Компенсация тепловых удлинений в сетях теплоснабжения. Проблемы и пути решения компенсации температурных деформаций теплопроводов в пенополиуретановой теплоизоляции при бесканальной прокладке


Устройство содержит изогнутой формы корпус из отводов и прямых участков, выполненный из эластичного материала, преимущественно из резинотканевого рукава (шланга), а на концах корпуса установлены патрубки или патрубки с фланцами для соединения с трубопроводами тепловой сети, а материал эластичного корпуса армирован металлической сеткой.

Изобретение относится к системам централизованного теплоснабжения населенных мест, промышленных предприятий и котельных.

В централизованных системах теплоснабжения один источник теплоты (котельная) подает теплоту нескольким потребителям, расположенным на некотором расстоянии от источника теплоты, а передача теплоты от источника до потребителей осуществляется по специальным теплопроводам - тепловым сетям.

Тепловая сеть состоит из соединенных между собой сваркой стальных трубопроводов, тепловой изоляции, устройств для компенсации температурных удлинений, запорной и регулирующей арматуры, подвижных и неподвижных опор и др. , с.253 или , с.17.

При движении теплоносителя (вода, пар и др.) по трубопроводам последние нагреваются и удлиняются. Например, при повышении температуры на 100 градусов удлинение стальных трубопроводов составляет 1,2 мм на один метр длины.

Компенсаторы используются для восприятия деформаций трубопроводов при изменении температуры теплоносителя и для разгрузки их от возникающих температурных напряжений, а также для предохранения от разрушения арматуры, установленной на трубопроводах.

Трубопроводы тепловых сетей устраивают таким образом, чтобы они могли свободно удлиняться при нагревании и укорачиваться при охлаждении без перенапряжения материала и соединений трубопровода.

Известны устройства для компенсации температурных удлинений , которые выполнены из тех же труб, что и стояки горячего водоснабжения. Указанные компенсаторы выполнены из труб, изогнутых в виде полуволн. Такие устройства имеют ограниченное применение, так как компенсирующая способность полуволн небольшая, во много раз меньше, чем у П-образных компенсаторов. Поэтому такие устройства не применяются в системах теплоснабжения.

Известны наиболее близкие по совокупности признаков устройства для компенсации температурных удлинений тепловых сетей с 189, или стр.34. Известные компенсаторы можно разделить на две группы : гибкие радиальные (П-образные) и осевые (сальниковые). Чаще применяют П-образные компенсаторы, так как они не нуждаются в обслуживании, но требуется их растяжка. К недостаткам П-образных компенсаторов можно отнести: повышенное гидравлическое сопротивление участков тепловых сетей, увеличение расхода трубопроводов, необходимость устройства ниш, а это приводит к увеличению капитальных затрат. Сальниковые компенсаторы требуют постоянного обслуживания, поэтому их можно устанавливать только в тепловых камерах, а это приводит к удорожанию строительства. Для компенсации температурных удлинений используют и повороты тепловых сетей (Г- и Z - образная компенсация, рис.10.10 и 10.11, с 183 ).

Недостатками таких компенсирующих устройств являются усложнение монтажа при наличии П-образных компенсаторов и усложнение эксплуатации при использовании сальниковых компенсаторов, а также небольшой срок службы стальных трубопроводов из-за коррозии последних. Кроме того, при температурных удлинениях трубопроводов возникают силы упругой деформации, изгибающие моменты гибких компенсаторов, в том числе поворотов тепловых сетей. Вот почему при устройстве тепловых сетей используют стальные, как наиболее прочные трубопроводы и требуется проводить расчет на прочность , с.169. Заметим, что стальные трубопроводы тепловых сетей подвержены интенсивной коррозии, как внутренней, так и наружной. Поэтому срок службы тепловых сетей, как правило, не превышает 6-8 лет.

П-образные компенсаторы состоят из 4-х отводов и трех прямых участков стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «П».

Самокомпенсация трубопроводов осуществляется по Z-образной схеме и Г-образной схеме , рис.10.10. и рис.10.11, с.183.

Z-образная схема включает два отвода и три прямых участка стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «Z».

Г-образная схема включает один отвод и два прямых участка стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «Г».

Задачей изобретения является увеличение срока службы подающих и обратных трубопроводов тепловых сетей, упрощение монтажа тепловых сетей и создание условий, при которых будут отсутствовать причины, которые приводят к возникновению напряжений в трубопроводах от температурных удлинений трубопроводов.

Поставленная цель достигается тем, что устройство для компенсации температурных удлинений трубопроводов тепловой сети содержащее изогнутой формы корпус, состоящее из отводов и прямых участков трубопровода, отличается от прототипа тем, что изогнутой формы корпус из отводов и прямых участков выполнен из эластичного материала, преимущественно из резинотканевого рукава (или шланга, выполненного, например, из резины), а на концах корпуса установлены патрубки или патрубки с фланцами для соединения с трубопроводами тепловой сети. При этом эластичный материал, из которого выполнен изогнутой формы корпус (шланг) может быть армирован преимущественно металлической сеткой.

