в дело вступают встроенные минивентиляторы.

Они есть в большинстве моделей проветривателей. Работают минивентиляторы практически бесшумно. Задачи оконных проветривателей: пропускать в помещение свежий воздух; препятствовать проникновению шума, пыли и насекомых; позволять вентилировать помещение в отсутствие хозяев без риска проникновения «форточников».

ОСНОВЫ ВЕНТИЛЯЦИИ

ОБЩИЕ СВЕДЕНИЯ О ВЕНТИЛЯЦИИ

Ventilatio – в переводе с латинского означает «проветривание».

Вентиляция – это, во-первых, регулируемый воздухообмен в помещениях, благоприятный для человека или технологического процесса, во-вторых, совокупность технических средств, обеспечивающих этот воздухообмен.

1.1.НАЗНАЧЕНИЕ ВЕНТИЛЯЦИИ

Процесс жизнедеятельности человека сопровождается накоплением “вредностей”, к которым относятся: теплоизбытки, повышающие температуру воздушной среды; влаговыделения; выделения газов, паров и аэрозолей.

С целью обеспечения здоровых условий для нахождения человека в помещении, а в некоторых случаях и для обеспечения нормального протекания технологических процессов необходимо производить очистку воздуха помещений от накапливающихся в них вредностей.

Таким образом, основной задачей вентиляции является удаление из помещения воздуха с высокой температурой и влажностью, насыщенного вредными газами, парами и пылью и замена его чистым наружным воздухом с наименьшими капитальными и эксплуатационными затратами.

По назначению системы вентиляции делятся на системы:

Для создания благоприятных условий труда и отдыха людей (комфортные);

Для обеспечения оптимального выполнения технологических процессов (технологи- ческие);

Для обеспечения взрывопожаробезопасности.

1.2. КРАТКИЙ ИСТОРИЧЕСКИЙ ОБЗОР И ОСОБЕННОСТИ

РАЗВИТИЯ ВЕНТИЛЯЦИИ В ПОСЛЕДНИЕ ГОДЫ

Первые идеи в отношении устройства вентиляции возникли еще в древности: в древних восточных банях устраивались отверстия в потолках для удаления нагретого и влажного воздуха. В более позднее время свежий воздух подавали в помещения с помощью огневоздушных систем отопления.

До ХIX века потребности в искусственном вентилировании помещений не возникало, т.к. необходимый естественный воздухообмен осуществлялся через неплотности ограждений. Потребности в искусственной вентиляции появились в связи с быстрым развитием промышленности, и в первую очередь, рудничного дела. Особые заслуги в этой области принадлежат М.В.Ломоносову, который в работе « О вольном движении воздуха в рудниках примеченном» (1763г.) обосновал теорию естественного движения воздуха и дымовых газов в каналах и трубах. Эта теория легла в основу современных систем отопления и вентиляции с естественным побуждением.

Первые системы вентиляции в зданиях были осуществлены в 1861-1863г.г. в Петербургских казармах и в Двинском военном госпитале, в которых скапливалось большое количество людей и обычное проветривание не давало эффекта.

Особую роль в развитии вентиляционной техники сыграло появление электродвигателя. Это позволило применить его для привода в действие как центробежных, так и осевых вентиляторов.

Изобретателем первого центробежного вентилятора можно считать отечественного инженера, генерал-лейтенанта корпуса горных инженеров А.А. Саблукова (1832г.). Первые центробежные вентиляторы с ручным приводом использовались на сахарных и кожевенных заводах. В 1834г. вентиляторы были применены на морских судах, в 1835г. – на Алтайских рудниках. Один из первых осевых вентиляторов с 1734г. в течение 80лет обслуживал здание английского парламента.

Научные основы вентиляции заложены в XIX веке. Интересные работы по определению воздухообменов выполнены в первой трети XIXв. во Франции врачом-гигиенистом Мореном и известным физиком Пекле. Русским гигиенистом И.И.Флавицким был введен термин комплексной температуры для нормирования параметров воздушной среды. В 1884г. Академией наук был издан его труд “Результаты причин вредного влияния внутреннего воздуха в зданиях в зависимости от способов отопления и искусственной вентиляции”. Лишь в 1927г. американские специалисты Яглоу и Миллер на основе анализа экспериментальных исследований пришли к таким же результатам.

В 1854г. в России был создан Комитет по рассмотрению систем вентиляции. В его состав (под руководством генерал-майора М.Г. Евреинова) входили 7 архитекторов, 5 военных инженеров, 3 академика, 2 инженера путей сообщения, 2 доктора медицины, 2 специалиста по физике и химии. Комитет определял нормы вентиляции и предлагал различные технические решения для систем вентиляции зданий различного назначения.

В 20-е годы нашего столетия в Московском высшем техническом училище под руководством В.М. Чаплина, в Московском институте охраны труда под руководством В.В. Батурина и В.В. Кучерука, в ЦАГИ под руководством К.А. Ушакова и В.И. Поликовского были проведены работы, положившие начало научным основам промышленной вентиляции.

Впервые преподавание дисциплины «Отопление и вентиляция» началось в Санкт-Петербургском Училище гражданских инженеров с 1832г. в составе курса построений, а в последующем – гражданской архитектуры.

Как самостоятельный курс дисциплина сформировалась к 1865году. В 1880г. профессором С.Б. Лукашевичем впервые был написан учебник по отоплению и вентиляции.

В 1897 году в этом училище впервые в России учреждается кафедра «Отопление и вентиляция».

Для подготовки инженерных кадров кроме Санкт-Петербурга были созданы специальные кафедры в ВУЗах Москвы, Харькова, Горького (Нижнего Новгорода), Одессы, Свердловска (Екатеринбурга), Новосибирска и т.д.

Создание (1925-1927г.г.) в институтах охраны труда лабораторий промышленной вентиляции явилось началом развития экспериментального исследования вентиляционных проблем.

В годы первых пятилеток для горячих цехов новых заводов-гигантов инженеры предложили использовать организованное естественное проветривание (аэрацию).

Для борьбы с интенсивным лучеиспусканием и высокой температурой воздуха в горячих цехах было создано душирование рабочих мест, воздушные оазисы; для предотвращения врывания наружного воздуха через входные проемы зданий – воздушные завесы. В разработке таких устройств приоритет принадлежит нашим ученым и инженерам.

Вихревая теория крыла (1906г.) Н.Е. Жуковского послужила основой для создания осевых вентиляторов ЦАГИ большой производительности.

Разработанная Г.Н. Абрамовичем теория свободных турбулентных струй открыла пути для решения основных вопросов вентиляции (о движении воздуха в помещении).

