Теплообменник в разрезе чертеж для охлаждения. Тип присоединения труб к трубной доске: обварка


Пластинчатые теплообменники используются в системах горячего водоснабжения, кондиционирования, отопления частных домов и предприятий, в тепловых пунктах и сетях в качестве подогревателей, холодильников или конденсаторов. Теплообменники осуществляют теплопередачу между различными средами, например, пар-жидкость, пар-газ-жидкость, жидкость-жидкость, газ-газ. Передача тепла осуществляется от горячей среды (теплоносителя) к холодной.

Конструктивно теплообменники представляют собой рекуперативный теплообменник с системой гофрированных штампованных пластин, тесно прижатых друг к другу.

Типоразмеры теплообменников описаны в ГОСТ 15518-87 "Аппараты теплообменные пластинчатые. Типы, параметры и основные размеры".

Технические параметры использования пластинчатых теплообменников:

  • площадь теплообмена 1-800 м 2
  • рабочее давление - не ниже 0,002 МПа
  • температура рабочих сред - -70°С...+200°С

Принцип работы и конструкция пластинчатых теплообменников

Теплоноситель и нагреваемая среда двигаются навстречу друг другу по пластинам, стянутыми в пакет. Пластины в пакете имеют одинаковые размеры. Пластины расположены друг к другу повернутыми на 180°С. Между станянутыми пакетами с пластинами, расположенными на раме, образуются щелевые каналы. По этим каналам и происходит движение жидкостей. Таким образом и происходит чередование каналов, по которым в одну сторону движется теплоноситель, в другую - нагреваемая среда. Герметичность каналов обеспечивается за счет резиновой контурной прокладки на каждой пластине. Прокладка установлена в четыре отверстия-канавки: через две канавки происходит подвод/отвод жидкостей; два других отверстия обеспечивают смешение двух разнотемпературных жидкостей. В случае возможного прорыва канавок вытекаемая жидкость выходит через дренажные пазы.

Извилистое движение жидкостей создает турбулизацию потоков. Интенсивность теплообмена увеличивается за счет температурного напора от противотока двух разных жидкостей. Гидравлическое сопротивление при этом достаточно низкое. Образование накипи в процессе теплообмена сведено к минимуму за счет использования коррозионностойких материалов (оцинкованная сталь, титан, алюминий), обработанных методом холодной штамповки. Прокладки традиционно изготавливаются из полимеров на основе каучуков (натуральных или синтетических).

Чертеж пластинчатого теплообменника

1-неподвижная плита, 2-верхняя направляющая, 3-подвижная плита, 4-штатив, 5, 6-пакеты пластин, 7-нижняя направляющая, 8-стяжные болты

Виды пластинчатых теплообменников

Конструктивно пластинчатые теплообменники бывают двух основных видов:

  1. разборные пластинчатые теплообменники
  2. неразборные пластинчатые теплообменники (паяные, сварные)

Наиболее часто используются разборные пластинчатые теплообменники, конструкция которых описана выше.

Пластинчатые теплообменники могут изготавливаться в нескольких конструктивных исполнениях: одноходовые, двухходовые, трехходовые.

Движение потока в одноходовых, двухходовых и трехходовых теплообменниках

Преимущества пластинчатых теплообменников

  • теплопередающая поверхность составляет 99-99,8% от общей площади поверхности теплообменника
  • высокий коэффициент теплоотдачи
  • возможность многократного использования
  • простой монтаж, т.к. крепежные элементы находятся на одной стороне теплообменника
  • возможность изменения ширины и количество каналов для снижения гидравлических потерь
  • возможность увеличения поверхности теплообмена для увеличения теплоотдачи за счет установки дополнительных пластин

Среди всех разновидностей теплообменников этот вид наиболее распространен. Его применяют при работе с любыми жидкостями, газовыми средами и парообразными, в том числе, если состояние среды меняется в процессе перегона.

История появления и внедрения

Изобрели кожухотрубные (или ) теплообменники в начале прошлого века, дабы активно использовать при работе ТЭС, где большое количество нагретой воды перегонялось при повышенном давлении. В дальнейшем изобретение стали использовать при создании испарителей и нагревающих конструкций. С годами устройство кожухотрубного теплообменника совершенствовалось, конструкция стала менее громоздкой, ее теперь разрабатывают так, чтобы было доступно чистить отдельные элементы. Чаще стали применять подобные системы в нефтеперегонной промышленности и производстве бытовой химии, поскольку продукты этих отраслей несут в себе массу примесей. Их осадок как раз и требует периодической чистки внутренних стенок теплообменника.

Как мы видим на представленной схеме, кожухотрубный теплообменник состоит из пучка трубок, которые расположены в своей камере и закреплены на доске либо решетке. Кожух – собственно, название всей камеры, сваренной из листа не менее 4 мм (или больше, в зависимости от свойств рабочей среды), в которой находятся мелкие трубки и доска. В качестве материала для доски используют обыкновенно листовую сталь. Между собой трубки соединяются патрубками, имеются также вход и выход в камеру, отвод для конденсата, перегородки.

В зависимости от количества труб и их диаметра, колеблется мощность теплообменника. Так, если передающая тепло поверхность составляет около 9 000 кв. м., мощность теплообменника составит 150 МВт, это пример работы паровой турбины.

Устройство кожухотрубного теплообменника подразумевает соединение сварных труб с доской и крышками, которое может быть разным, равно как и изгиб кожуха (в виде буквы U или W). Ниже представлены типы устройств, наиболее часто встречающиеся на практике.

Еще одной особенностью устройства является расстояние между трубами, которое в 2-3 раза должно превышать их сечение. Благодаря чему коэффициент отдачи тепла является небольшим, и это способствует эффективности всего теплообменника.

Исходя из названия, теплообменник – это устройство, создаваемое с целью передать вырабатываемое тепло на нагреваемый предмет. Теплоносителем в данном случае выступает конструкция, описанная выше. Работа кожухотрубного теплообменника заключается в том, что холодная и горячая рабочие среды двигаются по разным кожухам, и теплообмен происходит в пространстве между ними.

Рабочей средой внутри труб является жидкость, в то время как горячий пар проходит в расстоянии между труб, образуя конденсат. Поскольку стенки труб нагреваются больше, чем доска, к которой они прикреплены, эту разность необходимо компенсировать, иначе бы устройство имело значительные потери тепла. Для этого применяются так называемые компенсаторы трех типов: линзы, сальники или сильфоны.

Также, при работе с жидкостью под высоким давлением используют однокамерные теплообменники. Они имеют изгиб U, W-образного типа, необходимое чтобы избежать высоких напряжений в стали, вызываемых тепловым удлинением. Их производство достаточно дорогое, трубы в случае ремонта сложно заменить. Поэтому такие теплообменники пользуются меньшим спросом на рынке.

В зависимости от способа крепления труб к доске или решетке, выделяют:

  • Приваренные трубы;
  • Закрепленные в развальцованных нишах;
  • Соединенные болтами с фланцем;
  • Запаянные;
  • Имеющие сальники в конструкции крепежа.

