Где происходит фотосинтез у растений. Фотосинтез: что такое, определение, фазы


Где происходит фотосинтез?

листьях зеленых растений

Определение

1) Световая фаза;

2) Темновая фаза.

Фазы фотосинтеза

Световая фаза

Темновая фаза

Результат

Где происходит фотосинтез?

Что ж, сразу отвечая на вопрос, скажу, что фотосинтез происходит в листьях зеленых растений , а точнее в их клетках. Главную роль здесь играют хлороплатсы, специальные клетки, без которых фотосинтез невозможен. Я отмечу, что этот процесс, фотосинтез, является, как мне кажется, удивительным свойством живого.

Ведь каждый знает, что с помощью фотосинтеза поглощается углекислый газ и выделяется кислород. Такое простое для понимания явление, и в то же время одно из самых сложных процессов живых организмов, в котором принимают участие огромное количество разных частиц и молекул. Чтобы в конце выделился кислород, которым мы все с вами дышим.

Что ж, попытаюсь рассказать, как мы получаем драгоценный кислород.

Определение

Фотосинтез – синтез органических веществ из неорганических с помощью солнечного света. Другими словами, падающий на листья, солнечный свет дает необходимую энергию для процесса фотосинтеза. В результате из неорганики образуется органика и выделяется кислород воздуха.

Фотосинтез протекает в 2 фазы:

1) Световая фаза;

2) Темновая фаза.

Расскажу немного о фазах фотосинтеза.

Фазы фотосинтеза

Световая фаза – как ясно из названия, происходит на свету, на поверхностной мембране клеток зеленого листа (говоря научным языком- на мембране гранн). Основными участниками здесь будут хлорофилл, специальные белковые молекулы (белки переносчики) и АТФ- синтетаза, являющаяся поставщиком энергии.

Световая фаза, как и вообще процесс фотосинтеза, начинается с действия кванта света на молекулу хлорофилла. В результате этого взаимодействия хлорофилл приходит в возбужденное состояние, из-за чего эта самая молекула теряет электрон, который переходит на наружную поверхность мембраны. Далее, что бы восстановить потерянный электрон, молекула хлорофилла отбирает его у молекулы воды, из-за чего происходит ее разложение. Все мы знаем, что вода состоит из двух молекул водорода и одной кислорода, и при разложении воды кислород поступает в атмосферу, а положительно заряженный водород собирается на внутренней поверхности мембраны.

Таким образом получилось так, что по одну сторону сконцентрированы отрицательно заряженные электроны и по другую положительно заряженные протоны водорода. С этого момента появляется молекула АТФ-синтетазы, которая образует своеобразный коридор для прохождения протонов к электронам и для снижения этой разности концентраций, о которой мы говорили ниже. На этом месте световая фаза заканчивается и заканчивается она образованием энергетической молекулы АТФ и восстановлением специфической молекулы переносчика НАДФ*Н2.

Другими словами, произошло разложение воды, из-за чего выделился кислород и образовалась молекула АТФ, которая даст энергию для дальнейшего протекания фотосинтеза.

Темновая фаза – как ни странно, фаза эта может протекать как на свету, так и при темноте. Протекает эта фаза в специальных органоидах клеток листа, активно участвующих в фотосинтезе (пластиды). Эта фаза включает несколько химических реакций, которые протекают с помощью той самой молекулы АТФ, синтезированной в первой фазе, и НАДФН. В свою очередь, главные роли здесь принадлежат воде и углекислому газу. Для темновой фазы необходимо непрерывное поступление энергии. Углекислый газ поступает из атмосферы, водород образовался в первую фазу, за энергию отвечает молекула АТФ. Главным результатом темновой фазы являются углеводы, то есть та самая органика, которая необходима растениям для жизни.

Результат

Так и происходит тот самый процесс образования органики (углеводов) из неорганики. В результате растения получают продукты, необходимые им для жизни, а мы получаем кислород воздуха. Добавлю, что весь этот процесс протекает исключительно в зеленых растениях, в клетках которых есть хлоропласты («зеленые клетки»).

