Насос шестеренный чертеж крышка. Шестеренный насос


Благодаря простой конструкции и надежности в работе широко распространены в гидроприводах дорожных машин. Принцип действия шестеренного насоса (рис. 1) заключается в следующем.

Две шестерни равной ширины ведущая 1 и ведомая 2 находятся в зацеплении и расположены в корпусе 3 с минимальным радиальным зазором. К торцовым поверхностям шестерен прилегают боковые стенки насоса. При вращении шестерен жидкость, заполняющая впадины между зубьями, переносится шестернями по внутренней поверхности корпуса (показано стрелками) из полости всасывания А в полость нагнетания Б.

Объемный КПД в основном зависит от утечек рабочей жидкости через зазоры, образованные головками зубьев и корпусом насоса, а также между торцовыми поверхностями шестерен и боковыми стенками корпуса. Кроме того, дополнительно возникают утечки по линии контакта зубьев. Чтобы уменьшить радиальные утечки, зазор между шестернями и корпусом насоса делают минимальным, а для снижения торцовых утечек боковые стенки автоматически прижимаются к торцовым поверхностям шестерен жидкостью под рабочим давлением. Максимальное значение КПД шестеренных насосов - 0,8...0,95.

Насос шестеренный схема, чертёж


В шестеренном насосе-гидромоторе (рис. 2) ведущая 8 и ведомая 9 шестерни изготовлены заодно с валами и заключены в алюминиевый корпус 6. Корпус закрыт крышкой 2, привернутой к нему винтами 11. Опорными подшипниками скольжения для валов служат «плавающие» бронзовые втулки 5 и 7. Одновременно они выполняют роль упорных подшипников для торцов шестерен 8 и 9. Между крышкой и корпусом проложено уплотнительное кольцо 13 из маслостойкой резины.

Ремонт шестеренных насосов

Для предупреждения вытекания рабочей жидкости и защиты втулки 5 от попадания пыли и грязи установлено уплотнение 4, фиксируемое стопорным 1 и опорным 3 кольцами. Кроме того, в крышке выполнены расточки, в которые вводят дополнительные уплотнительные кольца 12. Передние бронзовые втулки 5 могут перемещаться вдоль валов-шестерен. Втулки автоматически прижимаются к шестерням независимо oт их износа путем подачи рабочей жидкости под давлением в торец втулки. Этим достигается высокий КПД насоса-гидромотора и увеличивается срок его службы.

Чтобы избежать перекоса втулок из-за неравномерной нагрузки в зоне камер всасывания и нагнетания, со стороны всасывающей камеры установлена фигурная разгрузочная пластина 10, обтянутая по контуру резиновым кольцом. Пластину располагают между крышкой 2 и втулками 5. Между сопряженными поверхностями втулок 5 и 7 для упрощении сборки предусмотрен зазор 0,1...0,15 мм. После сборки этот зазор принудительно выбирают, поворачивают втулки и фиксируя их проволоками 15, вставленными в отверстия втулок. Рабочая жидкость, просочившаяся вдоль валов, поступает через отверстие в крышке 2 и отверстие в ведомой шестерне в полости, соединенные, с камерой всасывания. К боковым поверхностям корпуса насоса-гидромотора крепят винтами всасывающий и нагнетательный патрубки.

Отверстие большого диаметра под всасывающим патрубком отмечено на корпусе надписью «Вход». Насосы могут быть использованы как для левого, так и для правого вращения. Чтобы изменить направление вращения, меняют местами ведущую и ведомую шестерни, переставляют втулки так, чтобы их положение и направление разворота стыка и проволок было таким же, как у задних втулок, а затем поворачивают крышку 2 на 180°. Нельзя менять направление входа и выхода в насос, так как это может привести к выдавливанию рабочей жидкостью сальника ведущей шестерни. В корпусе насоса-гидромотора сделано коническое резьбовое отверстие 14 для отвода просочившейся рабочей жидкости при использовании гидромашины в режиме гидромотора. В это отверстие ввертывают штуцер, к которому прикрепляют дренажный трубопровод, соединяющий внутреннюю полость корпуса с баком гидравлической системы.