По типу конструкции кожухотрубные теплообменники бывают (см. рисунок-схему выше):

  • Жесткие (буквы на рис. а, к), нежесткие (г, д, е, з, и) и наполовину жесткие (буквы на рис. б, в и ж);
  • По количеству ходов – одно- или многоходовые;
  • По направлению тока технической жидкости – прямого, поперечного или против направленного тока;
  • По расположению доски горизонтальные, вертикальные и расположенные в наклонной плоскости.

Широкие возможности кожухотрубного теплообменника

  1. Давление в трубках может достигать разных значений, от вакуума до наивысших;
  2. Можно достичь необходимого условия по термическим напряжениям, при этом цена устройства существенно не поменяется;
  3. Размеры системы тоже могут быть различными: от бытового теплообменника в ванную комнату до промышленного площадью 5000 кв. м.;
  4. Нет необходимости предварительно очищать рабочую среду;
  5. Для создания сердцевины используют разные материалы, в зависимости от затрат на производство. Однако все они соответствуют требованиям температуры, давления и устойчивости к коррозии;
  6. Отдельный участок труб можно извлечь для чистки или ремонта.

Есть ли у конструкции недостатки? Не без них: кожухотрубчатый теплообменник весьма громоздкий. Из-за своих габаритов он нередко требует отдельного технического помещения. Ввиду большой металлоемкости стоимость изготовления такого устройства тоже велика.

В сравнении с теплообменниками U, W-трубчатыми и с неподвижными трубками кожухотрубные имеют больше преимуществ и являются эффективнее. Поэтому их чаще покупают, несмотря на высокую стоимость. С другой стороны, самостоятельное изготовление подобной системы вызовет большие трудности, а скорее всего, приведет к значительным потерям тепла в процессе работы.

Особое внимание при эксплуатации теплообменника следует уделять состоянию труб, а также настройке в зависимости от конденсата. Любое вмешательство в систему приводит к изменению площади теплообмена, поэтому ремонт и пуско-наладку должны производить обученные специалисты.

Вас может заинтересовать:

    Для управления потоками жидкостей и газов в трубопроводных системах, их линий и участков используются специальные устройства, называемые запорно-регулирующей арматурой. Данный вид трубопроводной арматуры предназначен для полного перекрытия или регулировки напора потока среды, управлением других технологический процессов, к которым относят: давление жидкости; напор; температуру; объем транспортируемого вещества. Для...

    В зависимости от способа эксплуатации, готовые металлические изделия могут трансформироваться, разбираться или иметь стационарную конструкцию. Используемые методы изготовления металлоконструкций зависят от особенностей объекта, на котором они будут эксплуатироваться. К примеру, для быстровозводимых сооружений обычно используются легкие металлоконструкции, каркас зданий практически любых типов состоит из упрочненного...

    Резервуары различной емкости для размещения газов и газовых смесей получили названия газгольдеры. В них закачивается для хранения природный, нефтяной сжиженный газ и другие виды газов и смесей. Они являются важнейшей частью автономной системы снабжения газом частных домов, коттеджей. Рис.1. Газгольдер подземный для питания газовых приборов и агрегатов. Функции, выполняемые...

    Руководство нефтедобывающего предприятия «Томскнефть» приняло решение о применении беспилотных летательных аппаратов, созданных специалистами компании ZALA AERO (г. Ижевск), являющейся лидером в данной отрасли. Этот вариант был признан лучшим для получения возможности качественного контроля подведомственных объектов нефтегазодобычи и трасс трубопроводов. Эти сведения были получены от начальника управления по эксплуатации...

Сегодня в рамках рубрики теория производства пойдет речь о технологических схемах и чертежах теплообменников . Для этого мы подробно рассмотрим изображения тех аппаратов, которыми занимается наше предприятие. Я думаю, что очень важно знать, как должно правильно выполняться отображение того или иного аппарата и что должно быть указано рядом, помимо стандартного описания. А это могут быть технические характеристики, особенности конкретной модели и т.д.

Все зависит от назначение изображения. Поэтому и идет такое разделение названий. Одни нужны для изготовления, поэтому и отображают геометрические и присоединительные размеры, характеристики, марки сталей металлопроката. Другие изображения показывают, а какие же процессы протекают внутри этих устройств и наконец есть такие, какие показывают общее расположение всех элементов входящих в систему и направления протекающих процессов.

Поэтому для начала можно ознакомиться с производимыми теплообменными аппаратами . В этой статье находится список устройств предлагаемых к изготовлению. И далее пройдя в интересующую позицию можно посмотреть на их внешний вид, описание протекающих процессов, увидеть технические характеристики и далее переходить непосредственно к самим схемам, которые разберем в этой статье. В основном наше предприятие производит корпусные тепловые обменники и кожухотрубные, которые иногда еще называют кожухотрубчатые, что по сути одно и то же, поэтому я вам их и покажу.

Сборочные чертежи корпусных теплообменников

Сборочные чертежи теплообменников общего вида выполняются, как стандартно, так и с учетом требований заказчика, т.е. возможна корректировка некоторых размеров. Особенно это касается присоединительных размеров, крепежа, фланцев и так далее не затрагивая самих теплообменных элементов, в данном случае длины теплообменных труб , т.к. это уже влияет на выдаваемую тепловую мощность и соответственно не подлежит изменению.

И так к аппаратам корпусного типа относятся промышленные воздухоохладители электромашин типа во-воп-вуп-вб-ввг , газоохладители турбогенераторов го-огп-огпф и аппараты воздушного охлаждения масла . С них и начнем.

Охладитель воздуха во-194

Т.к. охладитель может изготавливаться с различным расположением фланцев, то даны два этих варианта для боле полного ознакомления. Щелкнув по фото можно несколько увеличить изображение.

Если вы уже увеличили картинку, то пройдя по первой ссылке 1. посмотрите полноразмерное изображение, а пройдя по ссылке 2. почитайте подробное описание.

Так как мы рассматриваем два принципиально разных вида: это корпусные и кожухотрубные, то укажу на их отличие. Первые делаются с открытым корпусом, так идет процесс теплообмена с окружающей средой вода-воздух, а вторые с полностью герметичным корпусом и теплообмен идет только между двумя теплоносителями циркулирующими внутри кожуха.

Газоохладитель го-136

Газовый охладитель представляет аналогичную конструкцию воздушным охладителям. Их отличие лишь в том, что в качестве теплоносителя у первых используется воздух, а у вторых газ- водород, для организации водородно-жидкостного охлаждения турбогенераторов.

Здесь так же можно посмотреть на большое изображение кликнув по первой ссылке или по следующей и почитать описание устройства и работы газоохладителей.