Полезно0 Не очень

С образованием O 2 представляет собой важнейшее событие в . , сделавшее свет Солнца главным источником-своб. энергии , а - практически неограниченным источником для синтеза в-в в живых . В результате образовалась совр. состава, O 2 стал доступным для пищи (см. ), а это обусловило возникновение высокоорганизов. гетеротрофных (применяют в качестве источника экзогенные орг. в-ва).

Ок. 7% орг. продуктов фотосинтеза человек использует в пищу, в качестве корма для животных, а также в виде и строит. материала. Ископаемое - тоже продукт фотосинтеза. Его потребление в кон. 20 в. примерно равно приросту биомассы.

Общее запасание энергии солнечного излучения в виде продуктов фотосинтеза составляет ок. 1,6 · 10 21 кДж в год, что примерно в 10 раз превышает совр. энергетич. потребление человечества. Примерно половина энергии солнечного излучения приходится на видимую область спектра (длина волны l от 400 до 700 нм), к-рая используется для фотосинтеза (физиологически активная радиация, или ФАР). ИК излучение не пригодно для фотосинтеза кислородвыделяющих (высших растений и водорослей), но используется нек-рыми фотосинтезирующи-ми бактериями.

В связи с тем, что составляют осн. массу продуктов биосинтетич. деятельности растений, хим. ур-ние фотосинтеза обычно записывают в виде:

Для этой р-ции 469,3 кДж/ , понижение 30,3 Дж/(К·моль), -479 кДж/ . Квантовый расход фотосинтеза для одноклеточных водорослей в лаб. условиях составляет 8-12 квантов на CO 2 . Утилизация при фотосинтезе энергии солнечного излучения, достигающего земной пов-сти, составляет не более 0,1% всей ФАР. Наиб. продуктивные растения (напр., сахарный тростник) в среднем за год усваивают ок. 2% энергии падающего излучения, а зерновые культуры - до 1%. Обычно суммарная продуктивность фотосинтеза ограничена содержанием CO 2 в (0,03-0,04% по объему), интенсивностью света и т-рой. Зрелые листья шпината в нормального состава при 25 0 C на свету насыщающей интенсивности (при солнечном освещении) дают неск. литров O 2 в час на грамм или на килограмм сухого . Для водорослей Chlorella pyrenoidosa при 35 0 C повышение CO 2 от 0,03 до 3% позволяет повысить выход O 2 в 5 раз, такая активация является предельной.

Бактериальный фотосинтез и общее ур-ние фотосинтеза. Наряду с фотосинтезом высших растений и водорослей, сопровождаемым выделением O 2 , в природе осуществляется бактериальный фотосинтез, в к-ром окисляемым является не , а др. соединения, обладающие более выраженными восстановит. св-вами, напр. H 2 S, SO 2 . при бактериальном фотосинтезе не выделяется, напр.:

Фотосинтезирующие бактерии способны использовать не только видимое, но и ближнее ИК излучение (до 1000 нм) в соответствии со спектрами поглощения преобладающих в них - бактериохлорофиллов. Бактериальный фотосинтез не имеет существенного значения в глобальном запасании солнечной энергии, но важен для понимания общих механизмов фотосинтеза. Кроме того, локально бескислородный фотосинтез может вносить существенный вклад в суммарную продуктивность планктона. Так, в Черном море кол-во и бактериохлорофил-ла в столбе в ряде мест приблизительно одинаково.

Учитывая данные о фотосинтезе высших растений, водорослей и фотосинтезирующих бактерий, обобщенное ур-ние фотосинтеза можно записать в виде:

Ф отосинтез пространственно и во времени разделяется на два сравнительно обособленных процесса: световую стадию и темновую стадию CO 2 (рис. 1). Обе эти стадии осуществляются у высших растений и водорослей в специализир. органеллах - . Исключение - синезеленые водоросли (цианобактерии), у к-рых нет аппарата фотосинтеза, обособленного от цитоплазматич. .