Использование предлагаемого устройства приводит к уменьшению расхода трубопроводов, уменьшению размеров ниш для установки компенсаторов, не требуется проводить растяжку компенсаторов, то есть в итоге уменьшаются капитальные затраты. Кроме того, в подающем и обратном трубопроводах тепловых сетей не будут возникать напряжения от температурных удлинений; следовательно, для устройства тепловых сетей могут использоваться трубопроводы, выполненные из менее прочного материала, чем сталь, в том числе могут использоваться трубы, стойкие против коррозии (чугун, стекло, пластик, асбестоцемент и др.), а это приводит к снижению капитальных и эксплуатационных затрат. Выполнение подающих и обратных трубопроводов из материала, стойкого против коррозии (чугун, стекло и др.) повышает долговечность тепловых сетей в 5-10 раз, а это приводит к уменьшению эксплуатационных затрат; действительно, если срок службы трубопроводов увеличивается, значит, заменять трубопроводы тепловых сетей приходится реже, а это значит, что реже придется отрывать траншею, снимать плиты перекрытия каналов для прокладки тепловых сетей, демонтировать трубопроводы, которые отслужили свой срок эксплуатации, укладывать новые трубопроводы, покрывать их новой тепловой изоляцией, укладывать плиты перекрытия на место, засыпать траншею грунтом и выполнять другие работы.

Устройство поворотов тепловых сетей для осуществления «Г» и «Z»-образной компенсации трубопроводов приводит к уменьшению затрат металла и упрощению компенсации температурных удлинений. При этом резинотканевый рукав, используемый для компенсации температурных удлинений, может быть выполнен из резины или шланга; при этом шланг может быть армирован (для прочности) например, стальной проволокой.

В технике широко применяются резинотканевые рукава (шланги). Например, гибкие трубы (виброизолирующие вставки) применяются для предотвращения передачи вибрации от циркуляционного насоса на систему отопления с.107, рис.V9. При помощи шлангов осуществляется присоединение умывальников и моек к трубопроводам горячего и холодного водоснабжения. Однако, в этом случае резинотканевые рукава (шланги) проявляют новые свойства, так как выполняют роль компенсирующих устройств, то есть компенсаторов.

На фиг.1 представлено устройство для компенсации температурных удлинений трубопроводов тепловых сетей, а на фиг.2 разрез 1-1 фиг.1

Устройство состоит из трубопровода 1 длиной L, выполненного из эластичного материала; таким трубопроводом может служить резиновый рукав, гибкая труба, шланг, шланг армированный металлической сеткой, трубопровод, выполненный из резины и т.п. В каждый конец 2 и 3 трубопровода 1 вставлен патрубок 4 и 5, к которым жестко, например, с помощью сварки, присоединены фланцы 6 и 7, в которых имеются отверстия 8 и 9, диаметром равные внутреннему диаметру патрубков 4 и 5. Для обеспечения прочности и герметичности соединения трубопровода 1 и патрубков 4 и 5 установлены хомуты 10 и 11. Каждый хомут стягивается болтом 12 и гайкой 13. Во фланцах 6 и 7 имеются отверстия 14 для болтов 31, фиг.5 которыми фланцы 6 и 7 соединяется с контрфланцами 19 и 20, прикрепленными к трубопроводам 15 и 16 тепловой сети (см. фиг.5 и 6). Контрфланцы на фиг.1 и 2 не показаны. Для обеспечения прочности и герметичности соединения трубопровода 1 и патрубков 4 и 5 вместо хомутов 10 и 11 можно использовать и другое соединение, например, с помощью обжима.

В данном устройстве патрубки 4 и 5 и фланцы 6 и 7 могут быть изготовлены из стали и соединены при помощи, например, сварки. Однако, более целесообразно патрубки 4 и 5 и фланцы 6 и 7 выполнять как единое, неразъемное изделие, например, методом литья или методом литья под давлением из материала, стойкого против коррозии, например, из чугуна. В этом случае долговечность предложенного устройства будет значительно больше.

На фиг.3 и 4 показан другой вариант предложенного устройства. Отличие состоит в том, что к патрубкам 4 и 5 фланцы 6 и 7 не присоединяется, а соединение патрубков 4 и 5 с трубопроводами тепловой сети осуществляется с помощью сварки, то есть предусматривается неразъемное соединение. При наличии фланцев 6 и 7 (см. фиг.1) соединение предлагаемого устройства с трубопроводом тепловой сети осуществляется с помощью разъемного соединения, более удобного при монтаже трубопроводов.