Маслоохладитель дц-180

Представляет из себя такую же конструкцию, как и воздухоохладители или газоохладители, состоящую из похожих элементов и металлопроката для изготовления, но служит для воздушного охлаждения масла трансформаторов, в основном устанавливаемых на улице где нет возможности организовать другой вид охлаждения. Отличаются от вышеописанных тем, что нагретая среда движется внутри теплообменных трубок, а охлаждающий воздух нагнетается на оребрение труб вентиляторами и уносит теплоту в окружающее пространство, тем самым охлаждая проходящее через охладитель масло, которое далее возвращается в трансформатор для охлаждения его обмоток. В отличии от кужухотрубных имеет открытый корпус для свободного прохождения охлаждающего воздуха.


Скачать чертежи теплообменников большого формата можно по ссылкам: во , го , дц . Здесь даны конкретные модели в соответствии со своим номером для ознакомления с тем, какие бывают виды чертежей теплообменников . Аппараты других тепловых мощностей соответственно отличаются размерами, вариантами подключения и используемого для изготовления металопроката, как листового, так и трубного. Их настолько много, что все разместить на одном сайте практически не реально. К тому же кроме стандартных моделей есть и индивидуальные разработки под запросы конкретного заказчика. Поэтому конкретное отображение модели передается вместе с готовым теплообменным аппаратом непосредственно заказчику.

Для всех вышеописанных охладителей основным теплообменным элементом является биметаллическая оребренная труба , где оребрение алюминий в основном ад1, а несущая трубка в зависимости от воды делается из латуни л96 или л68, нержавейки 12х18н10т или медно-никелового сплава мнж5-1.

На этом закачиваем рассмотрение данного типа аппаратов и переходим к совершенно другого вида и соответственно наружного и внутреннего устройства. Если первые попадают под классификацию запчастей и элементов к электрическим машинам и турбинам, то нижеследующие уже классифицируются уже, как сосуды работающие под давлением, к которым предъявляются очень жесткие и серьезные требования.

Сборочные чертежи кожухотрубных теплообменников

Возьмем для наглядного примера модернизированный маслоохладитель мб модели 63-90 , относящийся к кожухотрубным.


Для просмотра полного изображения оригинального формата нажмите на иконку и перейдите по ссылке 1. Здесь же можно ознакомиться и с описанием самого аппарата, для этого пройдите по пункту номер 2.

Указанный охладитель масла наилучшим образом подходит для того, чтобы рассмотреть во всех подробностях, конечно на увеличенном варианте, как должен выглядеть правильный чертеж кожухотрубного теплообменника мб-63-90-м . Расскажу о правильности оформления изображений. Все чертится, как и положено по ГОСТу, показываются нужные виды и размеры, но кроме этого должны быть указаны технические характеристики, металлопрокат примененный при изготовлении и те особенности, которые отличают данный аппарат от аналогичных, но других производителей. На наших допустим указывается профиль и размеры профилированных теплообменных трубок нашей разработки, об хороших особенностях применения которых можно почитать в этом материале . Там же можно посмотреть и как она выглядит. Она изготавливается из тонкостенной нержавеющей трубки марки стали 12Х18Н10Т, что положительно влияет на технико-эксплуатационные характеристики всего устройства.

Обязательно должны быть указаны материалы из которых изготавливается основные узлы, листовой металлопрокат корпуса и водяных камер и марка стали трубы. Допустим в приведенном примере должна быть и указана марка листового проката для корпуса, это углеродистая сталь ст3сп. Оговорюсь маленько почему листовой метлопрокат применяется для корпуса и камер, ведь охладитель, то кожухотрубный и предполагается, что для него применяют трубу, а не лист, а потому, что точность изготовления окружности при изготовлении из листового металла получается гораздо выше, чем у готовых труб. Идем далее, так же указан и материал трубок, на приведенном примере это латунь марки ло-70 (в соответствии с требованиями заказчика), но в основном для производства маслоохладителей мы применяем нержавейку 12х18н10т или 08х18н10т, почему говорил несколько . Подбор металлопроката очень важен, как листового, так и трубного т.к. выбор его зависит от рабочих условий всего аппарата и соответственно привязывается к конкретной модели. Это уже относится к пб 03 576 03 правилам устройства и безопасности сосудов работающих под давлением и к пб 03 584 03 правила проектирования, изготовления и приемки сосудов и аппаратов стальных сварных. Пб 03 576 03 можно скачать , а пб 03 584 03 .

Дополнительно мы указываем в дополнительном описании кроме стандартных моментов те, которые важны покупателям и заказчикам. Например вы можете заметить на чертеже надпись: Для защиты от коррозии внутренние поверхности водяных камер и перегородок в них покрыть композиционным материалом surface protector d. Хотя это наш бонус, данная эмаль увеличивает срок службы устройства и снижает коррозию металла, но указать мы это обязаны.

Более подробно об устройстве теплообменников и применяемого при производстве металлопроката, можно будет основательно ознакомиться в следующих статьях. А так, как мы все рассмотрели, что должно быть отражено, то перейдем еще к одному виду теплообменных устройств. Скачать чертеж кожухотрубчатого теплообменника мб-63-90-м можно . Кстати дополнительно укажу, что этот мб и вся эта серия относится к аппаратам вертикального типа и является четырехходовым по трубному пространству в котором движется вода. Идем дальше.

Чертежи теплообменников типа труба в трубе

Аппараты относятся к типу вышеописанным т.е. к кожухотрубным, но имеют более простую конструкцию. Отличаются тем, что во-первых назначение совершенно разное, их применяют для охлаждения или нагрева каких-либо технологических жидкостей, а применяют трубы гораздо более большого диаметра. Но это не тема сегодняшнего разговора. Вы может подробно о них почитать в статье основные параметры теплообменников типа труба в трубе . Наша задача сегодня ознакомиться с правильными графическим изображениями и их особенностями.

Покажу на примере ттон.

Указываются основные размеры теплообменников и идентификатор по номеру. Например условное обозначение выглядит так: ттон-1-25/57-6 3-4.0-г-3-м3 однопоточный неразборный ттон с приварными двойниками (исполнение 1), с диаметром труб теплообменных 25 мм, а кожуховых 57 мм, с условным давлением внутри теплообменных труб 6.3 Мпа, в кожухе 4 Мпа, трубы теплообменные гладкие (Г) длиной 3000 мм, м3 - это указывает на то, из какого металлопроката, из каких марок стали изготавливается данная модель. Если быть поточней, то для м3 применяют нержавейку 12Х18Н10Т и 08Х18Н10Т по ГОСТ 5632 и ГОСТ 9941.

Если необходимо скачать полный чертеж кожухотрубного теплообменника труба в трубе перейдите по ссылке на страницу , выберите изображение и сохраните себе на компьютер. И идем дальше.

Схемы подвода, движения и вывода теплоносителей в теплообменниках типа во, го, дц и кожухотрубных


Схемы движения теплоносителей в теплообменниках типа во можно посмотреть и ознакомиться с подробным описанием протекающих процессов, а направления движения тепловых носителей в кожухотрубных посмотрим ниже и поговорим об этом.