В реакц. центре фотосинтеза, куда почти со 100%-ной вероятностью переносится возбуждение, происходит первичная р-ция между фотохимически активной а (у бактерий - бактериохлорофилла) и первичным акцептором (ПА). Дальнейшие р-ции в тилакоидных происходят между в их осн. состояниях и не требуют возбуждения светом. Эти р-ции организованы в электронтранспортную цепь - последовательность фиксированных в переносчиков . В электронтранс-портной цепи высших растений и водорослей содержится два фотохим. центра (фотосистемы), действующих последовательно (рис. 2), в бактериальной электронтранспортной цепи - один (рис. 3).


В фотосистеме II высших растений и водорослей синглетно возбужденный а в центре Р680 (число 680 обозначает, что максимум спектральных изменений системы при возбуждении светом находится вблизи 680 нм) отдает через промежуточный акцептор к феофитину (ФЕО, безмагниевый аналог ), образуя . Анион-радикал восстановленного феофитина служит далее для связанного пластохинона (ПХ*; отличается от заместителями в хиноидном кольце), координированного с Fe 3+ (в бактериях имеется аналогичный Fе 3+ -убихинонный комплекс). Далее переносится по цепи, включающей свободный пластохинон (ПХ), присутствующий в избытке по отношению к остальным компонентам цепи, затем (Ц) b 6 и f, образующие комплекс с железо-серным центром, через медьсодержащий пластоцианин (ПЦ; мол. м. 10400) к реакционному центру фотосистемы I.

Центры быстро восстанавливаются, принимая через ряд промежут. переносчиков от . Образование O 2 требует последоват. четырехкратного возбуждения реакционного центра фотосистемы П и катализируется мембранным комплексом, содержащим Mn.


Фотосистема I может действовать автономно без контакта с системой II. В этом случае циклич. перенос (на схеме показан пунктиром) сопровождается , а не НАДФН. Образующиеся в световой стадии


НАДФН и используются в темновой стадии фотосинтеза, в ходе к-рой снова образуется НАДФ и .

Электронтранспортные цепи фотосинтезирующих бактерий в основных своих чертах аналогичны отдельным фрагментам таковых в хлорогшастах высших растений. На рис. 3 показана электронтранспортная цепь пурпурных бактерий.

Темновая стадия фотосинтеза. Все фотосинтезирующие , выделяющие O 2 , а также нек-рые фотосинтезирующие бактерии сначала восстанавливают CO 2 до в т. наз. цикле Калвина. У фотосинтезирующих бактерий встречаются, по-видимому, и др. механизмы. Большинство цикла Калвина находится в растворимом состоянии в строме .


Упрощенная схема цикла показана на рис. 4. Первая стадия - рибулозо-1,5-дифосфата и гидро лиз продукта с ооразованием двух 3-фосфоглицериновой к-ты. Эта С 3 -кислота фосфорили-руется с образованием 3-фос-фоглицероилфосфата, к-рый затем восстанавливается НАДФН до гли-церальдегид-3-фосфата. Полученный триозофосфат затем вступает в ряд р-ций , и перегруппировок, дающих 3 рибулозо-5-фосфата. Последний фосфорилируется при участии с образованием риоу-лозо-1,5-дифосфата и, т. обр., цикл замыкается. Одна из 6 образующихся глицеральдегид-3-фос-фата превращается в глюко-зо-6-фосфат и используется затем для синтеза либо выделяется из в . Глицеральдегид-3-фосфат может также превращаться в 3-глицеро-фосфат и затем в . Триозо , поступающие из , превращаются в осн. в , к-рая переносится из листа в др. части растения.

В одном полном обороте цикла Калвина расходуется 9 и 6 НАДФН для образования одной 3-фосфоглицериновой к-ты. Энергетич. эффективность цикла (отношение энергии фотонов, необходимых для фотосинтеза и НАДФН, к DG 0 образования из CO 2) с учетом действующих в строме составляет 83%. В самом цикле Калвина нет фотохим. стадий, но световые стадии могут косвенно влиять на него (в т. ч. и на р-ции, не требующие или НАДФН) через изменения Mg 2+ и H + , а также уровня восстановленности .