В 1944г. С.А. Рысиным были предложены новые конструкции центробежных вентиляторов облегченного типа при упрощенной технологии их изготовления (расход металла был сокращен на 50%, себестоимость – на 65%).

Строительство предприятий текстильной и легкой промышленности потребовало создания обестуманивающих установок, для чего впервые в вентиляционной технике была использована разработанная в 1918г. Л.К. Рамзиным i-d диаграмма влажного воздуха. В 1933-35г.г. были разработаны новые конструктивные решения местных отсосов с использованием активирующей струи воздуха.



С 1950г. основным методом исследования вентиляционных процессов стало физическое моделирование, а с конца 1970-х - приближенное математическое моделирования тепловоздушных процессов. Благодаря успехам в теоретических исследованиях вентиляции были решены сложные задачи вентилирования крупных блокированных цехов (ВАЗ, КАМАЗ, АЗЛК, ЗИЛ и др.). В 90-е годы начало развиваться направление, связанное с анализом движения воздушных потоков в помещении на основе решения фундаментальной системы уравнений Навье-Стокса (численное моделирование).

В области теоретических исследований необходимо отметить работы В.В.Батурина, С.Е.Бутакова, Г.А.Максимова, В.М.Эльтермана, И.А.Шепелева, Е.О.Шилькрота, М.И.Гримитлина, Г.М. Позина, В.В.Дерюгина, В.Н.Богословского, В.Н.Талиева, Л.Б.Успенской, А.И.Пирумова, В.Н.Посохина и др.

Стоимость современных систем вентиляции достигает 10-12% общей стоимости строительства, СКВ – до 20%. На привод вентиляционных установок затрачивается более 20% производимой электроэнергии.

В настоящее время можно выделить следующие основные задачи в области научно-технических разработок:

Совершенствование методов расчета и проектирования,

Создание нового высокоэффективного вентиляционного оборудования и материалов,

Повышение уровня использования вторичных энергоресурсов,

Совершенствование методов монтажа и наладки систем вентиляции.

При изучении дисциплины может быть использована литература, указанная в списке / 1- -20 /.

ОСНОВЫ ВЕНТИЛЯЦИИ

2.1.САНИТАРНО-ГИГИЕНИЧЕСКИЕ ОСНОВЫ ВЕНТИЛЯЦИИ

2.1.1. Микроклимат помещений

Современный человек около 70% времени проводит в замкнутых пространствах. В процессе жизнедеятельности человека в воздух помещений могут поступать значительные количества теплоты, влаги, газов, паров и пыли, вследствие чего воздушная среда претерпевает некоторые изменения, которые могут вредно отражаться на здоровье людей. Для устранения этого влияния часто приходиться создавать искусственный климат.

Деятельность человека обычно происходит в так называемой обслуживаемой (ОЗ) или рабочей зоне (РЗ) помещения.

Рабочая зона – это пространство высотой 2м от уровня пола помещения или площадки /1/.

Комфортными называются условия, обеспечивающие наилучшее самочувствие и наивысшую работоспособность человека.

Температурная обстановка в помещении может быть определена двумя условиями температурного комфорта:

Во всем объеме помещения,

На границе обслуживаемой зоны в непосредственной близости от нагретых или охлажденных поверхностей.

Первое условие комфортности – комфортным будет такая общая температурная обстановка в помещении, при котором человек, находясь в середине помещения будет отдавать всю явную теплоту, не испытывая перегрева или переохлаждения. При этом определяющей величиной является средняя температура в помещении:

t п = (t в + t R) / 2 (2.1.)

где t в, t R - соответственно, температура воздуха и температура поверхностей, о С.

Второе условие ограничивает интенсивность теплообмена при нахождении человека вблизи нагретых или охлажденных поверхностей. В этом случае определяющей величиной является интенсивность лучистого теплообмена q л (Вт/м 2). Условия комфортности графически представлены на рис.2.1.

В вентиляционной практике комфортные условия принято разделять на допустимые и оптимальные / 1 /.

В качестве нормируемых параметров для обоих видов условий приняты температура (t в), относительная влажность (j в), скорость движения воздуха(v в) и предельно допустимая концентрация (ПДК).

Допустимыми принято называть такие сочетания вышеуказанных параметров, которые при длительном и систематическом воздействии на человека могут вызывать преходящие и быстро нормализующиеся изменения теплового состояния организма, сопровождающиеся напряжением механизмов терморегуляции, не выходящим за пределы физиологических приспособительных возможностей /1/.


б)


Первое (а) и второе (б) условия комфортности

1-при нагретых поверхностях; 2-при охлажденных поверхностях стен;

3- при охлажденных поверхностях окон,j ч-п - угловой коэффициент излучения

Оптимальными – приняты условия, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального теплового состояния организма без напряжения механизмов терморегуляции /1/.

Допустимые обеспечиваются вентиляцией в том числе с испарительным охлаждением воздуха, оптимальные – системами кондиционирования воздуха. Графически соотношение между допустимыми (1) и оптимальными (2) параметрами (температура и относительная влажность) представлено на рис. 2.2.

Уровни сочетаний параметров нормируются в зависимости от периода года (теплый, переходный и холодный) и от тяжести выполняемой работы. Различают 3 категории тяжести выполняемых работ:


j вв min j вк min j вк max j вв max j в

Допустимые и оптимальные параметры

Средней тяжести физические работы (категория II) - работы, связанные с постоянной ходьбой, переносом тяжестей до 1кг (II а) и до 10кг (IIб) или выполняемые стоя, при этом энергозатраты для категории IIа - 175-232Вт, для категории IIб – 233-290Вт),

Нормы микроклимата приведены в ГОСТ 12.1.005-88(Общие санитарно-гигиенические требования к воздуху рабочей зоны) / 1 /, СанПиН 2.2.4.548-96 / 2 /, СП 60.13330-2010 (акт.редакция СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование»), ГОСТ 30494-2011/ 3 /. ПДК вредных веществ в помещениях приведены в ГН.