И так, начинаем. Нагретое масло заходит в маслоохладитель, в верхнюю его часть через патрубки (подробней можно посмотреть в материале об устройстве кожухотрубных теплообменников), и спускается постепенно вниз по заданной спирально-кольцевой траектории, совершая определенной число ходов, например в модели мб-63-90-м их 17, зависит от конкретной модели. Масло движется в межтрубном пространстве.

Снизу аппарата подается охлаждающая вода через левый патрубок, видно на рисунке, в водяную камеру и далее направляется в внутрь части теплообменных труб и по ним поднимается наверх, начиная охлаждать масло. Это один ход воды. Дойдя до верхней водяной камеры вода попадает в следующую группу трубок и стекает вниз, завершая второй ход. Далее так же поднимается наверх, спускается вниз, завершая четвертый ход и выходит наружу, в магистраль трубопровода через правый патрубок. В нашем примере четырехходовой кожухотрубчатый теплообменник типа мб.

В результате охлажденное до нужной температуры масло подается в систему маслоснабжения или смазки подшипников турбины.

сделай свой твит зафоловь

В зависимости от способа передачи тепла различают две основные группы теплообменников:

1) поверхностные теплообменники, в которых пе­ренос тепла между обменивающимися теплом средами происходит через разделяющую их поверхность теплообмена - глухую стенку;

2) теплообменники смешения, в которых тепло пере­дается от одной среды к другой при их непосредственном соприкоснове­нии.

Значительно реже применяются в химической промышленности регенеративные теплообменники, в которых нагрев жид­ких сред происходит за счет их соприкосновения с ранее нагретыми твер­дыми телами - насадкой, заполняющей аппарат, периодически нагре­ваемой другим теплоносителем.

Поверхностные теплообменники наиболее распространены, и их конст­рукции весьма разнообразны. Ниже рассмотрены типовые, в основном нормализованные, конструкции поверхностных теплообменников и рас­пространенные конденсаторы смешения.

В химической технологии применяются теплообменники, изготовлен­ные из самых различных металлов (углеродистых и легированных сталей, меди, титана, тантала и др.), а также из неметаллических материалов, например графита, тефлона и др. Выбор материала диктуется в основном его коррозионной стойкостью и теплопроводностью, причем конструкция теплообменного аппарата существенно зависит от свойств выбранного материала.

Конструкции теплообменников должны отличаться простотой, удоб­ством монтажа и ремонта. В ряде случаев конструкция теплообменника должна обеспечивать возможно меньшее загрязнение поверхности тепло­обмена и быть легко доступной для осмотра и очистки.

Трубчатые теплообменники

Кожухотрубчатые теплообменники. Эти теплообменники относятся к числу наиболее часто применяемых поверхностных теплообменников. На рис. VШ-11 а показан кожухотрубчатый теплообменник жесткой конструкции, который состоит из корпуса, или кожуха 1, и приваренных к нему трубных решеток 2. В трубных решетках закреплен пучок труб 3. К трубным решеткам крепятся (на прокладках и болтах) крышки 4.

В кожухотрубчатом теплообменнике одна из обменивающихся теплом сред I движется внутри труб (в трубном пространстве), а другая II - в межтрубном пространстве.

Среды обычно направляют противотоком друг к другу. При этом нагреваемую среду направляют снизу вверх, а среду, отдающую тепло, - в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремится двигаться данная среда под влиянием изменения ее плотности при нагревании или ох­лаждении.

Кроме того, при указанных на­правлениях движения сред достигается более равномерное распределе­ние скоростей и идентичные условия теплообмена по площади поперечно­го сечения аппарата. В противном случае, например при подаче более холодной (нагреваемой) среды свер­ху теплообменника, более нагретая часть жидкости, как более легкая, может скапливаться в верхней ча­сти аппарата, образуя «застойные» зоны.

Трубы в решетках обычно равномер­но размешают по периметрам правильных шестиугольников, т. е. по вершинам рав­носторонних треугольников (рис VIII-12,а), реже применяют размещение труб по кон­центрическим окружностям (рисVIII-12,б).

В отдельных случаях, когда необходимо обеспечить удобную очистку наружной по­верхности труб, их размещают по периметрам прямоугольников (рис. VIII-12, в). Все указанные способы размещения труб преследуют одну цель - обеспечить воз­можно более компактное размещение необходимой поверхности теплообмена внутри аппарата. В большинстве случаев наибольшая компактность достигается при разме­щении трубок по периметрам правильных шестиугольников.

Рис. VIII -12. Способы размещения труб в теплообменниках:

а - по периметрам правильных шестиугольников; б - по концентрическим окружностям;

в - по периметрам прямоугольников (коридорное распо­ложение)

Трубы закрепляют в решетках чаще всего развальцовкой (рис. VIII -13, а, б), причем особенно прочное соединение (необходимое в случае работы аппарата при повышенных давлениях) достигается при устройстве в трубных решетках отверстий с кольцевыми канавками, которые заполняются металлом трубы в процессе ее раз­вальцовки (рис. VIII -13, б). Кроме того, используют закрепление труб сваркой (рис. VIII -13, в), если материал трубы не поддается вытяжке и допустимо жесткое соединение труб с трубной решеткой, а также пайкой (рис. VIII -13, г), применяемой для соединения главным образом медных и латунных труб. Изредка используют соеди­нение труб с решеткой посредством сальников (рис. VIII -13, д), допускающих свобод­ное продольное перемещение труб и возможность их быстрой замены. Такое соедине­ние позволяет значительно уменьшить температурную деформацию труб (см. ниже), но является сложным, дорогим и недостаточно надежным.

Теплообменник, изображенный на рис. VIII-11, а, является одноходовым. При сравнительно небольших расходах жидкости скорость ее движения в трубах таких теплообменников низка и, следовательно, коэф­фициенты теплоотдачи невелики. Для увеличения последних при данной поверхности теплообмена можно уменьшить диаметр труб, соответственно увеличив их высоту (длину). Однако теплообменники небольшого диаметра и значительной высоты неудобны для монтажа, требуют высоких помещений и повышенного расхода металла на изготовление деталей, не участвующих непосредственно в теплообмене (кожух аппарата). Поэтому более рационально увеличивать скорость теплообмена путем применения многоходо­вых теплообменников.

В многоходовом теплообменнике (рис. VIII-11, б ) корпус 1, трубные решетки 2, укрепленные в них трубы 3 и крышки 4 идентичны изображенным на рис. VIII-11, а. С помощью поперечных перегородок 5, установленных в крышках теплооб­менника, трубы разделены на сек­ции, или ходы, по которым последо­вательно движется жидкость, про­текающая в трубном пространстве теплообменника. Обычно разбивку на ходы производят таким образом, чтобы во всех секциях находилось примерно одинаковое число труб.

Вследствие меньшей площади сум­марного поперечного сечения труб, размещенных в одной секции, по сравнению с поперечным сечением всего пучка труб, скорость жид­кости в трубном пространстве много­ходового теплообменника возраста­ет (по отношению к скорости в одноходовом теплообменнике) в чис­ло раз, равное числу ходов. Так, в четырехходовом теплообменнике (рис. VIII-11, б) скорость в трубах при прочих равных условиях в че­тыре раза больше, чем в однохо­довом. Для увеличения скорости и удлинения пути движения среды в межтрубном пространстве (рис. VIII-11, б) служат сегментные перегородки 6. В горизонтальных теплообменниках эти перегородки являются одновременно промежуточ­ными опорами для пучка труб.