Нек-рые высшие растения, приспособившиеся к высокой интенсивности света и к теплому климату (напр., сахарный тростник, кукуруза), способны предварительно фиксировать CO 2 в дополнит. С 4 -цикле. При этом CO 2 сначала включается в обмен четырехуглеродных дикарбоновых к-т, к-рые затем декарбоксилируются там, где локализован цикл Калвина. С 4 -Цикл характерен для растений с особым анатомич. строением листа и разделением ф-ций между двумя типами кактусов , молочая и др. засухоустойчивых растений характерно частичное разделение фиксации CO 2 и фотосинтеза во времени (САМ-обмен, или обмен по типу толстянковых; САМ сокр. от англ. Crassulaceae acid metabolism). Днем устьица (каналы, через к-рые осуществляется газообмен с ) закрываются, чтобы уменьшить . При этом поступление CO 2 также затруднено. Ночью устьица открываются, происходит фиксация CO 2 в виде фосфоенол-пировиноградной к-ты с образованием С 4 -кислот, к-рые днем декарбоксилируются, а освобождаемый при этом CO 2 включается в цикл Калвина (рис. 6).

Фотосинтез галобактерий. Единственный известный в природе не-хлорофилльный способ запасания энергии света осуществляют бактерии Halobacterium halobium. Ha ярком свету при пониженной концентрации хлорофилла. Окончательно это было доказано масс-спектрометрич. методом (С. Рубен, M. Камен, а также А.П. Виноградов и Р.В. Тейс, 1941).

В 1935-41 К. Ван Ниль обобщил данные по фотосинтезу высших растений и бактерий и предложил общее ур-ние, охватывающее все типы фотосинтеза. X. Гаффрон и К. Воль, а также Л. Дёйсенс в 1936-52 на основе количеств. измерений выхода продуктов фотосинтеза поглощенного света и содержания сформулировали представление о "фотосинтетич. единице" - ансамбле , осуществляющих светосбор и обслуживающих фотохим. центр.

В 40-50-х гг. M. Калвин, используя 14 C, выявил механизм фиксации CO 2 . Д. Арнон (1954) открыл фотофос-форилирование (инициируемый светом из и H 3 PO 4) и сформулировал концепцию электронного транспорта в . P. Эмерсон и Ч.M. Льюис (1942-43) обнаружили резкое снижение эффективности фотосинтеза при 700 нм (красное падение, или первый эффект Эмерсона), а в 1957 Эмерсон наблюдал неаддитивное усиление фотосинтеза при добавлении света низкой интенсивности с 650 нм к дальнему красному свету (эффект усиления, или второй эффект Эмерсона). На этом в 60-х гг. сформулировано представление о последовательно действую щих фотосистемах в электронтранспортной цепи фотосинтеза с максимумами в спектрах действия вблизи 680 и 700 HM.

Осн. закономерности образования O 2 при в фотосинтезе установлены в работах Б. Кока и П. Жолио (1969-70). Близится к завершению выяснение мол. организации мембранного комплекса, катализирующего этот процесс. В 80-х гг. методом детально изучена структура отдельных компонентов фотосинтетич. аппарата, включая реакционные центры и светособирающие комплексы (И. Дайзенхофер, X. Михель, P. Хубер).

Лит.: Клейтон Р., Фотосинтеч. Физические механизмы и химические модели, пер. с англ., M., 1984; "Ж. Всес. хим. об-ва им. Д.И. Менделеева", 1986, т. 31, № 6; Фотосинтез, под ред. Говинджи, пер. с англ., т. 1-2, M., 1987; Итоги науки и техники, . Биофизика, т. 20-22, M., 1987. М.Г. Голъдфелъд.

Еще

Жизнь человека, как и всего живого на Земле невозможна без дыхания. Мы вдыхаем из воздуха кислород, а выдыхаем углекислый газ. Но почему же кислород не кончается? Оказывается, воздух в атмосфере непрерывно подпитывается кислородом. И происходит это насыщение именно благодаря фотосинтезу.

Фотосинтез - просто и понятно!

Каждый человек обязан понимать, что такое фотосинтез. Для этого совсем не нужно писать сложные формулы, достаточно понять всю важность и волшебство этого процесса.