2.1.2 Основные виды вредностей и их воздействие на организм человека

Организм человека выделяет в окружающую среду теплоту, влагу и углекислый газ. Количественные характеристики выделения человеком теплоты и влаги приведены на рис.2.3. в зависимости от температуры воздуха. В результате работы производственного оборудования в воздух поступают теплота, водяные пары, газы, пары и пыль, которые носят название профессиональных вредных выделений («вредностей»). Для нормальной работы механизма терморегуляции человека метеорологические условия должны обеспечивать отвод вырабатываемой организмом теплоты. Количество этой теплоты зависит от интенсивности главным образом мышечной работы (энергозатрат). Отвод теплоты происходит с поверхности кожи и из легких посредством радиационного теплообмена, конвекции и испарения. Это количество теплоты составляет от 100Вт (в состоянии покоя) до 400Вт (при выполнении тяжелых работ). В состоянии покоя, например, посредством радиационного теплообмена выделяется 44%, конвекции – 31%, испарения – 21% и нагревания потребляемого воздуха – 4%. При увеличении энергозатрат увеличивается доля потерь за счет испарения (до 50-60%).

На тепловые ощущения человека влияют:

Температура воздуха,

Средняя температура излучения окружающих поверхностей,

Скорость движения воздуха,

Давление водяных паров в воздухе и соответственно относительная влажность,

Уровень активности (метаболический фактор),

Термическое сопротивление одежды.

Теплоотдача человека на уровне активности, соответствующем сидячей работе, составляет 210 кДж/(м 2 ч) или 1 мет. Термическое сопротивление одежды измеряется в единицах «кло» (1 кло = 0.043 м 2 ч К / кДж - термическое сопротивление типичного костюма для конторской работы).


Зависимость тепло- и влаговыделений организмом человека от температуры

q ч - тепловыделения организмом человека (q п - полные, q с - скрытые),

g W - влаговыделения организмом человека

Тепловыделяющее оборудование является источником поступлений в помещение:

Конвективной теплоты в виде конвективных потоков от нагретых поверхностей, повышающей температуру воздуха в рабочей и верхней зоне помещения,

Лучистой (радиационной) теплоты, нагревающей твердые поверхности, в том числе и тело человека.

Влага, попадающая в окружающую среду в виде водяного пара, вызывает повышение их парциального давления, а соответственно и относительной влажности. Влияние повышенной относительной влажности на самочувствие человека не так явно выражено, как влияние повышенной температуры. Отчасти из-за этого в нормах проектирования вентиляции влажностные условия регламентированы в широких пределах / 1, 2 /.

Вредные вещества в виде газов, паров и пыли выделяются в воздушную среду помещений в результате протекания различных технологических процессов при недостаточной герметизации оборудования и коммуникаций. Воздействие их на человека определяется токсичностью и концентрацией в воздухе. При попадании в организм человека эти вещества могут приводить к заболеваниям и отравлениям. Отравления могут быть острыми и хроническими.

Острые отравления возникают при попадании в организм человека значительного количества вредных веществ.

Хронические отравления возникают при попадании в организм человека небольших количеств вредных веществ в течении длительного периода времени.

В производственных условиях вредные вещества могут проникать в организм человека через органы дыхания, пищеварительный тракт и кожу.

Вредные вещества по характеру взаимодействия с организмом человека делятся на химически реагирующие и химически не реагирующие. По характеру действия на организм газы и пары делятся на:

Удушающие (оксид углерода, синильная кислота и др.),

Раздражающие (хлор, хлористый и фтористый водород, сернистый газ, сероводород),

Наркотические (бензин, бензол, сероуглерод, анилин, нитробензол и т.д.),

Отравляющие (фосфор, ртуть, соединения мышьяка, металлоорганические соединения и др.).

Вредные вещества перемещаются в помещении в результате диффузии, воздушными потоками, конвективными потоками.

Пыль выделяется в воздух помещений, в основном, в результате дробления, пересыпки и транспортировании сыпучих материалов, а также при механической обработке изделий и материалов. Пыли, выделяемые в результате размельчения горючих веществ, взрывоопасны из-за развитой суммарной поверхности пылевых частиц. По действию на организм человека различают ядовитую пыль (свинцовая, свинцовых соединений, ртутная и др.) и неядовитую (песчаная, асбестовая, древесная и т.д.). Наибольшую опасность для органов дыхания представляют частицы размерами менее 10мкм, невидимые для глаз. При оценке действия пыли необходимо учитывать не только ее состав и концентрацию (мг/ м 3), но и дисперсность пыли.

2.1.3. Характеристики наружного климата

Состояние воздушной среды определяет в достаточно большой степени тепловой и влажностный режим помещений.

В настоящее время с точки зрения технико-экономических показателей работы систем вентиляции и кондиционирования воздуха (СКВ) приняты две категории параметров, характеризующих наружный воздух – А и Б / 3 /.

Параметры А используются при проектировании систем вентиляции и СКВ третьего класса в теплый период года, Б – для систем отопления (в том числе воздушных), вентиляции, душирования и СКВ для холодного периода года, а также для СКВ первого класса в теплый период года. Для СКВ второго класса следует принимать температуру наружного воздуха для теплого периода года на 2 о С и удельную энтальпию на 2 кДж/кг ниже, чем при параметрах Б.

Классификация СКВ приведена в /3/ в зависимости от необеспеченности параметров:

Первого класса - в среднем 100ч/г при круглосуточной работе или 70ч/г при односменной работе в дневное время,

Второго класса - в среднем 250ч/г при круглосуточной или 175ч/г при односменной работе в дневное время,

Третьего класса - в среднем 450ч/г при круглосуточной работе или 315ч/г при односменной работе в дневное время.

Соответствующие СКВ необходимо принимать:

Первого класса - для обеспечения метеорологических условий, требуемых для технологического процесса, при экономическом обосновании или в соответствии с требованиями нормативных документов,

Второго класса - для обеспечения метеорологических условий в пределах оптимальных норм или требуемых для технологических процессов, скорость движения воздуха допускается принимать в обслуживаемой зоне, на постоянных и непостоянных рабочих местах в пределах допустимых норм,

Третьего класса - для обеспечения метеорологических условий в пределах допустимых норм, если они не могут быть обеспечены вентиляцией в теплый период года без применения искусственного охлаждения воздуха, или оптимальных норм - при экономическом обосновании.

При проектировании вентиляции используется понятие о переходном периоде. В качестве расчетных параметров наружного климата принимают температуру t н = +10 о С и удельную энтальпию i н = 26,5кДж/кг.

Требования к чистоте воздуха выражаются предельно-допустимой концентрацией вредностей (ПДК). Под ПДК понимают содержание в воздухе такого количества вредных веществ, которое при ежедневном воздействии в течение неограниченного времени на человека не вызывает в его организме каких-либо физиологических изменений или заболеваний.

2.2.ТЕХНОЛОГИЧЕСКИЕ ОСНОВЫ ВЕНТИЛЯЦИИ

2.2.1. Воздушный режим здания

Под воздушным режимом здания подразумеваются процессы перемещения воздуха внутри помещения, движения его через ограждения и отверстия в ограждениях, по каналам и воздуховодам, обтекания здания воздушными потоками.