Перед установкой на место устройству для компенсации температурных удлинений трубопроводов тепловых сетей придают форму изогнутого корпуса. Для примера на фиг.5 показана П-образная форма корпуса. Такую форму придают предложенному устройству путем изгиба трубопровода 1, см. фиг.1. Когда необходимо осуществить компенсацию температурных удлинений за счет поворотов, то предложенному устройству придают Г-образную или Z-образную форму. Заметим, что Z-образная форма состоит из двух Г-образных форм.

На фиг.5 показан участок трубопровода 15 длиной L 1 и участок трубопровода 16 длиной L 3 ; указанные участки расположены между неподвижными опорами 17 и 18. Между трубопроводами 15 и 16 расположено предлагаемое устройство для компенсации температурных удлинений длиной L 2 . Расположение всех элементов на фиг.5 показано при отсутствии теплоносителя в трубопроводах 15 и 16 и в предлагаемом устройстве.

К трубопроводу 15 (см. фиг.5) жестко (при помощи сварки) присоединен контрфланец 19, а к трубопроводу 16 аналогичным образом присоединен контрфланец 20.

После установки на место предложенного устройства оно при помощи болтов 32 и гаек, фланцев 6 и 7 и контрфланцев 19 и 20 присоединяется к трубопроводам 15 и 16; между фланцами устанавливают прокладки. На фиг.5 хомуты 10 и 11 и болты 12 условно не показаны.

На фиг.5 показано предлагаемое устройство для компенсации температурных удлинений путем придания трубопроводу 1 (см. фиг.1) П-образной формы, то есть в данном случае предложенное устройство - изогнутой формы корпус - состоит из 4-х отводов и 3-х прямых участков.

Устройство работает следующим образом. Когда в предлагаемое устройство и трубопроводы 15 и 16 подается теплоноситель, например, горячая вода, то трубопроводы 15 и 16 нагреваются и удлиняются (см. фиг.6). Трубопровод 15 удлиняется на величину L 1 ; длина трубопровода 15 будет равна . При удлинении трубопровода 15 он перемещается вправо, и одновременно вправо перемещаются фланцы 19, патрубок 4 и часть трубопровода 1, которые соединены друг с другом (хомуты 10 и 11 на фиг.5 и 6 условно не показаны). В то же самое время трубопровод 16 удлиняется на величину L 3 , длина трубопровода 16 будет равна . При этом фланцы 7 и 20, патрубок 5 и часть трубопровода 1, соединенная с патрубком 5 переместится влево на величину L 3 Расстояние между фланцами 6 и 7 уменьшилось и стало равным . При этом трубопровод 1, соединяющий патрубки 4 и 5 (и трубопроводы 15 и 16) изгибается и за счет этого не препятствует перемещению трубопроводов 15 и 16, следовательно, в трубопроводах 15 и 16 не возникает напряжения от удлинения трубопроводов.

Очевидно, что длина трубопровода 1 должна быть больше расстояния L 2 между фланцами 6 и 7, чтобы иметь возможность изгибаться. При этом никаких напряжений в трубопроводах 1, 15 и 16 от температурных удлинений трубопроводов 15, 16 и 1 не возникает.

Предлагаемое устройство для компенсации температурных удлинений целесообразно устанавливать на середине прямых участков между неподвижными опорами.

Предлагаемое устройство, показанное на фиг.3 и 4, работает аналогичным образом; отличие состоит только в том, что в устройстве отсутствуют фланцы 6 и 7 (фиг.5), а соединение обеих патрубков 4 и 5 с трубопроводами 15 и 16 осуществляется с помощью сварки, то есть в этом случае применяют неразъемное соединение (показано на фиг.7).

На фиг.7 показан Г-образный участок трубопровода, расположенный между неподвижными опорами 21 и 22. Длина прямого участка трубопровода 23 равна L 4 , а трубопровода 24 равна L 5 . Трубопровод 1 (см. фиг.1), изогнут по радиусу R. Представленное устройство несколько отличается от устройства, представленного на фиг.1, а именно: на фиг.7 отсутствуют патрубки 4 и 5 с фланцами 6 и 7. Функцию патрубка выполняют трубопроводы 23 и 24, то есть трубы вставлены в концы 2 и 3 трубопровода 1 (фиг.1), хомуты 10 и 11 обеспечивают прочность и плотность соединения трубопроводов 1 с трубопроводами 23 и 24. Такое конструктивное выполнение несколько упрощает изготовление предложенного устройства, но усложняет монтаж тепловых сетей, поэтому имеет ограниченное применение. Расположение всех элементов, изображенных на фиг.7, показано при отсутствии теплоносителя в трубопроводах 23, 24 и 1.

Когда в трубопроводы 1, 23 и 24 подается теплоноситель, то трубопроводы 23 и 24 нагреваются и удлиняются (см. фиг.8). Трубопровод 23 удлиняется на величину L 4 , а трубопровод 24 удлиняется на величину L 5 . При этом торец 25 трубопровода 23 перемещается вверх, а торец 26 трубопровода 24 перемещается влево (см. фиг.8). При этом трубопровод 1, (выполнен из эластичного материала), соединяющий торцы 25 и 26 трубопроводов 23 и 24, за счет своего изгиба не препятствует перемещению трубопровода 23 вверх, а трубопровода 24 влево. При этом никаких напряжений от температурных удлинений в трубопроводах 1, 23 и 24 не возникает.