Повышение интенсивности теплообмена в многоходовых теплообменни­ках сопровождается возрастанием гидравлического сопротивления и усложнением конструкции теплообменника. Это диктует выбор экономи­чески целесообразной скорости, определяемой числом ходов теплообмен­ника, которое обычно не превышает 5-6. Многоходовые теплообменники работают по принципу смешанного тока, что, как известно, приводит к некоторому снижению движущей силы теплопередачи по срав­нению с чисто противоточным движением участвующих в теплообмене сред. В одноходовых и особенно в многоходовых теплообменниках теплообмен может ухудшаться вследствие выделения растворенных в жидкости (или паре) воздуха и других неконденсирующихся газов. Для их периодиче­ского удаления в верхней части кожуха теплообменников устанавливают продувочные краники.

Одноходовые и многоходовые теплообменники могут быть вертикаль­ными или горизонтальными. Вертикальные теплообменники более просты в эксплуатации и занимают меньшую производственную площадь. Гори­зонтальные теплообменники изготавливаются обычно многоходовыми и работают при больших скоростях участвующих в теплообмене сред для того, чтобы свести к минимуму расслоение жидкостей вследствие разности их температур и плотностей, а также устранить образование застойных зон.

Если средняя разность температур труб и кожуха в теплообменниках жесткой конструкции, т. е. с неподвижными, приваренными к корпусу трубными решетками, становятся значительными (приблизительно равной или большей 50 °С), то трубы и кожух удлиняются неодинаково. Это вызывает значительные напряжения в трубных

Рис. VIII-14. Кожухотрубчатые теплообменники с компенсирующими

устройствами:

а - с линзовым компенсатором; б - с плавающей головкой; в - с U-образными трубами;

1 - компенсатор; 2 - подвижная трубная решетка; 3 - U-образные трубы.

решетках, может нарушить плотность соединения труб с решетками, привести к разрушению свар­ных швов, недопустимому смешению обменивающихся теплом сред. По­этому при разностях температур труб и кожуха, больших 50°С, или при значительной длине труб применяют кожухотрубчатые теплообменники нежесткой конструкции, допускающей некоторое перемещение труб от­носительно кожуха аппарата.

Для уменьшения температурных деформаций, обусловленных большой разностью температур труб и кожуха, значительной длиной труб, а так­же различием материала труб и кожуха, используют кожухотрубчатые теплообменники с ллл з овы м- компенсатором (рис. VIII-14, а), у которых на корпусе имеется линзовый компенсатор 1, подвергающийся упругой деформации. Такая конструкция отличается простотой, но при­менима при небольших избыточных давлениях в межтрубном пространстве, обычно не превышающих 6·10 6 Н/м 2 (6 ат).

При необходимости обеспечения больших перемещений труб и кожуха используют теплообменник с плавающей головкой (рис. VIII-14, б). Нижняя трубная решетка 2 является подвижной, что позволяет всему пучку труб свободно перемещаться независимо от кор­пуса аппарата. Этим предотвращаются опасная температурная деформа­ция труб и нарушение плотности их соединения с трубными решетками. Однако компенсация температурных удлинений достигается в данном случае за счет усложнения и утяжеления конструкции теплообменника.

В кожухотрубчатом теплообменнике с U-образными трубами (рис. VIII-14, в) сами трубы 3 выполняют функцию компенсирующих устройств. При этом упрощается и облегчается конструкция аппарата, имеющего лишь одну неподвижную трубную решетку. Наружная поверх­ность труб может быть легко очищена при выемке всей трубчатки из кор­пуса аппарата. Кроме того, в теплообменниках такой конструкции, яв­ляющихся двух- или многоходовыми, достигается довольно интенсивный теплообмен. Недостатки теплообменников с U-образными трубами: труд­ность очистки внутренней поверхности труб, сложность размещения большого числа труб в трубной решетке.

Стальные кожухотрубчатые теплообменники стандартизованы по ГОСТ 9929-67.

В химической промышленности применяются также теплообменники с двойными трубами (рис.VIII-15). С одной стороны аппарата размещены две трубные решетки, причем в решетке 1 закреплен пу­чок труб 2 меньшего диаметра, от­крытых с обоих концов, а в решет­ке 3 - трубы 4 большего диаметра с закрытыми левыми концами, уста­новленные концентрически относи­тельно труб 2. Среда I движется по кольцевым пространствам между тру­бами 2 и 4 и выводится из межтруб­ного, пространства теплообменника по трубам 2. Другая среда II дви­жется сверху вниз по межтрубно­му пространству корпуса тепло­обменника, омывая трубы 4 снаружи. В теплообменниках такой кон­струкции трубы могут удлиняться под действием температуры независи­мо от корпуса теплообменника.

Элементные теплообменники. Для повышения скорости движения среды в межтрубном пространстве без применения перегородок, затруд­няющих очистку аппарата, используют элементные теплооб­менники. Каждый элемент такого теплообменника представляет со­бой простейший кожухотрубчатый теплообменник. Нагреваемая и охлаж­даемая среды последовательно проходят через отдельные элементы, со­стоящие из пучка труб в кожухе небольшого диаметра. Теплообменник, состоящий из таких элементов (ходов), допускает значительные избыточ­ные давления в межтрубном пространстве; его можно рассматривать как модификацию многоходового кожухотрубчатого теплообменника.

В элементных теплообменниках взаимное движение сред приближается к эффективной схеме чистого противотока. Однако вследствие разделения общей поверхности теплообмена на отдельные элементы конструкция ста­новится более громоздкой и стоимость теплообменника возрастает.

Двухтрубчатые теплообменники. Теплообменники этой конструкции, называемые также теплообменниками типа «труба в трубе», состоят из нескольких последовательно соединенных трубчатых элементов, образо­ванных двумя концентрически расположенными трубами (рис. VIII-16). Один теплоноситель движется по внутренним трубам 1 , а другой - по кольцевому зазору между внутренними 1 и наружными 2 трубами. Вну­тренние трубы (обычно диаметром 57-108 мм) соединяются калачами 3, а наружные трубы, имеющие диаметр 76-159 мм, -патрубками 4.

Рис. VIII-16. Двухтрубчатый теплообменник: 1 - внутренние трубы;

2 - наружные трубы; 3 - калач; 4 - патрубок.

Благодаря небольшим поперечным сечениям трубного и межтрубного пространства в двухтрубчатых теплообменниках даже при небольших расходах достигаются довольно высокие скорости жидкости, равные обычно 1-1,5 м/сек. Это позволяет получать более высокие коэффициенты тепло­передачи и достигать более высоких тепловых нагрузок на единицу массы аппарата, чем в кожухотрубчатых теплообменниках. Кроме того, с уве­личением скоростей теплоносителей уменьшается возможность отложения загрязнений на поверхности теплообмена.