При рассмотрении воздушного режима различают внутреннюю, краевую и внешнюю задачи.

В состав внутренней задачи входят:

Расчет требуемого воздухообмена;

Определение параметров внутреннего воздуха и их распределение по объему помещения при различных вариантах подачи и удаления воздуха, выбор оптимальных вариантов подачи и удаления воздуха;

Определение параметров воздуха в струйных течениях;

Расчет количества вредных выделений;

Создание нормальных условий на рабочих местах.

Краевая задача включает:

Определение расходов инфильтрирующегося и эксфильтрирующегося воздуха;

Расчет площадей отверстий для аэрации (естественной организованной вентиляции);

Расчет размеров каналов, воздуховодов и шахт;

Выбор способа обработки воздуха;

Защита помещений от врывания наружного воздуха (воздушно-тепловые завесы).

Внешняя задача объединяет следующие вопросы:

Определение давлений, создаваемых ветром на конструктивные элементы здания;

Расчет максимально возможного количества выбросов из условия обеспечения концентрации в приземном слое атмосферы ниже ПДК, определения проветриваемости пространства на промплощадке;

Выбор мест расположения воздухозаборных и вытяжных шахт;

Расчет и прогнозирование загрязнения атмосферы вредными веществами, проверку достаточности очистки вентиляционных выбросов.

2.2.2. Методология вентиляции

Вентиляция является наукой об организации воздухобмена. При решении задач, стоящих перед вентиляцией возникают следующие вопросы:

1). Какое количество воздуха необходимо подавать в помещение в единицу времени, какое количество и как удалять?

2). Какие параметры должен иметь приточный воздух, каким образом его обрабатывать?

3). В каких местах подавать приточный воздух и в каких удалять?

4). Как подавать (равномерно, сосредоточенно), удалять и какие конструктивные формы необходимо придать всем элементам, участвующим в организации воздухоообмена?

Для решения вопросов вентиляции необходимо знать количество поступающих вредностей, характер их распространения, их взаимодействие с вентиляционными потоками.

Вопрос о расчетном расходе воздуха непосредственно связан с организацией воздухообмена.

Движение воздуха и распространение теплоты, газов подчиняется общим законам сохранения материи, сохранения и превращения энергии.

Исходными для решения этих вопросов являются известные дифуравнения:

Уравнение неразрывности;

Уравнения движения;

Уравнения тепло- и массообмена.

Для однозначного рассмотрения данного процесса необходимо задать начальные и краевые условия. Вследствие влияния большого числа факторов при решении вентиляционных задач большое значение имеет эксперимент - натурный и на моделях. Постановка эксперимента опирается на теорию подобия/ 13 /. Различают геометрическое, механическое и тепловое подобие. Механическое подобие делится на кинематическое и динамическое подобие. Кинематическое подобие предполагает пропорциональность скоростей и ускорений двух потоков; динамическое - подобие сил, вызывающих подобные движения. При тепловом подобии сохраняется подобие полей температур и тепловых потоков.

Данные единичного опыта могут распространяться на подобные явления, т.е. такие, у которых условия однозначности подобны и определяющие критерии, составленные из величин, входящих в условия однозначности, численно равны.

Физическое моделирование используется, например, для оценки различных способов организации воздухообмена, т.е. тогда, когда аналитическое решение крайне затруднительно. В качестве рабочей среды при физическом моделировании применяется воздух или вода. Точное осуществление всех условий моделирования может выполняться в редких случаях. Однако, во многих случаях имеет место автомодельность относительно некоторых критериев. Например, свободные турбулентные струи автомодельны в отношении критерия Рейнольдса (законо-мерности в относительных координатах не зависят от скорости и характерного размера). При изучении естественного движения под действием изменения плотности воздуха необходимо иметь ввиду, что закономерности процесса не зависят от температуры и характерного размера при достижении условия: Gr Pr > 2· 10 7 . Поэтому при постановке эксперимента необходимо выбрать определяюшие критерии подобия.

В настоящее время широко используется метод приближенного математического моделирования тепловоздушных процессов помещения, основанный на решении системы балансных уравнений для характерных объемов. С середины 90-х годов начинают появляются работы по точному математическому моделированию вентиляционных процессов.

2.2.3. Связь вентиляции с другими науками

Вентиляция как наука тесно связана с гигиеной, аэродинамикой, теплотехникой, отоплением и т.д.

Гигиена дает ответ на вопрос о параметрах воздуха, которые необходимо поддерживать в рабочей зоне. Эти параметры являются заданными, в соответствии с ними определяются параметры приточного и отработанного воздуха.

Вопросы о количестве воздуха, об организации воздухообмена составляют основное содержание вентиляционной аэродинамики, опирающейся на общую аэродинамику. Как известно, аэродинамика решает внутреннюю (течения в воздуховодах, каналах) и внешнюю (обтекание тел) задачи, включая учение о свободной струе. Все эти вопросы составляют аэродинамическую сущность вентиляции. Особенно большое значение в вентиляции принадлежит свободным струям. Это приточные струи, воздушные души воздушно-тепловые завесы, передувки. Важное значение имеет раздел аэродинамики, изучающий спектры всасывания вытяжныхотверстий.

Теплотехника, в частности, термодинамика, дает ответы на вопросы об изменении состояния воздуха в процессах его предварительной обработки и в самом помещении при воздействии на него теплоты и влаги. Теория теплопередачи дает возможность количественно оценивать различные стационарные и нестационарные теплообменные процессы.

Связь с отоплением состоит в том, что поддерживать требуемую температуру воздуха в помещении в холодный период года возможно только совместно с отоплением. Некоторые виды отопления (воздушное) по своему существу больше относятся к вентиляции, чем собственно к отоплению.

Знание технологии производства позволяет более совершенно сочетать общие решения вентиляционных задач со специфическими условиями производственных процессов.

Для решения вентиляционных задач необходимо знать основы математики, физики, тепло-массообмена, вычислительной техники, электротехники, автоматики, климатологии, экологии и др.

ЛЕКЦИЯ №2

2.3. КЛАССИФИКАЦИЯ И ПРИНЦИПЫ ДЕЙСТВИЯ СИСТЕМ ВЕНТИЛЯЦИИ

2.3.1. Классификация систем вентиляции.

Вентиляционная система – совокупность устройств для обработки, транспортирования, подачи и удаления воздуха.