Задание по теме 5 . (Лист 5)

Чертеж (рис.29) выполнить на формате А3 в двух изображениях в масштабе 1:1. Выполнить сечение Б – Б на свободном поле чертежа. Для определения недостающих размеров воспользоваться графиком масштабов.

На чертеже выполнить следующие соединения:

I соединить корпус I с крышкой 2 посредством болтов 10(резьба М10) поставить шайбы 17 и гайки 13;

II соединить крышку 3 с корпусом I винтами 11(резьбаМ10);

III – выполнить соединение крышки сальника 5 и крышки 2 шпильками 18 (резьба М8, материал корпус сталь), поставить шайбы 16 и гайки 12;

IV соединить зубчатое колесо 4 с осью 7 посредством призматической шпонки 19 (размеры шпонки 4х4х20) исполнение 2;

V присоединить к трубе 8 муфту 15 (резьба G3/4).

Заполнить все графы спецификации, используя описание насоса.

Насос шестеренчатый

Насос – машина, преобразующая механическую энергию двигателя в механическую энергию состояния жидкости с целью ее подъема или получения сжатых газов.

Он состоит из пары цилиндрических зубчатых колес 4, установленных в стальной корпус 1. При вращении колес масло из всасывающей полости попадает между зубьями и стенкой корпуса и переносится в нагнетательную полость. Зубья колес препятствуют возвращению масла во всасывающую полость. Чтобы избежать утечки масла, зазоры в сопряжениях насоса должны быть минимальными, особенно между зубьями и корпусом, а также по торцам зубчатых колес.

Шестеренчатый насос начинают собирать с запрессовки в крышки 2 и 3 втулок 9. Затем на втулки наносят слой солидола, который обеспечивает смазку для вала 6 и оси 7. С наружных сторон корпуса 1 помещают пропитанные нитролаком бумажные прокладки (на чертеже они не показаны), устанавливают крышку 3 и завинчивают винты 11. На оси 7 монтирую на призматической шпонке 19 зубчатое колесо 4, а на валу 6 – зубчатое колесо монтируют по посадке. Крышку 2 крепят болтами 10 к корпусу 1. Для уплотнения вала 6 в крышке 2 поставлены три сальниковых войлочных кольца 14, которые прижимаются к валу и крышке 2 сальниковой крышкой 5 и шпильками 18.

Вращательное движение двигателя передается на ведущий вал 6. Зубчатое колесо, находящееся на валу 6 и вращающееся от двигателя, является ведущим, второе – ведомым.

Рисунок 29. Сборочный чертеж и спецификация.

Как построить график масштабов?

Для определения натуральных размеров деталей по сборочному чертежу, выполненному в произвольном масштабе необходимо построить график масштабов (рис.30).

Рисунок 30. График масштабов

На горизонтальной оси отложить натуральный размер ширины насоса (в нашем примере -150 мм). По вертикальной оси отложить этот же размер измеренный по заданному чертежу (допустим он будет – 60 мм). Проведем из построенных точек горизонтальную и вертикальную линии. На пересечении определим т.А. Построим линию 0А. График готов.

Как пользоваться графиком?

Откладываем на вертикальной оси размер, натуральную величину которого требуется определить, измеренный по заданному чертежу (допустим он будет – 48 мм). Проводим горизонтальную линию до прямой 0А в точке Б. Затем опускаем перпендикуляр до горизонтальной оси. Размер отрезка 0С является натуральным размером детали. Таким способом можно определить любой размер, отсутствующий на чертеже.

Шестерённая (шестерёнчатая) гидромашина - один из видов объёмных гидравлических машин.

Шестерённый насос с внешним зацеплением: Drive Gear - ведущая шестерня; Idler Gear - ведомая шестерня; Seal - уплотнение; Drive Shaft - ведущий вал; Pressure Port - выходное отверстие, которое сочетается с полостью высокого давления; Suction Port - всасывающее отверстие, которое сочетается с полостью низкого давления

Так же как и другие виды объёмных роторных гидромашин принципиально может работать как в режиме насоса, так и в режиме гидромотора. В том случае, если к валу гидромашины прикладывается вращательный момент, то машина работает в режиме насоса. Если на вход гидромашины подаётся под давлением рабочая жидкость, то с вала снимается вращающий момент, и машина работает в режиме гидромотора.