Вместе с тем эти теплообменники более громоздки, чем кожухотрубчатые, и требуют большего расхода металла на единицу поверхности тепло­обмена, которая в аппаратах такого типа образуется только внутренними трубами.

Двухтрубчатые теплообменники могут эффективно работать при не­больших расходах теплоносителей, а также при высоких давлениях.

Если требуется большая поверхность теплообмена, то эти аппараты выполняют из нескольких параллельных секций.

Чертежи теплообменников в Компасе

На этой странице Вы можете скачать чертежи в программе Компас различных теплообменников за символичекую сумму или

Вы можете прислать свой чертеж. Он будет размещен на нашем сайте. Тем самым Вы окажите неоценимую услугу следующему поколению студентов.

Публикуются только качественные чертежи. Предпочтение отдается чертежам в 3D.

Скачать комплект чертежей пластинчатого теплообменника в 3d с деталировкой всего за 100 рублей.

Скачать комплект чертежей горизонтального теплообменника в 3d.

3D модель отправляется с историей построения, что позволяет самостоятельно менять значения размеров 3д сборки.

Скачать комплект чертежей горизонтального теплообменника охладителя с деталировкой.

____________________________

Скачать чертеж теплообменник подогреватель.



____________________________

Скачать чертеж теплообменник подогреватель вторичным паром.



____________________________

Скачать чертеж теплообменник испаритель в производстве вторичного пара.



____________________________

Скачать чертеж теплообменник подогреватель питательной воды.



____________________________

Скачать чертеж теплообменник кипятильник отпарной колонны.



____________________________

Скачать чертеж теплообменник подогреватель сетевой воды.



____________________________

Скачать чертеж теплообменник пароперегреватель.



____________________________

Скачать чертеж водяной экономайзер.



____________________________

Скачать чертеж паровой котел с деталировкой.



____________________________

Скачать чертеж подогреватель азотной кислоты.



____________________________

Скачать чертеж рекуператор с деталировкой.



____________________________

Скачать чертеж рекуператор в производстве высших алифатических аминов с деталировкой.



____________________________

Скачать чертеж теплообменник охладитель жидкого аммиака.



____________________________

Скачать чертеж теплообменник охладитель аминов в производстве высщих алифатических аминов.



В зависимости от способа передачи тепла различают две основные группы теплообменников :

  • - Поверхностные теплообменники, в которых перенос тепла между обменивающимися теплом средами происходит через разделяющую их поверхность теплообмена - глухую стенку;
  • - Теплообменники смешения, в которых тепло передается от одной среды к другой при их непосредственном соприкосновении.

Значительно реже применяются регенеративные теплообменники, в которых нагрев жидких сред происходит за счет их соприкосновения с ранее нагретыми твердыми телами - насадкой, заполняющей аппарат, периодически нагреваемой другим теплоносителем.

Конструкция теплообменников должна отличаться простотой, удобством монтажа и ремонта. В ряде случаев конструкция теплообменника должна обеспечивать возможно меньшее загрязнение поверхности теплообмена и быть легко доступной для осмотра и очистки.

Перенос энергии в форме тепла, происходящий между телами, имеющими различную температуру, называется теплообменом.

Движущей силой любого процесса теплообмена является разность температур более нагретого и менее нагретого тел, при наличии которой тепло самопроизвольно, в соответствии со вторым законом термодинамики, переходит от более нагретому к менее нагретому телу.

Тела, участвующие в теплообмене, называются теплоносителями.

Где скачать чертежи теплообменника

  • Поисковый запрос: чертеж теплообменника в Перми - позволит Вам скачать его в Перми и Пермском крае например для Пермского национального исследовательского политехнического университета.
  • Поисковый запрос: чертеж теплообменного аппарта в Казани - позволит Вам скачать его в Казани, скажем для технических специальностей Казанского национального исследовательского университета.
  • Поисковый запрос: чертеж теплообменника в Омске - позволит Вам скачать его в для Омского государственного технического университета.

Кожухотрубчатые теплообменники

Эти теплообменники относятся к числу наиболее часто применяемых поверхностных теплообменников. кожухотрубчатый теплообменник жесткой конструкции, который состоят из корпуса, или кожуха 1, и приваренных к нему трубных решеток 2. В трубных решетках закреплен пучок труб 3. К трубным решеткам крепятся (на прокладках и болтах) крышки 4.

В кожухотрубчатом теплообменнике одна из обменивающихся теплом сред движется внутри труб (в трубном пространстве), а другая - в межтрубном пространстве.

Среды обычно направляют противотоком друг к другу. При этом нагреваемую среду направляют снизу вверх, а среду, отдающую тепло, - в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремиться двигаться данная среда под влиянием изменения ее плотности при нагревании или охлаждении.

Кроме того, при указанных направлениях движения сред достигается более равномерное распределение скоростей и идентичные условия теплообмена по площади поперечного сечения аппарата. В противном случае, например при подаче более холодной (нагреваемой) среды сверху теплообменника, более нагретая часть жидкости, как более легкая, может скапливаться в верхней части аппарата, образуя «застойные» зоны.

При сравнительно небольших расходах жидкости скорость ее движения в трубах низка, и, следовательно, коэффициенты теплоотдачи невелики. Для увеличения последних при данной поверхности теплообмена можно уменьшить диаметр труб, соответственно увеличив их высоту (длину). Однако теплообменники небольшого диаметра и значительной высоты неудобны для монтажа, требуют высоких помещений и повышенного расхода металла на изготовление деталей, не участвующих непосредственно в теплообмене (кожух аппарата). Поэтому более рационально увеличивать скорость теплообмена путем применения многоходовых теплообменников.

В многоходовом теплообменнике корпус 1, трубные решетки 2, укрепленные в них трубы 3 и крышки 4 такие же, как и в одноходовом теплообменнике С помощью поперечных перегородок 5, установленных в крышках теплообменника, трубы разделены на секции, или ходы, по которым последовательно движется жидкость, протекающая в трубном пространстве теплообменника. Обычно разбивку на ходы производят таким образом, чтобы во всех секциях находилось примерно одинаковое число труб.

Вследствие меньшей площади суммарного поперечного сечения труб, размещенных в одной секции, по сравнению с поперечным сечением всего пучка труб, скорость жидкости в трубном пространстве многоходового теплообменника возрастает (по отношению к скорости в одноходовом теплообменнике) в число раз, равное числу ходов. Так, в четырехходовом теплообменнике скорость в трубах при прочих равных условиях в четыре раза больше, чем в одноходовом. Для увеличения скорости и удлинения пути движения среды в межтрубном пространстве служат сегментные перегородки 6. В горизонтальных теплообменниках эти перегородки являются одновременно промежуточными опорами для пучка труб.