При выборе системы вентиляции необходимо учитывать санитарно-гигиенические, технологические и экономические факторы. Предпочтительно всегда применение наиболее простых систем вентиляции, например, аэрации перед механической системой вентиляции.

Классификация систем вентиляции приведена на рис. 2.4.

По назначению системы вентиляции делятся на приточные (для подачи воздуха) и вытяжные (для удаления).

По способу организации воздухообмена – общеобменные и местные. Общеобменные обеспечивают воздухообмен в объеме всего помещения, местные – в ограниченной области или на отдельном рабочем месте. Примером приточной местной вентиляции является воздушное душирование.

По способу побуждения движения воздуха – с механическим (при помощи вентиляторов, эжекторов и пр.) и естественным (с использованием сил ветра и гравитации) побуждением.

По способу перемещения – канальные (через разветвленную сеть воздуховодов) и бесканальные (через проемы в наружных стенах).

Системы бывают постоянного и периодического действия, рабочие и аварийные.

Аварийной называется такая система, которая предназначена для борьбы с внезапными (аварийными) выбросами вредностей в производственные помещения в случае аварии.

Основные элементы приточной системы: узел воздухозабора, приточная камера (клапан воздушный утепленный, калориферы, фильтры, вентиляционный агрегат), сеть воздуховодов, воздухораспределители. Вытяжная система состоит из: вытяжных устройств, сети воздуховодов, в общем случае вытяжной камеры, вытяжной шахты.

2.3.2. Основные принципы действия различных видов систем вентиляции

При выборе систем вентиляции необходимо учитывать общие нормативные документы /1-3/, а также нормативные документы для определенного типа здания (например, СНиПы на проектирование общественных зданий, жилых зданий и т.д.) и ведомственные нормы проектирования. Общая схема вентиляции помещения приведена на рис.2.5.


2.3.2.1. Приточная общеобменная канальная вентиляция с механическим побуждением

Этот вид вентиляции (рис.2.5.А) широко применяется в промышленных зданиях, в больших помещениях общественных зданий. Подача воздуха может быть как рассредоточенной (при помощи перфорированных панелей) непосредственно в рабочую или обслуживаемую зону, так и сосредоточенной одной или несколькими струями. В таких системах для экономии теплоты в холодный период года применяется рециркуляция внутреннего воздуха, если это допускается нормативными документами.

2.3.2.2. Приточная общеобменная бесканальная система вентиляции с механическим

побуждением

Эти системы (рис.2.5.Б) применяются в производственных помещениях с небольшим количеством работающих при отсутствии постоянных рабочих мест для периодического проветривания помещений с избытками теплоты в качестве вспомогательной системы (дополнительной), работающей либо в теплый, либо в холодный период года с подогревом или рециркуляцией, а также во вспомогательных помещениях производственных зданий.

2.3.2.3. Приточная общеобменная бесканальная с естественным побуждением

Такая система (рис.2.5.В) называется аэрационным притоком и применяется в промышленных зданиях со значительными избытками теплоты, в помещениях жилых и общественных зданий в теплый период года. В промышленных зданиях данная система применима во все периоды года.

В теплый период подача воздуха осуществляется через оконные проемы или специальные отверстия на уровне рабочей зоны, в переходный и холодный периоды – через отверстия, расположенные на высоте не ниже 4м от пола потоками, направленными в верхнюю зону про- изводственного помещения. Движение воздуха обуславливается разностью давлений снаружи и внутри здания, возникающей в результате ветрового и гравитационного напора (рис.2.6.).

Гравитационный (D Р t) и ветровой напор (D P v) определяются по формулам:

D Р t = H gDr = Hg (r н - r в) (уравнение Мейдингера, 1875г.)

D P v = K a r н v 2 /2 (2.1.)

где K a - аэродинамический коэффициент.

Н - разность отметок центров вытяжных и приточных проемов.


Рис.2.5.

Общие принципы устройства систем вентиляции

1-вентиляторные агрегаты; 2- калориферы; 3-воздуховоды;

4-вентилятор воздушного душа; 5 -крышный вентилятор;

2.3.2.5. Приточная местная бесканальная система вентиляции с механическим побуждением

Эта система (рис.2.5.Г) применяется для душирования рабочих мест в производственных помещениях. Вентиляторные установки в таких системах работают обычно на рециркуляционном воздухе. Может производиться некоторая его обработка (увлажнение). Такие установки изготавливаются обычно передвижными.

2.3.2.6. Приточная местная бесканальная система вентиляции с естественным

побуждением

Эта система аналогична варианту аэрационного притока. Только в данном случае воздух через аэрационный проем подается непосредственно в рабочую зону, захватывая ее активной частью струи. Применяется она только в теплый период года.

2.3.2.7. Вытяжная общеобменная канальная система вентиляции с механическим

побуждением

Система используется в тех же случаях, что и приточная общеобменная канальная с механическим побуждением (рис. 2.5.Д). Эта система вытяжной вентиляции является наиболее распространенной. Вытяжка может устраиваться из рабочей зоны или верхней зоны помещения, а также из нескольких объединенных одной системой помещений здания.

2.3.2.8. Вытяжная общеобменная бесканальная система вентиляции с механическим

побуждением

Устраивается, в основном в производственных зданиях. Вентиляторы устанавливаются в проемах наружных ограждений здания (в стенах и покрытии) (рис.2.5.Е). Часто она применяется для периодического проветривания помещения или для увеличения вытяжки в теплый период года. На этом же принципе устроена аварийная вентиляция.

2.3.2.9. Вытяжная общеобменная канальная система вентиляции с естественным

побуждением

Основная система в жилых и общественных зданиях, а также во вспомогательных помещениях производственных зданий. Движение воздуха в такой системе осуществляется под действием гравитационного напора. Иногда вытяжную шахту снабжают дефлектором - устройством, использующим силу ветра для перемещения воздуха по воздуховодам.

2.3.2.10. Вытяжная общеобменная бесканальная система вентиляции с естественным

побуждением

Иначе эта система (рис.2.5.Ж) называется аэрационной вытяжкой и применяется, в основном, в производственных зданиях и иногда в купольных помещениях общественных зданий (зрительные залы театров, цирки и т.п.). Удаление воздуха осуществляется через специальные отверстия в верхней части вертикальных ограждений помещения или через открываемые фрамуги светоаэрационных фонарей или через дефлекторы.

2.3.2.11. Вытяжная местная канальная система вентиляции с механическим

побуждением

Применяется, в основном, в производствнных помещениях. Иногда устраивается в в общественных зданиях (кухни столовых, кафе, ресторанов и т.п.).