На фиг.9 показан вариант предложенного устройства, когда оно используется для Z-образной компенсации температурных удлинений. Z-образный участок трубопровода расположен между неподвижными опорами 26 и 27. длина трубопровода 28 равна L 6 , а трубопровода 29 - L 8 ; длина устройства для компенсации температурных удлинений равна L 7 Трубопровод 1 изогнут в форме буквы Z. В каждый конец 2 и 3 трубопровода 1 вставлены патрубки 4 и 5 с фланцами 6 и 7. Трубопровод 28, патрубок 4, фланцы 6 и 30 прочно и герметично соединены, например, при помощи болтов и хомутов (см. фиг.1). Аналогично соединены трубопровод 29, патрубок 5, фланцы 7 и 31. Расположение всех элементов на фиг.9 показано при отсутствии теплоносителя в трубопроводах (фиг.9). Принцип работы предложенного устройства аналогичен ранее рассмотренному устройству, см. фиг.1-8.

Когда в трубопроводы 28, 1 и 29 подается теплоноситель (см. фиг.10), трубопроводы 28, 1 и 29 нагреваются и удлиняются. Трубопровод 28 удлиняется вправо на величину L 6 ; одновременно вправо перемещаются фланцы 6 и 30, патрубок 4 и торец 2 трубопровода 1 (то есть перемещается часть трубопровода 1, присоединенная к патрубку 4, так как эти элементы соединены друг с другом и трубопроводом 28. Аналогично, трубопровод 29 удлиняется влево на величину L 8 ; одновременно влево перемещаются фланцы 7 и 31, патрубок 5 и торец 3 трубопровода 1 (то есть перемещается часть трубопровода 1, присоединенная к патрубку 5, так как эти элементы соединены друг с другом и трубопроводом 29. При этом трубопровод 1 за счет своего изгиба не препятствует перемещению трубопроводов 28 и 29. При этом никаких напряжений от температурных удлинений в трубопроводах 28, 29 и 1 не возникает.

Во всех рассматриваемых вариантах конструктивного выполнения предложенного устройства длина трубопровода L (см. фиг.1) зависит от диаметра трубопроводов тепловой сети, материала, из которого выполнен трубопровод 1 и других факторов и определяется расчетом.

Трубопровод 1 (см. фиг.1) может быть выполнен из гофрированного резинотканевого рукава (шланга), однако гофры увеличивают гидравлическое сопротивление тепловой сети, засоряются твердыми частицами, которые могут присутствовать в теплоносителе, а при наличии твердых частиц компенсирующая способность такого рукава уменьшается, поэтому такой рукав имеет ограниченное применение; применяется, когда в теплоносителе отсутствуют твердые частицы.

На основании вышеизложенного можно заключить, что предложенное устройство долговечно, проще в монтаже и более экономично по сравнению с известным устройством.

Источники информации

1. Инженерные сети. Оборудование зданий и сооружений: Учебник/ Е.Н.Бухаркин и др.; Под ред. Ю.П.Соснина. - М.: Высшая школа 2001. - 415 с.

2. Справочник проектировщика. Проектирование тепловых сетей. Под ред. Инж. А.А.Николаева. М.: Стройиздат, 1965. - 360 с.

3. Описание изобретения к патенту RU 2147104 CL F24D 17/00.

Трубы и их соединения.

Техника транспорта теплоты предъявляет следующие основные требования к трубам, применяемым для теплопроводов:

· достаточная механическая прочность и герметичность при имеющихся давлениях теплоносителя;

· эластичность и стойкость против термических напряжений при переменном тепловом режиме;

· постоянство механических свойств;

· стойкость против внешней и внутренней коррозии;

· малая шероховатость внутренних поверхностей;

· отсутствие эрозии внутренних поверхностей;

· малый коэффициент температурных деформаций;

· высокие теплоизолирующие свойства стенок трубы;

· простота, надежность и герметичность соединения отдельных элементов;

· простота хранения, транспортировки и монтажа.

Все известные до настоящего времени типы труб одновременно не удовлетворяют всем перечисленным требованиям. В частности, этим требованиям не вполне удовлетворят стальные трубы, применяемые для транспорта пара и горячей воды. Однако высокие механические свойства и эластичность стальных труб, а также простота, надежность и герметичность соединений (сварка) обеспечили практически стопроцентное применение этих труб в системах централизованного теплоснабжения.

Основные типы стальных труб, применяемых для тепловых сетей:

Диаметром до 400 мм включительно – бесшовные, горячекатаные;

Диаметром выше 400 мм – электросварные с продольным швом и электросварные со спиральным швом.