Главную роль в процессе фотосинтеза играют растения – трава, деревья, кустарники. Именно в листьях растений на протяжении миллионов лет происходит удивительное превращение углекислого газа в кислород, так необходимый для жизни любителям дышать. Попробуем разобрать весь процесс фотосинтеза по порядку.

1. Растения берут из почвы воду с растворенными в ней минеральными веществами – азот, фосфор, марганец, калий, различные соли – всего больше 50 различных химических элементов. Это необходимо растениям для питания. Но из земли растения получают лишь 1/5 часть необходимых веществ. Остальные 4/5 они получают из воздуха!

2. Из воздуха растения поглощают углекислый газ. Тот самый углекислый газ, который мы выдыхаем каждую секунду. Углекислым газом растения дышат, как мы с вами дышим кислородом. Но и этого мало.

3. Незаменимый компонент в природной лаборатории - солнечный свет. Солнечные лучи в листьях растений пробуждают необычайную химическую реакцию. Как же это происходит?

4. В листьях растений есть удивительное веществохлорофилл . Хлорофилл способен улавливать потоки солнечного света и неутомимо перерабатывать полученные воду, микроэлементы, углекислый газ в органические вещества, необходимые каждому живому существу нашей планеты. В этот момент растения выделяют в атмосферу кислород! Именно эту работу хлорофилла ученые называют сложным словомфотосинтез .

Презентацию по теме Фотосинтез можно скачать на образовательном портале

Так почему трава зелёная?

Теперь, когда мы знаем, что в клетках растений, содержится хлорофилл, на этот вопрос ответить очень легко. Недаром с древнегреческого языка хлорофилл переводится как «зелёный лист». Для фотосинтеза хлорофилл использует все лучи солнечного света, кроме зеленого. Мы видим траву, листья растений зелеными именно потому, что хлорофилл получается зеленым.

Значение фотосинтеза.

Значение фотосинтеза невозможно переоценить - без фотосинтеза в атмосфере нашей планеты накопилось бы слишком много углекислого газа, большинство живых организмов просто не смогли бы дышать и погибли. Наша Земля превратилась бы в безжизненную планету. Для того чтобы этого не допустить каждому человеку планеты Земля нужно помнить, что мы очень обязаны растениям.

Именно поэтому так важно в городах делать как можно больше парков и зелёных насаждений. Беречь от уничтожения тайгу и джунгли. Или просто посадить дерево рядом с домом. Или не ломать ветки. Только участие каждого человека планеты Земля поможет сохранить жизнь на родной планете.

Но важность фотосинтеза не ограничивается переработкой углекислого газа в кислород. Именно в результате фотосинтеза сформировался озоновый слой в атмосфере, защищающий планету от губительных лучей ультрафиолета. Растения это пища для большинства живых существ на Земле. Пища необходимая и полезная. Питательность растений это тоже заслуга фотосинтеза.

С недавнего времени хлорофилл стали активно использовать в медицине. Люди издавна знали, что больные животные инстинктивно едят зеленые листья, чтобы вылечиться. Ученые выяснили, что хлорофилл сходен с веществом в клетках крови человека и способен творить настоящие чудеса.

В природе под воздействием солнечного света протекает жизненно важный процесс, без которого не может обойтись ни одно живое существо на планете Земля. В результате реакции в воздух выделяется кислород, которым мы дышим. Этот процесс получила название фотосинтеза. Что такое фотосинтез с научной точки зрения, и что происходит в хлоропластах клеток растений рассмотрим ниже.

Фотосинтез в биологии – это преобразование органических веществ и кислорода из неорганических соединений под воздействием солнечной энергии. Он характерен для всех фотоавтотрофов, которые способны сами вырабатывать органические соединения.

К таким организмам относятся растения, зеленые, пурпурные бактерии, цианобактерии (сине-зеленые водоросли).

Растения — фотоавтотрофы впитывают из грунта воду, а из воздуха – углекислый газ. Под воздействием энергии Солнца образуется глюкоза, которая впоследствии превращается на полисахарид – крахмал, необходимый растительным организмам для питания, образования энергии. В окружающую среду выделяется кислород – важное вещество, используемое всеми живыми организмами для дыхания.