Повышение интенсивности теплообмена в многоходовых теплообменниках сопровождается возрастанием гидравлического сопротивления и усложнением конструкции теплообменника. Это диктует выбор экономически целесообразной скорости, определяемой числом ходов теплообменника, которое обычно не превышает 5-6. Многоходовые теплообменники работают по принципу смешанного тока, что, как известно, приводит к некоторому снижению движущей силы теплопередачи по сравнению с чисто противоточным движением участвующих в теплообмене сред.

В одноходовых и особенно в многоходовых теплообменниках теплообмен может ухудшаться вследствие выделения растворенных в жидкости (или паре) воздуха и других неконденсирующихся газов. Для их периодического удаления в верхней части кожуха теплообменников устанавливают продувочные краники.

Одноходовые и многоходовые теплообменники могут быть вертикальными и горизонтальными. Вертикальные теплообменники более просты в эксплуатации и занимают меньшую производительную площадь. Горизонтальные теплообменники изготавливаются обычно многоходовыми и работают при больших скоростях участвующих в теплообмене сред для того, чтобы свести к минимуму расслоение жидкостей вследствие разности их температур и плотностей, а также устранить образование застойных зон.

Если средняя разность температур труб и кожуха в теплообменниках жесткой конструкции, т.е. с неподвижными, приваренными к корпусу трубными решетками, становиться значительной, то трубы и кожух удлиняют неодинаково. Это вызывает значительные напряжения в трубных решетках, может нарушить плотность соединения труб с решетками, привести к разрушению сварных швов, недопустимому смешению обменивающихся теплом сред. Поэтому при разностях температур кожуха и труб, больших 500С, или при значительной длине труб применяют кожухотрубчатые теплообменники нежесткой конструкции, допускающей некоторое перемещение труб относительно корпуса аппарата.

Для уменьшения температурных деформаций, обусловленных большой разностью температур труб и кожуха, значительной длиной труб, а также различием материала труб и кожуха, используют кожухотрубчатые теплообменники с линзовым компенсатором у которых на корпусе имеется линзовый компенсатор 1, подвергающийся упругой деформации. Такая конструкция отличается простотой, но применима при небольших избыточных давлениях в межтрубном пространстве (6 атм).

Скачать чертеж Кожухотрубчатые теплообменники с компенсирующими устройствами:

а - с линзовым компенсатором; б - с плавающей головкой; в - с U-образными трубами; 1 - компенсатор; 2 - подвижная трубная решетка; 3 - U-образные трубы.

При необходимости обеспечения больших перемещений труб и кожуха используют теплообменник с плавающей головкой (рис. 1.2б). Нижняя трубная решетка является подвижной, что позволяет всему пучку труб свободно перемещаться независимо от корпуса аппарата. Этим предотвращается опасная температурная деформация труб и нарушение плотности их соединения с трубными решетками. Однако компенсация температурных удлинений достигается в данном случае за счет усложнения и утяжеления конструкции теплообменника.

В кожухотрубчатом теплообменнике с U-образными трубами сами трубы выполняют функцию компенсирующих устройств. При этом упрощается и облегчается конструкция аппарата, имеющего лишь одну неподвижную трубную решетку. Наружная поверхность труб может быть легко очищена при выемке всей трубчатки из корпуса аппарата. Кроме того, в теплообменниках такой конструкции, являющихся двух- или многоходовыми, достигается довольно интенсивный теплообмен. Недостатки теплообменников с U-образными трубами: трудность очистки внутренней поверхности труб, сложность размещения большого числа труб в трубной решетке.

В химической промышленности применяются также теплообменники с двойными трубами С одной стороны аппарата размещены две трубные решетки, причем в одной решетке закреплен пучок труб меньшего диаметра, открытых с обоих концов, а в другой решетке трубы большего диаметра с закрытыми левыми концами, установленные концентрически относительно труб. Среда движется по кольцевым пространствам между трубами и выводится из межтрубного пространства по трубам. Другая среда движется сверху вниз по межтрубному пространству корпуса теплообменника, омывая трубы снаружи. В теплообменниках такой конструкции трубы могут удлиняться под действием температуры независимо от корпуса теплообменника.

Кожухотрубчатый теп-лообменник с двойными трубами:

Элементные теплообменники. Для повышения скорости движения среды в межтрубном пространстве без применения перегородок, затрудняющих очистку аппарата, используют элементные теплообменники. Каждый элемент такого теплообменника представляет собой простейший кожухотрубчатый теплообменник. Нагреваемая и охлаждаемая среды последовательно проходят через отдельные элементы, состоящие из пучка труб в кожухе небольшого диаметра. Теплообменник, состоящий из таких элементов (ходов), допускает значительные избыточные давления в межтрубном пространстве; его можно рассматривать как модификацию многоходового кожухотрубчатого теплообменника.

В элементных теплообменниках взаимное движение сред приближается к эффективной схеме чистого противотока. Однако вследствие разделения общей поверхности теплообмена на отдельные элементы конструкция становиться более громоздкой и стоимость теплообменника возрастает.

Двухтрубчатые теплообменники

Теплообменники этой конструкции, называемые также теплообменниками типа «труба в трубе», состоят из нескольких последовательно соединенных трубчатых элементов, образованных двумя концентрически расположенными трубами. Один теплоноситель движется по внутренним трубам, а другой - по кольцевому зазору между внутренними трубами и наружными трубами. Внутренние трубы (обычно диаметром 57-108 мм) соединяются калачами, а наружные трубы, имеющие диаметр 76-159 мм, - патрубками.

Благодаря небольшим поперечным сечением трудного и межтрубного пространства в двухтрубчатых теплообменниках даже при небольших расходах достигаются довольно высокие скорости жидкости, равные обычно 1-1,5 м/сек. Это позволяет получать более высокие коэффициенты теплопередачи и достигать более высоких тепловых нагрузок на единицу массы аппарата, чем в кожухотрубчатых теплообменниках. Кроме того, с увеличением скоростей теплоносителей уменьшается возможность отложения загрязнений на поверхности теплообмена.

Вместе с тем эти чертежеи теплообменников скачать бесплатно более громоздки, чем скачать бесплатно чертежи кожухотрубчатые, и требуют большего расхода металла на единицу поверхности теплообмена, которая в аппаратах такого типа образуется только внутренними трубами.

Скачать чертеж двухтрубчатые теплообменники могут эффективно работать при небольших расходах теплоносителей, а также при высоких давлениях. Если требуется большая поверхность теплообмена, то эти аппараты выполняют из нескольких параллельных секций.

Змеевиковые теплообменники

Погружные теплообменники скачать. В погружном змеевиковом теплообменнике капельная жидкость, газ или пар движутся по спиральному змеевику, выполненному из труб диаметром 15-75 мм, который погружен в жидкость, находящуюся в корпусе аппарата. Вследствие большого объема корпуса, в котором находиться змеевик, скорость жидкости в корпусе незначительна, что обуславливает низкие значения коэффициента теплоотдачи снаружи змеевика. Для его увеличения повышают скорость жидкости в корпусе путем установки в нем внутреннего стакана, но при этом значительно уменьшается полезно используемый объем корпуса аппарата. Вместе с тем в некоторых случаях большой объем жидкости, заполняющей корпус, имеет и положительное значение, так как обеспечивает более устойчивую работу теплообменника при колебаниях режима. Трубы змеевика крепятся на конструкции.