Трубопроводы тепловых сетей соединяются между собой при помощи электрической или газовой сварки. Для водяных тепловых сетей преимущество отдаётся сталям марок Ст2сп и Ст3сп.

Схема трубопроводов, размещение опор и компенсирующих устройств должны быть выбраны таким образом, чтобы суммарное напряжение от всех одновременно действующих нагрузок ни в одном сечении трубопровода не превосходило допускаемого. Наиболее слабым местом стальных трубопроводов, по которому следует вести проверку напряжений, являются сварные швы.

Опоры.

Опоры являются ответственными деталями теплопровода. Они воспринимают усилия от трубопроводов и передают их на несущие конструкции или грунт. При сооружении теплопроводов применяют опоры двух типов: свободные и неподвижные.



Свободные опоры воспринимают вес трубопровода и обеспечивают его свободное перемещение при температурных деформациях. Неподвижные опоры фиксируют положение трубопровода в определенных точках и воспринимают усилия, возникающие в местах фиксации под действием температурных деформаций и внутреннего давления.

При бесканальной прокладке обычно отказываются от установки свободных опор под трубопроводами во избежание неравномерных посадок и дополнительных изгибающих напряжений. В этих теплопроводах трубы укладываются на нетронутый грунт или тщательно утрамбованный слой песка. При расчете изгибающих напряжений и деформаций трубопровод, лежащий на свободных опорах, рассматривается как многопролетная балка.

По принципу работы свободные опоры делятся на скользящие, роликовые, катковые и подвесные.

При выборе типа опор следует не только руководствоваться значением расчетных усилий, но и учитывать работу опор в условиях эксплуатации. С увеличением диаметров трубопроводов резко возрастают силы трения на опорах.

Рис. А Скользящая опора:1 – тепловая изоляция; 2 – опорный полуцилиндр; 3 – стальная скоба; 4 – бетонный камень; 5 – цементно-песчаный раствор

Рис.Б Роликовая опора. Рис.В Катковая опора. Рис.Г Подвесная опора.

В некоторых случаях, когда по условиям размещения трубопроводов относительно несущих конструкций скользящие и катящиеся опоры не могут быть установлены, применяются подвесные опоры. Недостатком простых подвесных опор является деформация труб вследствие различной амплитуды подвесок, находящихся на различном расстоянии от неподвижной опоры, из-за разных углов поворота. По мере удаления от неподвижной опоры возрастают температурная деформация трубопровода и угол поворота подвесок.

Компенсация температурных деформаций.

Компенсация температурных деформаций производится специальными устройствами – компенсаторами.

По принципу действия компенсаторы разделяются на радиальные и осевые.

Радиальные компенсаторы позволяют перемещение трубопровода и в осевом, и в радиальном направлениях. При радиальной компенсации термическая деформация трубопровода воспринимается за счет изгиба эластичных вставок или отдельных участков самого трубопровода.

Рис.Компенсаторы. а) П-образный; б) Ω-образный;в) S-образный.

Преимущества – простота устройства, надежность, разгруженность неподвижных опор от усилий внутреннего давления. Недостаток – поперечное перемещение деформируемых участков. Это требует увеличения сечения непроходных каналов и затрудняет применение засыпных изоляций и бесканальной прокладки.

Осевые компенсаторы допускают перемещения трубопровода только по направлению оси. Выполняются скользящего типа – сальниковые и упругие – линзовые (сильфонные).

Линзовые компенсаторы устанавливаются на трубопроводах низкого давления – до 0,5 МПа.

Рис. Компенсатор. а) односторонний сальниковый: б) трехволновой линзовый компенсатор

1 – стакан; 2 – корпус; 3 – набивка; 4 –упорное кольцо; 5 – грундбукса.