Как происходит фотосинтез. Химическую реакцию можно изобразить с помощью следующего уравнения:

6СО2 + 6Н2О + Е = С6Н12О6 + 6О2

Фотосинтетические реакции происходят в растениях на клеточном уровне, а именно – в хлоропластах, содержащих основной пигмент хлорофилл. Это соединение не только придает растениям зеленую окраску, но и принимает активное участие в самом процессе.

Чтобы лучше разобраться в процессе, нужно ознакомиться со строением зеленых органелл — хлоропластов.

Строение хлоропластов

Хлоропласты – это органоиды клетки, которые содержатся только в организмах растений, цианобактерий. Каждый хлоропласт покрыт двойной мембраной: внешней и внутренней. Внутреннюю часть хлоропласта заполняет строма – основное вещество, по консистенции напоминающее цитоплазму клетки.

Строение хролопласта

Строма хлоропласта состоит из:

  • тилакоидов – структур, напоминающих плоские мешочки, содержащие пигмент хлорофилл;
  • гран – группы тилакоидов;
  • ламел – канальцев, которые соединяют между собой граны тилакоидов.

Каждая грана имеет вид стопки с монетами, где каждая монетка – это тилакоид, а ламела – полка, на которой выложены граны. Помимо этого хлоропласты имеют собственную генетическую информацию, представленную двуспиральными нитями ДНК, а также рибосомы, которые принимают участие при синтезе белка, капли масла, зерна крахмала.

Полезное видео: фотосинтез

Основные фазы

Фотосинтез имеет две чередующиеся фазы: световую и темновую. Каждая имеет свои особенности протекания и продукты, образующиеся при определенных реакциях. Две фотосистемы, образованные из вспомогательных светособирающих пигментов хлорофилла и каротиноида, передают энергию главному пигменту. В результате происходит преобразование световой энергии в химическую – АТФ (аденозинтрифосфорную кислоту). Что же происходит в процессах фотосинтеза.

Световая

Световая фаза происходит при попадании фотонов света на растение. В хлоропласте она протекает на мембранах тилакоидов.

Основные процессы:

  1. Пигменты фотосистемы І начинают «впитывать» фотоны солнечной энергии, которые передаются на реакционный центр.
  2. Под действием фотонов света происходит «возбуждение» электронов в молекуле пигмента (хлорофилла).
  3. «Возбужденный» электрон с помощью транспортных белков переносится на наружную мембрану тилакоида.
  4. Этот же электрон взаимодействует со сложным соединением НАДФ (никотинамидадениндинуклеотидфосфат), восстанавливая его до НАДФ*Н2 (это соединение участвует при темновой фазе).

Подобные процессы происходят и в фотосистеме ІІ. «Возбужденные» электроны покидают реакционный центр и переносятся на внешнюю мембрану тилакоидов, где связываются с акцептором электронов, возвращаются на фотосистему І и восстанавливают ее.

Световая фаза фотосинтеза

А как же восстанавливается фотосистема ІІ? Это происходит за счет фотолиза воды – реакции расщепления Н2О. Вначале молекула воды отдает электроны реакционному центру фотосистемы ІІ, благодаря чему происходит его восстановление. После этого происходит полное расщепление воды на водород и кислород. Последний через устьица эпидермиса листка проникает в окружающую среду.

Изобразить фотолиз воды можно с помощью уравнения:

2Н2О = 4Н + 4е + О2

Помимо этого, при световой фазе происходит синтез молекул АТФ – химической энергии, которая идет на образование глюкозы. В оболочке тилакоидов содержится ферментативная система, принимающая участие в образовании АТФ. Этот процесс происходит в результате того, что ион водорода переносится через канал специального фермента из внутренней оболочки на внешнюю. После чего высвобождается энергия.

Важно знать! При световой фазе фотосинтеза образуется кислород, а также энергия АТФ, которая используется для синтеза моносахаридов в темновой фазе.

Темновая

Реакции темновой фазы протекают круглосуточно, даже без наличия солнечного света. Фотосинтетические реакции происходят в строме (внутренней среде) хлоропласта. Более детально данный предмет изучал Мелвин Кальвин, в честь которого реакции темновой фазы носят название цикл Кальвина, или С3 — путь.