В теплообменниках этого типа змеевики часто выполняются также из прямых труб, соединенных калачами. При больших расходах среды, движущейся по змеевику из прямых труб, ее сначала направляют в общий коллектор, из которого она поступает в параллельные секции труб и удаляется также через общий коллектор. При таком параллельном включении секций снижается скорость и уменьшается длина пути потока, что приводит к снижению гидравлического сопротивления аппарата.

Теплоотдача в межтрубном пространстве погружных теплообменников малоинтенсивна, так как тепло передается практически путем свободной конвекции. Поэтому теплообменники такого типа работают при низких тепловых нагрузках. Несмотря на это погружные теплообменники находят довольно широкое применение вследствие простоты устройства, дешевизны, доступности для очистки и ремонта, а также удобства работы при высоких давлениях и в химически активных средах. Они применяются при поверхностях нагрева до 10-15 м2. Скачать чертеж погружного теплообменника.

Если в качестве нагревающего агента в погружном теплообменнике используется насыщенный водяной пар, то отношение длины змеевика к его диаметру не должно превышать определенного предела; например, при давлении пара 2 105-5 105 н/м2 (2-5 атм) это отношение не должно быть больше 200-275. В противном случае скопление парового конденсата в нижней части змеевика вызовет значительное снижение интенсивности теплообмена при значительном увеличении гидравлического сопротивления.

Оросительные теплообменники

Такой теплообменник представляет собой змеевики из размещенных друг над другом прямых труб, которые соединены между собой калачами. Трубы обычно расположены в виде параллельных вертикальных секций с общими коллекторами для подачи и отвода охлаждаемой среды. Сверху змеевики орошаются водой, равномерно распределяемой в виде капель и струек при помощи желоба с зубчатыми краями. Отработанная вода отводится из поддона, установленного под змеевиком. Оросительные теплообменники применяются главным образом в качестве холодильников и конденсаторов, причем около половины тепла отводится при испарении охлаждающей воды. В результате расход воды резко снижается по сравнению с ее расходом в холодильниках других типов. Относительно малый расход воды - важное достоинство оросительных теплообменников, которые, помимо этого, отличаются также простотой конструкции и легкостью очистки наружной поверхности труб.

Несмотря на то, что коэффициенты теплоотдачи в оросительных теплообменниках, работающих по принципу перекрестного тока, несколько выше, чем у погружных, их существенными недостатками являются: громоздкость, неравномерность смачивания наружной поверхности труб, нижние концы которых при уменьшении расхода орошающей воды очень плохо смачиваются и практически не участвуют в теплообмене. Кроме того, к недостаткам этих теплообменников относятся: коррозия труб кислородом воздуха, наличие капель и брызг, попадающее в окружающее пространство.

В связи с испарением воды, которое усиливается при недостаточном орошении, теплообменники этого типа чаще всего устанавливаются на открытом воздухе; их ограждают деревянными решетками (жалюзи), главным образом для того, чтобы свести к минимуму унос брызг воды.

Оросительные теплообменники работают при небольших тепловых нагрузках и коэффициенты теплопередачи в них не высоки. Их часто изготовляют из химически стойких материал.

Описание конструкции конденсаторов

Достоинством кожухотрубных конденсаторов яв-ляется возможность создания высоких и даже одинаковых ско-ростей обоих теплоносителей и, следовательно, больших коэффи-циентов теплоотдачи. К числу их недостатков относятся боль-шое гидравлическое сопротивление и значительная металлоемкость.

Наиболее широкое распространение получили кожухотрубные конденсаторы, используемые для теплообмена между потоками в различных агрегатных со-стояниях (пар-жидкость, жидкость-жидкость, газ-газ, газ- жидкость). Аппарат состоит из пучка труб, помещенного внутри цилиндрического корпуса (обечайки), сваренного из листовой стали, реже - литого. Трубки завальцованы в двух трубных решетках или приварены к ним в зависимости от свойств кон-струкционных материалов. Чаще всего применяются трубы диа-метрами: 25x2; 38X2; 57X2,5 мм; длина их обычно достигает 6 м. Трубки размещаются в пучке в шахматном порядке, по вер-шинам равностороннего треугольника, с шагом t=(1,25-1,30) dн, где dн - наружный диаметр труб. Аппарат снабжен двумя съемными крышками со штуце-рами для входа и выхода теплоносителя, движущегося внутри труб. Трубное и меж-трубное пространства разоб-щены. Второй теплоноситель движется в межтрубном про-странстве, снабженном вход-ным и выходным штуцерами. По трубам движется, как правило, тот поток, который содержит взвешенные твер-дые частицы (для удобства чистки), находится под боль-шим давлением (чтобы не утяжелять корпус) или об-ладает агрессивными свой-ствами (для предохранения корпуса от коррозии).

Конструкция Кожухотрубного холодильника из:

  • корпуса;
  • трубы;
  • трубной решетки;
  • крышки;
  • штуцеры для входа и выхода из трубного пространства;
  • шту-церы для входа и выхода из межтрубного простран-ства;
  • поперечные пере-городки межтрубного про-странства;
  • опорные лапы соответственно при вер-тикальном и горизонталь-ном расположениях аппа-рата.

Горячая жидкость входит в трубное пространство состоящее из труб. Холодный теплоноситель входит в межтрубное пространство, в результате соприкосновения двух теплоносителей с разными тепловыми потоками возникает теплообмен и тепловые потоки выравниваются, тем самым определяя заданную температуру на входе для горячего или холодного теплоносителя. Теплоносители поступают в трубное пространство при помощи штуцера 6, в межтрубное - штуцер. Аппарат имеет эллиптические крышки и днище, крепление аппарата осуществляется при помощи опорных лап 8. Крепление труб к трубной решетке 8 осуществляется за счет развальцовки.

Площадь проходного се-чения межтрубного простран-ства значительно больше (иногда в 2 раза) суммарного живого сечения труб, по-этому при одинаковых объ-емных расходах теплоноси-телей коэффициент теплоот-дачи со стороны межтрубного пространства оказывается более низким. Для устранения этого явления прибегают к увеличению скорости теплоносителя путем размещения различных перегородок в межтрубном пространстве. Кожухотрубные аппараты соответственно местным условиям располагаются вертикально или горизонтально; при необходимо-сти удлинения пути теплоносителей они могут соединяться по-следовательно, а при невозможности размещения требуемого числа труб в одном корпусе их соединяют параллельно. Для удлинения пути теплоносителей с целью увеличения их скорости и интенсификации теплообмена используют много-ходовые аппараты. Так, в двухходовом аппарате благодаря перегородке 1 в верхней крышке 2 тепло-носитель проходит сначала по трубам лишь через половину пучка и в обратном направлении - через вторую половину пучка.