При применении этой системы (рис.2.5.И) вредные вещества удаляются непосредственно от мест их образования (выделения). Перед выбросом этого воздуха в атмосферу чаще всего производится очистка воздуха, загрязненного вредностями.

Иногда эту систему применяют для транспортирования отходов производства (системы пневмотранспорта отходов).

2.3.2.12. Вытяжная местная канальная система вентиляции с естественным побуждением

Применяется для удаления нагретого воздуха от различных технологических печей, оборудования (рис.2.5.К).

Такое множество применяемых систем вентиляции позволяет выбрать для каждого случая оптимальный вариант. При этом возможны сочетания нескольких вариантов систем вентиляции. Например, приток с механическим побуждением, вытяжка с естественным побуждением и т.п.

2.4. СВОЙСТВА ВЛАЖНОГО ВОЗДУХА И ПРОЦЕССЫ ИЗМЕНЕНИЯ ЕГО СОСТОЯНИЯ

2.4.1. Характеристики влажного воздуха

Влажный воздух можно представить как смесь сухой части воздуха и водяных паров. Состав сухой части атмосферного воздуха в % по объему:

Азот – 78,08%;

Кислород – 20,95%;

Аргон – 0.93%;

Диоксид углерода- 0.03%;

Инертные газы, озон и т.д. – 0.01%.

Для влажного воздуха как смеси газов справедлив закон Дальтона:

Р б = Р с.в. + Р п, Па (2.2.)

где Р с.в. , Р п - соответственно парциальное давление сухой части воздуха и водяного

Из уравнения Менделеева-Клайперона:

PV = RT, V=1/r, r = P/ (RT) (2.3.)

где V – удельный объем, м 3 / кг;

R - удельная газовая постоянная, для сухой части воздуха R с.в. =2.153, для водяного пара R п = 3.461;

Плотность сухой части и водяных паров можно найти:

r с.в. = Р с.в. / (R с.в. T) = 0.465 (Р б – Р п) / T, (2.4.)

r п = Р п / (R п T) = 0.289 Р п / T (2.5.)

Тогда плотность влажного воздуха:

r в = r = 0.465 (Р б – Р п) / T + 0.289 Р п / T =

1 / T (0.465 Р б – 0.176 Р п) (2.6.)

При нормальном барометрическом давлении Рб= 10 5 Па:

r в @ 353 / T (2.7.)

В процессах тепловлажностной обработки сухая часть влажного воздуха остается неизменной. Количество водяных паров, приходящееся на 1 кг сухой части воздуха, называется влагосодержанием:

d = r п /r с.в. = Р п R с.в. T / (Р с.в. R п T) = 2.153 / 3.461 · Р п / Р с.в.

d = 0.623 Р п /Р с.в. , кг/кг с.в. (2.8.)

Вентиляция предназначена для обеспечения чистоты, температуры, влажности и подвижности воздуха согласно требованиям СНиП. Эти требования определяются гигиеническими нормативами: наличие вредных веществ в воздухе (газы, пары, пыль) ограничивается предельно допустимыми (безвредными для здоровья людей) концентрациями, а температура, влажность и подвижность воздуха устанавливаются в зависимости от условий, необходимых для наиболее благоприятного самочувствия человека.
Для производственных помещений чистота воздуха, его температура и влажность определяются особенностями технологического процесса и регламентируются в основном отраслевыми нормативами. В ряде случаев температура и влажность воздуха в помещениях должны отвечать условиям наилучшей сохранности находящихся в них предметов и материалов (библиотеки, архивы, склады, музеи и т.д.)
В отличие от кондиционеров, которые все же не являются предметами первой необходимости, системы вентиляции устанавливаются во всех жилых и офисных зданиях. Наличие вентиляционных систем на производстве является, обязательным, требования к их техническим характеристикам имеют силу закона и прописаны в Строительных Нормах и Правилах (СНиП). Все это объясняется тем, что при отсутствии вентиляции в закрытых помещениях возрастает концентрация углекислого газа и других вредных веществ. Это негативно сказывается на самочувствии людей, потерю работоспособности. Для решения всех этих проблем и существуют системы вентиляции воздуха.
Системы вентиляции обеспечивают поддержание допустимых метеорологических параметров в помещениях различного назначения.
При всем многообразии систем вентиляции, обусловленном назначением помещений, характером технологического процесса т. п., их можно классифицировать по следующим характерным признакам:
1. По способу создания давления для перемещения воздуха: с естественным или искусственным (механическим) побуждением.
2. По назначению: приточные и вытяжные.
3. По зоне обслуживания: местные и общеобменные.
4. По конструктивному исполнению: канальные и бесканальные.
Естественная вентиляция
Естественная вентиляция характеризуется несколькими ниже перечисленными признаками:
- перемещение воздуха в системах естественной вентиляции происходит: вследствие разности температур наружного воздуха и воздуха в помещении, так называемой аэрации;
- вследствие разности давлений (воздушного столба) между нижним уровнем (обслуживаемым помещением) и верхним уровнем - вытяжным устройством (дефлектором), установленным на кровле здания;
- в результате воздействия так называемого ветрового давления.
Естественную вентиляцию применяют в цехах со значительными тепловыделениями, если концентрация пыли и вредных газов в приточном воздухе не превышает 30% предельно допустимой нормы в рабочей зоне. Аэрацию не применяют, если по условиям технологии производства требуется предварительная обработка приточного воздуха или если приток наружного воздуха вызывает образование тумана или конденсата. В помещениях с большими избытками тепла воздух всегда теплее наружного. Более тяжелый наружный воздух, поступая в здание, вытесняет из него менее плотный теплый воздух. При этом в замкнутом пространстве помещения возникает циркуляция воздуха, вызываемая источником тепла, подобная той, которую вызывает вентилятор.
В системах естественной вентиляции перемещение воздуха создается за счет разности давлений воздушного столба, минимальный перепад по высоте должен быть не менее 3 м. При этом рекомендуемая длина горизонтальных участков воздуховодов не должна быть более 3 м, а скорость воздуха в воздуховодах - не превышать 1 м/с.
Воздействие ветрового давления выражается в том, что на наветренных (обращенных к ветру) сторонах здания образуется повышенное, а на подветренных сторонах, а иногда и на кровле, - пониженное давление (разрежение).
Если в ограждениях здания имеются проемы, то с наветренной стороны атмосферный воздух поступает в помещение, а с заветренной - выходит из него, причем скорость движения воздуха в проемах зависит от скорости ветра, обдувающего здание, и соответственно от величин возникающих разностей давлений.
Системы естественной вентиляции просты и не требуют сложного дорогостоящего оборудования и расхода электрической энергии. Однако эффективность этих систем зависящих от переменных факторов (температуры воздуха, направления и скорости ветра) не позволяет решать все сложные и многообразные задачи в области вентиляции.
Механическая вентиляция
В механических системах вентиляции используются оборудование позволяющее перемещать воздух на значительные расстояния. Такие системы могут подавать и удалять воздух из локальных зон помещения в требуемом количестве, независимо от изменяющихся условий окружающей воздушной среды. При необходимости воздух подвергают различным видам обработки (очистке, нагреванию, охлаждению, увлажнению и т. д.), что невозможно в системах с естественным побуждением.
Следует отметить, что на практике часто предусматривают так называемую смешанную вентиляцию, т. е. одновременно естественную и механическую вентиляцию.
В каждом конкретном проекте определяется тип вентиляции, который является экономически и технически более рациональным, наилучшим в санитарно-гигиеническом отношении.
Приточная вентиляция
Приточные системы служат для подачи в вентилируемые помещения чистого воздуха. Приточный воздух в необходимых случаях подвергается обработке (очистке, нагреванию, увлажнению и т. д.).
Вытяжная вентиляция
Вытяжная вентиляция удаляет из помещения загрязненный или нагретый отработанный воздух. В помещении предусматриваются как приточные, так и вытяжные системы. Их производительность должна быть сбалансирована с учетом возможности поступления воздуха в смежные помещения или из смежных помещений. В помещениях может быть также предусмотрена только вытяжная или только приточная система. В этом случае воздух поступает в данное помещение снаружи или из смежных помещений через специальные проемы или удаляется из данного помещения наружу, или перетекает в смежные помещения. Как приточная, так и вытяжная вентиляция может устраиваться на рабочем месте (местная) или для всего помещения (общеобменная вентиляция).
Местная вентиляция
Местной вентиляцией называется такая, при которой воздух подается на определенную зону (местная приточная вентиляция), а загрязненный воздух удаляют только от зон образования вредных выделений (местная вытяжная вентиляция).
Местная приточная вентиляция
К местной приточной вентиляции относятся воздушные души (сосредоточенный приток воздуха с повышенной скоростью). Они должны подавать чистый воздух к рабочим местам, снижать в их зоне температуру окружающего воздуха и обдувать рабочих, подвергающихся интенсивному тепловому облучении.
К местной приточной вентиляции относятся участки помещений, отгороженные от остального помещения передвижными перегородками, в которые нагнетается воздух с пониженной температурой.
Местную приточную вентиляцию применяют также в виде воздушных завес (у ворот, печей и пр.), которые создают как бы воздушные перегородки или изменяют направление потоков воздуха. Местная вентиляция требует меньших затрат, чем общеобменная. В производственных помещениях при выделении вредных примесей (газов, влаги, теплоты и т. п.) обычно применяют смешанную систему вентиляции - общую для устранения вредностей во всем объеме помещения и местную (местные вытяжка и приток) для обслуживания рабочих мест.