Этот цикл протекает в 3 этапа:

  1. Карбоксилирование.
  2. Восстановление.
  3. Регенерация акцепторов.

При карбоксилировании вещество под названием рибулозобисфосфат соединяется с частичками углекислого газа. Для этого используется специальный фермент – карбоксилаза. Образуется неустойчивое шестиуглеродное соединение, которое практически сразу же расщепляется на 2 молекулы ФГК (фосфоглицериновой кислоты).

Для восстановления ФГК используется энергия АТФ и НАДФ*Н2, образованных при световой фазе. При последовательных реакциях образуется триуглеродный сахар с фосфатной группой.

Во время регенерации акцепторов часть молекул ФГК используется для восстановления молекул рибулозобисфосфата, который является акцептором СО2. Далее при последовательных реакциях образуется моносахарид – глюкоза. Для всех этих процессов используется энергия АТФ, образованная в световой фазе, а также НАДФ*Н2.

Процессы преобразования 6 молекул углекислоты в 1 молекулу глюкозы требуют расщепления 18 молекул АТФ и 12 молекул НАДФ*Н2. Изобразить эти процессы можно с помощью следующего уравнения:

6СО2 + 24Н = С6Н12О6 + 6Н2О

Впоследствии из образованной глюкозы синтезируются более сложные углеводы – полисахариды: крахмал, целлюлоза.

Обратите внимание! При фотосинтезе темновой фазы образуется глюкоза – органическое вещество, необходимое для питания растения, образования энергии.

Нижеприведенная таблица фотосинтеза, поможет лучше усвоить основную суть этого процесса.

Сравнительная таблица фаз фотосинтеза

Хотя цикл Кальвина является наиболее характерным для темновой фазы фотосинтеза, однако для некоторых тропических растений характерен цикл Хэтча-Слэка (С4-путь), который имеет свои особенности протекания. Во время карбоксилирования в цикле Хэтча-Слэка образуется не фосфоглицериновая кислота, а другие, такие как: щавелевоуксусная, яблочная, аспарагиновая. Также при этих реакциях углекислый газ накапливается в клетках растений, а не выводится при газообмене, как у большинства.

Впоследствии этот газ участвует при фотосинтетических реакциях и образовании глюкозы. Также стоит отметить, что С4-путь фотосинтеза требует больших затрат энергии, чем цикл Кальвина. Основные реакции, продукты образования в цикле Хэтча-Слэка не отличаются от цикла Кальвина.

Благодаря реакциям цикла Хэтча-Слэка у растений практически не происходит фотодыхание, так как устьица эпидермиса находятся в закрытом состоянии. Это позволяет им приспособится к специфическим условиям обитания:

  • сильной жаре;
  • сухому климату;
  • повышенной засоленности мест обитания;
  • недостатку СО2.

Сравнение световой и темновой фаз

Значение в природе

Благодаря фотосинтезу происходит образование кислорода – жизненно важного вещества для процессов дыхания и накопления внутри клеток энергии, которая дает возможность живым организмам расти, развиваться, размножаться, принимает непосредственное участие в работе всех физиологических систем организма человека, животных.

Важно! Из кислорода в атмосфере образуется озоновый шар, который защищает все организмы от пагубного влияния опасного ультрафиолетового облучения.

Полезное видео: подготовка к ЕГЭ по Биологии — фотосинтез

Вывод

Благодаря умению синтезировать кислород и энергию растения формируют первое звено во всех пищевых цепях, являясь продуцентами. Потребляя зеленые растения, все гетеротрофы (животные, люди) вместе с пищей получают жизненно важные ресурсы. Благодаря процессу, протекающему в зеленых растениях и цианобактериях, поддерживается постоянный газовый состав атмосферы и жизнь на земле.

Как понятно из названия, фотосинтез по своей сути являет собой природный синтез органических веществ, превращая СО2 из атмосферы и воду в глюкозу и свободный кислород.

При этом необходимо наличие энергии солнечного света.

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

Фотосинтез имеет две фазы: темную и световую. Химические реакции темной фазы фотосинтеза существенно отличаются от реакций световой фазы, однако темная и световая фаза фотосинтеза зависят друг от друга.