  • 3. Основные расчетные параметры. Температура, давление, допускаемое напряжение.
  • 4. Основные требования, предъявляемые к конструкциям сварных аппаратов (привести нормативные документы). Испытания аппаратов на прочность и герметичность.
  • 5. Пластины оболочки. Основные понятия и определения. Напряженное состояние оболочек вращения под воздействием внутреннего давления.
  • 10. Механические колебания валов. Критическая скорость вала с одним грузом (анализ формулы динамического прогиба). Условие виброустойчивости. Явление самоцентрирования.
  • 11.Особенности расчета валов с несколькими массами. Понятие о точном методе расчета критических скоростей. Приближенные методы.
  • 12. Колебания валов. Гироскопический эффект. Влияние различных факторов на критическую скорость
  • 15. Расчет колонных аппаратов на действие ветровых нагрузок. Расчетная схема, расчетные состояния. Определение осевой нагрузки.
  • 16. Определение ветровой нагрузки и изгибающего момента. Проверка прочности корпуса колонного аппарата.
  • 17. Расчет колонных аппаратов на действие ветровых нагрузок. Типы и конструкция опор для вертикальных аппаратов. Выбор типа опоры.
  • 18. Расчет колонных аппаратов на действие ветровых нагрузок. Проверка прочности и устойчивости опорной обечайки и ее узлов.
  • 19. Теплообменные аппараты. Определение температурных усилий и напряжений в корпусе и трубках та типа тн (Привести расчетную схему, формулы без вывода.Анализ формул).
  • 20. Теплообменные аппараты. Определение температурных усилий и напряжений в корпусе и трубках та типа тк (Привести расчетную схему, формулы без вывода.Анализ формул).
  • 21)Назначение и роль машин и аппаратов. Основные тенденции в развитии аппаратурного оформления процессов нефтегазопереработки
  • 24. Роль и место колонных аппаратоввтехнологическом процессе. Содержание паспорта на аппарат.
  • 25. Внутренние устройства колонных аппаратов. Типы тарелок, их классификация и требования к ним. Конструктивное исполнение крепления внутренних устройств. Отбойные устройства.
  • 26. Насадочные контактные устройства. Типы и классификация насадок. Принципы выбора насадок.
  • 27. Вакуумные колонны. Особенности конструкции и эксплуатации. Вакуумсоздающие системы, конструкции.
  • 28. Трубчатые печи. Назначение, их место и роль в технологической системе и область применения. Классификация трубчатых печей и их типы.
  • 30. Трубчатый змеевик, его конструктивное исполнение, способы крепления. Выбор размера и материалов труб и отводов, предъявляемые технические требования.
  • 31. Горелочные устройства, применяемые в трубчатых печах. Классификация, устройство и принцип действия.
  • 32. Способы создания тяги в печах. Способы утилизации тепла уходящих газов.
  • 33. Теплообменные аппараты. Общие сведения о процессе теплообмена. Требования предъявляемые к аппаратам. Классификация теплообменной аппаратуры.
  • 34. Кожухотрубчатые теплообменники. Теплообменники жесткого типа. Преимущества и недостатки. Способы крепления трубной решетки к корпусу. Теплообменники с компенсатором.
  • 35. Теплообменники нежесткой конструкции. Конструкция теплообменника с u-образными трубками.
  • 36. Теплообменники с плавающей головкой. Особенности устройства и конструкции плавающих головок. Теплообменник типа «труба в трубе».
  • 37. Аппараты воздушного охлаждения. Классификация и область применения. Конструктивное исполнение аво.
  • 38. Классификация технологических трубопроводов. Категории трубопроводов. Назначение и применение.
  • 39. Температурные деформации трубопроводов и способы их компенсации.
  • 40. Трубопроводная арматура. Классификация. Особенности конструктивного и материального исполнения.
  • 41. Основы массопередачи. Классификация процессов массообмена. Массообмен, массоотдача, массопередача. Диффузионный и конвективный механизмы массообмена. Равновесие и движущая сила массопередачи.
  • 42. Уравнение массоотдачи, коэффициент массоотдачи. Уравнение массопередачи, коэффициент массопередачи. Материальный баланс массопередачи. Уравнение рабочей линии.
  • 43 Средняя движущая сила массопередачи. Расчет средней движущей силы массопередачи. Число единиц переноса. Высота единицы переноса. Дифференциальное уравнение конвективной диффузии.
  • 45 Расчет высоты массообменных аппаратов. Число теоретических ступеней изменения концентрации и высота эквивалентная теоретической ступени. Графический метод расчета числа теоретических тарелок.
  • 48. Дистилляционные процессы. Физико-химические основы. Закон Рауля. Уравнение равновесной линии, относительная летучесть. Изображение процессов дистилляции на у-х и t-X-y диаграммах.
  • 49 Простая перегонка, материальный баланс простой перегонки. Схемы фракционной и ступенчатой перегонки, перегонки с частичной дефлегмацией.
  • 51. Насадочные и тарельчатые колонные аппараты, виды насадок и тарелок. Полые распылительные колонны, применяемые для абсорбции и экстракции. Пленочные абсорберы.
  • 54 Назначение и основные принципы процесса Кристаллизации. Технические способы процесса Кристаллизации в промышленности. Какие типы аппаратов используются для осуществления процесса Кристаллизации.
  • 56. Общие сведения о процессе отстаивания. Конструкция отстойников. Определение поверхности осаждения.
  • 57. Разделение неоднородных систем в поле центробежных сил. Описание процесса центрифугирования. Устройство центрифуг. Разделение в циклоне.
  • 58. Очистка сточных вод методом флотации. Виды и способы флотации. Конструкции флотационных установок.
  • 59. Физические основы и способы очистки газов. Виды аппаратов газоочистки.
  • 1. Гравитационная очистка газов.
  • 2. Под действием сил инерции и центробежных сил.
  • 4. Мокрая очистка газов
  • 60. Понятие пограничного слоя. Ламинарный пограничный слой. Турбулентный пограничный слой. Профиль скорости и трение в трубах.
  • 61. Общие требования к средствам дефектоскопического контроля
  • 63. Классификация методов неразрушающего контроля.
  • 64. Классификация оптических приборов для визуально-оптического контроля.
  • 65 Сущность и классификация методов капиллярной дефектоскопии.
  • 66. Область применения и классификация магнитных методов контроля.
  • 67. Феррозондовый метод контроля
  • ∆l=α·l·∆t