Местная вытяжная вентиляция
Местную вытяжную вентиляцию применяют, когда места выделений вредностей в помещении локализованы и нужно не допустить их распространение по всему помещению.
Местная вытяжная вентиляция в производственных помещениях обеспечивает отвод вредных выделений: газов, дыма, пыли и частично выделяющегося от оборудования тепла. Для удаления вредностей применяют местные вытяжки (зонты, бортовые вытяжки, завесы, укрытия в виде кожухов у станков и др.). Основные требования, которым они должны удовлетворять:
- место образования вредных выделений по возможности должно быть полностью укрыто;
- конструкция местной вытяжки не должна влиять на производительность труда;
- вредные выделения необходимо удалять от места их образования в направлении их естественного движения (горячие газы и пары надо удалять вверх, холодные тяжелые газы и пыль - вниз).
При устройстве местной вытяжной вентиляции для улавливания пыли воздух, перед выбросом его в атмосферу, должен быть предварительно очищен. Наиболее сложными вытяжными системами являются такие, в которых предусматривают очень высокую степень очистки воздуха от пыли с установкой последовательно двух или даже трех фильтров.
Местные вытяжные системы, как правило, весьма эффективны, так как позволяют удалять вредные вещества непосредственно от места их образования или выделения, не давая им распространиться в помещении. Благодаря значительной концентрации вредных веществ (паров, газов, пыли), обычно удается достичь хорошего санитарно-гигиенического эффекта при небольшом объеме удаляемого воздуха.
Однако местные системы не могут решить всех задач, стоящих перед вентиляцией. Не все вредные выделения могут быть локализованы этими системами. Например, когда вредные выделения, рассредоточены на значительной площади или в объеме; подача воздуха в отдельные зоны не может обеспечить необходимые условия воздушной среды, если работа производится на всей площади помещения или ее характер связан с перемещением и т. д.
Общеобменнная приточная вентиляция
Общеобменная приточная вентиляция устраивается для удаления тепла и влаги, разбавления вредных концентраций паров и газов, не удаленных местной и общеобменной вытяжной вентиляцией, а также для обеспечения расчетных санитарно-гигиенических норм. При отрицательном тепловом балансе, т. е. при недостатке тепла, общеобменную приточную вентиляцию устраивают с механическим побуждением и с подогревом всего объема приточного воздуха. Как правило, перед подачей воздух очищают от пыли.
При поступлении вредных выделений в воздух количество приточного воздуха должно полностью компенсировать общеобменную и местную вытяжную вентиляцию.
Общеобменная вытяжная вентиляция
Простейшим типом общеобменной вытяжной вентиляции является отдельный вентилятор с электродвигателем на одной оси, расположенный в окне или в отверстии стены. Такая установка удаляет воздух из ближайшей к вентилятору зоны помещения, осуществляя лишь общий воздухообмен.
В некоторых случаях установка имеет протяженный вытяжной воздуховод. Если длина вытяжного воздуховода превышает 30-40 м и соответственно потери давления в сети составляют более 30-40 кг/м2, то вместо осевого вентилятора устанавливается вентилятор центробежного типа.
Когда вредными выделениями являются тяжелые газы или пыль и нет тепловыделений от оборудования, вытяжные воздуховоды прокладывают по полу цеха или выполняют в виде подпольных каналов.
В промышленных зданиях поступление в помещение происходит в различных условиях (сосредоточенно, рассредоточено, на различных уровнях и т. п.). Часто невозможно обойтись какой-либо одной системой, например, местной или общеобменной.
В таких помещениях для удаления вредных выделений, которые не могут быть локализованы и поступают в воздух помещения, применяют общеобменные вытяжные системы.
Канальная и бесканальная вентиляция
Канальные системы вентиляции имеют сеть воздуховодов для перемещения воздуха. При бесканальной системе вентилятор устанавливают в стене, перекрытии.
Таким образом, любая система вентиляции может быть охарактеризована по четырем признакам: по назначению, зоне обслуживания, способу перемешивания воздуха и конструктивному исполнению.