Световая фаза может происходить в листьях растений исключительно при солнечном свете. Для темной же необходимо наличие углекислого газа, именно поэтому растение все время должно поглощать его из атмосферы. Все сравнительные характеристики темной и световой фаз фотосинтеза будут предоставлены ниже. Для этого была создана сравнительная таблица «Фазы фотосинтеза».

Световая фаза фотосинтеза

Основные процессы в световой фазе фотосинтеза происходят в мембранах тилакоидов. В ней участвуют хлорофилл, белки-переносчики электронов, АТФ-синтетаза (фермент, ускоряющий реацию) и солнечный свет.

Далее механизм реакции можно описать так: когда солнечный свет попадает на зеленые листья растений, в их структуре возбуждаются электроны хлорофилла (заряд отрицательный), которые перейдя в активное состояние, покидают молекулу пигмента и оказываются на внешней стороне тилакоида, мембрана которого заряжена также отрицательно. В то же время молекулы хлорофилла окисляются и уже окисленные они восстанавливаются, отбирая таким образом электроны у воды, которая находится в структуре листа.

Этот процесс приводит к тому, что молекулы воды распадаются, а созданные в результате фотолиза воды ионы, отдают свои электроны и превращаются в такие радикалы ОН, которые способны проводить дальнейшие реакции. Далее эти реакционноспособные радикалы ОН объединяются, создавая полноценные молекулы воды и кислород. При этом свободный кислород выходит во внешнюю среду.

В результате всех этих реакций и превращений, мембрана тилакоида листа с одной стороны заряжается положительно (за счет иона Н+), а с другой — отрицательно (за счет электронов). Когда разность между этими зарядами в двух сторонах мембраны достигает больше 200 мВ, протоны проходят через специальные каналы фермента АТФ-синтетазы и за счет этого происходит превращение АДФ до АТФ (в результате процесса фосфорилизации). А атомный водород, который освобождается из воды, восстанавливает специфический переносчик НАДФ+ до НАДФ·Н2. Как видим, в результате световой фазы фотосинтеза происходит три основных процесса:

  1. синтез АТФ;
  2. создание НАДФ·Н2;
  3. образование свободного кислорода.

Последний освобождается в атмосферу, а НАДФ·Н2 и АТФ берут участие в темной фазе фотосинтеза.

Темная фаза фотосинтеза

Темная и световая фазы фотосинтеза характеризуются большими затратами энергии со стороны растения, однако темная фаза протекает быстрее и требует меньше энергии. Для реакций темной фазы не нужен солнечный свет, поэтому они могут происходить и днем и ночью.

Все основные процессы этой фазы протекают в строме хлоропласта растения и являют собой своеобразную цепочку последовательных превращений углекислого газа из атмосферы. Первая реакция в такой цепи – фиксация углекислого газа. Чтобы она проходила более плавно и быстрее, природой был предусмотрен фермент РиБФ-карбоксилаза, который катализирует фиксацию СО2.

Далее происходит целый цикл реакций, завершением которого является преобразование фосфоглицериновой кислоты в глюкозу (природный сахар). Все эти реакции используют энергию АТФ и НАДФ Н2, которые были созданы в световой фазе фотосинтеза. Помимо глюкозы в результате фотосинтеза образуются также и другие вещества. Среди них разные аминокислоты, жирные кислоты, глицерин, а также нуклеотиды.

Фазы фотосинтеза: таблица сравнений

Критерии сравнения Световая фаза Темная фаза
Солнечный свет Обязателен Необязателен
Место протекание реакций Граны хлоропласта Строма хлоропласта
Зависимость от источника энергии Зависит от солнечного света Зависит от АТФ и НАДФ Н2, образованных в световой фазе и от количества СО2 из атмосферы
Исходные вещества Хлорофилл, белки-переносчики электронов, АТФ-синтетаза Углекислый газ
Суть фазы и что образуется Выделяется свободный О2, образуется АТФ и НАДФ Н2 Образование природного сахара (глюкозы) и поглощение СО2 из атмосферы

Фотосинтез — видео