    где α- коэффициент линейного расширения металла трубы; для стали а=12-10-6 м/(м °С);

    l- длина трубопровода;

    ∆t- абсолютная разность температур трубопровода до и после нагрева (охлаждения);

    Если трубопровод не может свободно удлиняться или сокращаться (а технологические трубопроводы именно таковы), то температурные деформации вызывают в трубопроводе напряжения сжатия (при удлинении) или растяжения (при сокращении), которые определяют по формуле:

    δ=E·ξ=E·∆l/l

    где E-модуль упругости материала трубы

    ∆l -относительное удлинение (укорочение) трубы

    Если принять для стали Е=2,1 *105 МН/м2, то по формуле (13) получится, что при нагреве (охлаждении) на 1°С температурное напряжение достигнет 2,5 МН/м2, при =300 °С значение =750 МН/м2. Из сказанного следует, что трубопроводы, работающие при температурах, изменяющихся в широких пределах, во избежание разрушения должны быть снабжены компенсирующими устройствами, легко воспринимающими температурные напряжения

    Вследствие разности температур транспортируемых продуктов и окружающей среды трубопроводы подвержены температурным деформациям. Обычно трубопроводы имеют значительную длину, поэтому их общая температурная деформация может оказаться достаточно большой и вызвать разрыв или выпучивание трубопровода. В связи с этим необходимо обеспечить способность трубопровода компенсировать эти деформации.

    Для компенсации температурных деформаций на технологических трубопроводах применяют П-образные, линзовые, волнистые и сальниковые компенсаторы.

    П-образные компенсаторы (рис. 5.1) широко применяют для наземных технологических трубопроводов независимо от их диаметра. Такие компенсаторы обладают большой компенсирующей способностью, их можно применять при любых давлениях однако они

    громоздки и требуют установки специальных опор. Обычно их располагают горизонтально и снабжают дренажными устройствами.

    Линзовые компенсаторы используют для газопроводов при рабочих давлениях до 1,6 МПа. По конструкции они аналогичны компенсаторам кожухотрубчатых теплообменников.

    Волнистые компенсаторы (рис. 5.2) используют для трубопроводов с неагрессивными и среднеагрессивными средами при давлении до 6,4 МПа. Такой компенсатор состоит из гофрированного гибкого элемента 4, концы которого приварены к патрубкам 1. Ограничительные кольца 3 предотвращают выпучивание элемента и ограничивают изгиб его стенки. Снаружи гибкий элемент защищен кожухом 2, внутри имеет стакан 5 для уменьшения гидравлического сопротивления компенсатора.

    На трубопроводах из чугуна и неметаллических материалов устанавливают сальниковые компенсаторы (рис. 5.3), которые состоят из корпуса 3, закрепленного на опоре 1, набивки 2 и грундбуксы 4. Компенсация температурных деформаций происходит за счет взаимного перемещения корпуса 3 и внутренней трубы 5. Сальниковые компенсаторы имеют высокую компенсирующую способность, однако из-за трудности обеспечения герметизации при транспортировании горючих, токсичных и сжиженных газов их не используют.

    Трубопроводы укладывают на опоры, расстояние между которыми определяется диаметром и материалом труб. Для стальных труб с диаметром до 250 мм это расстояние составляет обычно 3-6 м. Для крепления трубопроводов применяют подвески, хомуты и скобы. Трубопроводы из хрупких материалов (стекла, графитовых композиций и др.) укладывают в сплошных лотках ия сплошных основаниях.

190. Температурные деформации рекомендуется компенсировать за счет поворотов и изгибов трассы трубопроводов. При невозможности ограничиться самокомпенсацией (на совершенно прямых участках значительной протяженности и др.) на трубопроводах устанавливаются П-образные, линзовые, волнистые и другие компенсаторы.

В тех случаях, когда в проектной документации предусматривается продувка паром или горячей водой, рекомендуется рассчитывать на эти условия компенсирующую способность.

192. Рекомендуется применять П-образные компенсаторы для технологических трубопроводов всех категорий. Их рекомендуется изготавливать либо гнутыми из цельных труб, либо с использованием гнутых, крутоизогнутых или сварных отводов.

В случае предварительной растяжки (сжатия) компенсатора ее величину рекомендуется указывать в проектной документации.

193. Для П-образных компенсаторов гнутые отводы рекомендуется в целях безопасности изготавливать из бесшовных, а сварные - из бесшовных и сварных прямошовных труб.

194. Применять водогазопроводные трубы для изготовления П-образных компенсаторов не рекомендуется, а электросварные со спиральным швом - допускается для прямых участков компенсаторов.