Принцип действия

Принцип действия шестерённой гидромашины с внешним зацеплением

Шестерённый насос с внешним зацеплением работает следующим образом. Ведущая шестерня находится в постоянном зацеплении с ведомой и приводит её во вращательное движение. При вращении шестерён насоса в противоположные стороны в полости всасывания зубья, выходя из зацепления, образуют разрежение (вакуум). За счёт этого из гидробака в полость всасывания поступает рабочая жидкость, которая, заполняя впадины между зубьями обеих шестерён, перемещается зубьями вдоль цилиндрических стенок колодцев в корпусе и переносится из полости всасывания в полость нагнетания, где зубья шестерён, входя в зацепление, выталкивают жидкость из впадин в нагнетательный трубопровод. При этом между зубьями образуется плотный контакт, вследствие чего обратный перенос жидкости из полости нагнетания в полость всасывания ничтожен. Смазка движущихся элементов насоса производится перекачиваемой жидкостью (масло, расплав полимера и др.), для поступления смазывающей жидкости к зонам трения конструкцией насоса предусматриваются специальные каналы в корпусных деталях насоса.

Рабочий объём

Запертые объёмы

Одной из технических проблем в шестерённых гидромашинах является проблема запертых объёмов, которые являются нежелательным явлением. Вследствие малой сжимаемости жидкости, возникновение запертых объёмов в процессе работы гидромашины, если не предусмотреть меры борьбы с ними, может привести к возникновению большого момента сопротивления. Для борьбы с ними выполняют специальные канавки, по которым жидкость из запертых объёмов уходит либо в полость высокого давления, либо в полость низкого давления.

Пояснение понятия «запертый объём» в шестерённых гидромашинах с внешним зацеплением: красным и салатовым цветом указаны запертые объёмы

Область применения

Данный вид машин широко используется в системах объёмного гидропривода, в системах смазки и др. Например, гидропривод бульдозеров на базе тракторов Т-100, Т-130 и Т-180 имеет силовой шестерённый насос НШ-100.

Шестерённые насосы применяются для получения давлений до 21 МПа (при очень чистой жидкости и высокой современной точности изготовления).

Героторные насосы применяют для подачи цементной и бетонной смеси от бетономешалки до места заливки. Кроме того, героторные гидромашины используют в качестве центрального звена в некоторых дифференциалах с повышенным внутренним сопротивлением В ряде случаев требуется синхронная подача перекачиваемой (перекачиваемых) жидкости к разным точкам потребления - в этих случаях целесообразно применение многопоточных насосов с единым приводом. Преимущество состоит в том, что подачи могут быть только одновременными. Конструкция с применением многопоточных насосов получается компактнее, проще и легче.

Преимущества

  • простота конструкции;
  • высокая надёжность в сравнении, например, с аксиально-плунжерными гидромашинами;
  • низкая стоимость;
  • способность работать при высокой частоте вращения, поэтому их можно соединять непосредственно с валами тепловых или электрических двигателей;
  • высокая надежность при работе например с расплавами полимеров.

Недостатки

  • нерегулируемость рабочего объёма;
  • неспособность работать при высоких давлениях, либо высокие требования к материалам и изготовлению деталей насоса;
  • в сравнении с пластинчатыми гидромашинами - большая неравномерность подачи;
  • высокое требования к качеству изготовления шестерен и пластин, образующих корпус;
  • двукратное изменение направления движения жидкости в насосе, что снижает к.п.д.

Маркировка шестерённых гидромашин

Маркировка отечественных шестерённых насосов устанавливается в соответствии с «ГОСТ 19027-89 НАСОСЫ ШЕСТЕРЁННЫЕ. Основные параметры».

Основные технические характеристики

  • Рабочий объём, см³
  • Номинальная частота вращения, с‾¹
  • Номинальная подача, л/мин
  • Давление на выходе, номинальное и максимальное, МПа
  • Коэффициент подачи, не менее, в долях
  • Коэффициент полезного действия, не менее, в долях
  • Номинальная мощность, кВт, не более
  • Масса, кг