В соответствии с действующими на территории Российской Федерации санитарными нормами и правилами организации помещений, как бытового, так и производственного назначения, должны обеспечиваться оптимальные параметры микроклимата. Нормы вентиляции регулируют такие показатели, как температура воздуха, относительная влажность, скорость движения воздуха в помещении и интенсивность теплового излучения. Одним из средств для обеспечения оптимальных характеристик микроклимата является вентиляция. В настоящее время организовывать систему воздухообмена «на глаз» или «примерно» будет в корне неправильно и даже вредно для здоровья. При обустройстве системы вентиляции, расчет выступает залогом правильного ее функционирования.

В жилых домах и квартирах воздухообмен зачастую обеспечивается за счет естественной вентиляции. Такая вентиляция может быть реализована двумя способами - бесканальным и канальным. В первом случае воздухообмен осуществляется при проветривании помещения и естественной инфильтрации воздушных масс через щели дверей и окон, и поры стен. Расчет вентиляции помещения в этом случае произвести невозможно, такой способ носит название неорганизованного, имеет низкую эффективность и сопровождается значительными потерями тепла.

Второй способ заключается в размещении в стенах и перекрытиях каналов воздуховодов, через которые осуществляется воздухообмен. В большинстве многоквартирных домов, построенных в 1930-1980гг, оборудована вытяжная канальная система вентиляции с естественным побуждением. Расчет вытяжной вентиляции сводится к определению геометрических параметров воздуховодов, которые бы обеспечивали доступ необходимого количества воздуха в соответствии с ГОСТ 30494-96 «Здания жилые и общественные. Параметры микроклимата в помещениях».

В большинстве помещений общественного пользования и производственных зданиях только организация вентиляции с механическим побуждением движения воздуха может обеспечить достаточный воздухообмен.

Расчет производственной вентиляции можно доверить исключительно квалифицированному специалисту. Инженер проектировщик вентиляции произведет необходимые вычисления, составит проект и утвердит его в соответствующих организациях. Им же будет оформлена и документация по вентиляции.

Проектирование вентиляции и кондиционирования ориентировано на задачу, поставленную клиентом. Для того чтобы выбрать оборудование для системы воздухообмена с оптимальными характеристиками, отвечающее поставленным условиям, при помощи специализированных компьютерных программ выполняют следующие расчеты.

Определение производительности по воздуху

Производительность по воздуху рассчитывается двумя способами: по кратности воздухообмена и по количеству людей . При расчете производительности вентиляции, кратность воздухообмена показывает, сколько раз в течение часа меняется воздух в помещении с заданной площадью.

Производительность по кратности воздухообмена (L , м³/ч) рассчитывают по формуле:
L = n * S * H
где
n - кратность воздухообмена для определенного типа помещения. В соответствии со СНиП для жилых квартир принимают n=1; для общественных помещений (офисов, магазинов, кинотеатров) и производственных цехов n=2;
S - площадь помещения, м²;
H - высота заданного помещения, м.

Производительность по количеству людей (L , м³/ч):
L = N * Lнорм
где
N - предполагаемое количество людей в помещении;
Lнорм — нормируемый расход воздуха на одного человека, м³/ч. Эту величину регламентируют СНиП. Для человека, который находится в состоянии покоя (имеются в виду жилые квартиры и дома);
Lнорм составляет 20 м³/ч. Для людей, которые находятся на работе в офисе Lнорм=40 м³/ч, а для выполняющих физическую нагрузку, Lнорм=60 м³/ч.

Большее из двух полученных значений принимают за производительность приточно-вытяжной установки или вентилятора. При выборе этого типа оборудования делают поправку на потери производительности, которые возникают в сети воздуховодов за счет аэродинамического сопротивления.

Определение мощности калорифера

Нормы проектирования вентиляции предполагают, что в холодное время года воздух, поступающий в помещение, должен прогреваться не менее чем до +18 градусов Цельсия. Для подогрева воздуха приточно вытяжная вентиляция использует калорифер. Критерием выбора нагревателя выступает его мощность, которая зависит от производительности вентиляции, температуры на выходе воздуховода (обычно принимается +18 град) и наиболее низкой температуры воздуха в холодное время года (для средней полосы России -26 град).

Различные модели калорифера можно подключать к сети с 3-х или 2-х фазным питанием. В жилых помещениях обычно используют 2-х фазную сеть, а для производственных зданий рекомендуется использовать 3-х фазную, поскольку в этом случае меньше значение рабочей силы тока. 3-х фазная сеть используется в тех случаях, когда мощность калорифера превышает 5 кВт. Для жилых помещений используют калориферы мощностью от 1 до 5 кВт, а для общественных и производственных, соответственно, требуется большая мощность. Когда производится расчет вентиляции отопления, мощность калорифера должна быть достаточной, чтобы обеспечивать нагрев воздуха не менее чем до +44 град.

Расчет сети воздуховодов

Для помещений, где будет установлена канальная вентиляция, расчет воздуховодов состоит в определении необходимого рабочего давления вентилятора с учетом потерь, скорости воздушного потока и допустимого уровня шума.

Давление воздушного потока создается вентилятором и определяется его техническими характеристиками. Эта величина зависит от геометрических параметров воздуховода (круглое или прямоугольное сечение), его длины, количества поворотов сети, переходов, распределителей. Чем больше производительность, которую обеспечивает приточная вентиляция, а, соответственно, и рабочее давление, тем больше скорость воздуха в воздуховоде. Однако при возрастании скорости воздушного потока увеличивается уровень шума. Уменьшить скорость и уровень шума можно, применяя воздуховоды большего диаметра, что не всегда возможно в жилых помещениях. Для комфортного самочувствия человека скорость воздуха в помещении должна быть в пределах от 2,5 до 4 м/с и уровень шума 25 Дб.

Составить пример расчета вентиляции можно, лишь имея параметры помещения и техническое задание. Оказать помощь в выполнении предварительных расчетов, дать квалифицированную консультацию, а также оформить соответствующие документы могут специализированные фирмы, которые зачастую осуществляют также проектирование и монтаж вентиляции.