195. В целях безопасности рекомендуется П-образные компенсаторы устанавливать горизонтально с соблюдением общего уклона. В обоснованных случаях (при ограниченной площади) их допускается размещать вертикально петлей вверх или вниз с соответствующим дренажным устройством в низшей точке и воздушниками.

196. П-образные компенсаторы перед монтажом рекомендуется устанавливать на трубопроводах вместе с распорными приспособлениями, которые удаляют после закрепления трубопроводов на неподвижных опорах.

197. Линзовые компенсаторы, осевые, а также линзовые компенсаторы шарнирные рекомендуется применять для технологических трубопроводов в соответствии с НТД.

198. При установке линзовых компенсаторов на горизонтальных газопроводах с конденсирующимися газами для каждой линзы рекомендуется в целях безопасности предусматривать дренаж конденсата. Патрубок для дренажной трубы рекомендуется в целях безопасности изготавливать из бесшовной трубы. При установке линзовых компенсаторов с внутренним стаканом на горизонтальных трубопроводах с каждой стороны компенсатора рекомендуется в целях безопасности устанавливать направляющие опоры на расстоянии не более 1,5 DN компенсатора.

199. При монтаже трубопроводов компенсирующие устройства рекомендуется в целях безопасности предварительно растягивать или сжимать. Величину предварительной растяжки (сжатия) компенсирующего устройства рекомендуется указывать в проектной документации и в паспорте на трубопровод. Величина растяжки может изменяться на величину поправки, учитывающей температуру при монтаже.

200. Качество компенсаторов, подлежащих установке на технологических трубопроводах, рекомендуется подтверждать паспортами или сертификатами.

201. При установке компенсатора в паспорт трубопровода рекомендуется вносить следующие данные:

Техническую характеристику, завод-изготовитель и год изготовления компенсатора;

Расстояние между неподвижными опорами, компенсацию, величину предварительного растяжения;

Температуру окружающего воздуха при монтаже компенсатора и дату установки.

202. Расчет П-образных, Г-образных и Z-образных компенсаторов рекомендуется производить в соответствии с требованиями НТД.

Любой материал: твердый, жидкий, газообразный в соответствии с законами физики изменяет свой объем пропорционально изменению температуры. Для предметов, длина которых значительно превышает ширину и глубину, например, трубы, главным показателем является продольное расширение по оси - тепловое (температурное) удлинение. Такое явление должно быть обязательно принято в расчет в ходе реализации тех или иных инженерных работ.

К примеру, во время поездки на поезде слышно характерное постукивание из-за термических стыков рельс (рис.1), или при прокладке линий электропередач, провода монтируют, так чтобы они провисали между опорами (рис.2).

рис.4

Все тоже самое происходит и в инженерной сантехнике. Под воздействием температурных удлинений, при применении несоответствующих случаю материалов и отсутствию мероприятий по тепловой компенсации в системе, трубы провисают (рис.4 справа), увеличиваются усилия на элементах крепления неподвижных опор и на элементы инсталляции, что уменьшает долговечность системы в целом, а, в крайних случаях, может привести и к аварии.

Увеличение длины трубопровода рассчитывается по формуле:

ΔL - увеличение длины элемента [м]

α - коэффициент теплового расширения материала

lo - начальная длина элемента [м]

T2 - температура конечная [K]

T1 - температура начальная [K]

Компенсация тепловых расширений для трубопроводов инженерных систем осуществляется преимущественно тремя способами:

  • естественная компенсация за счет изменения направления трассы трубопровода;
  • использование элементов компенсации, которые в состоянии погасить линейные расширения труб (компенсаторы);
  • предварительная натяжка труб (данный способ достаточно опасен и должен быть использован с крайней осторожностью).

рис.5


Естественная компенсация используется в основном при “скрытом” способе монтажа и представляет собой прокладку труб произвольными дугами (рис.5). Этот способ подходит для полимерных труб малой жесткости, таких как трубопроводы Системы KAN-therm Push: PE-X или PE-RT. Данное требование указано в СП 41-09-2005 (Проектирование и монтаж внутренних систем водоснабжения и отопления зданий с использованием труб из “сшитого” полиэтилена) в п. 4.1.11 В случае прокладки труб ПЭ-С в конструкции пола не допускается натягивание по прямой линии, а следует укладывать их дугами малой кривизны (змейкой) (...)

Такая укладка имеет смысл при монтаже трубопроводов по принципу “труба в трубе”, т.е. в трубе гофрированной или в трубной теплоизоляции, что указано не только в СП 41-09-2005, но и в СП 60.13330-2012 (Отопление, вентиляция и кондиционирование воздуха) в п.6.3.3 …Прокладку трубопроводов из полимерных труб следует предусматривать скрытой: в полу (в гофротрубе)…

Тепловое удлинение трубопроводов компенсируется за счет пустот в защитных гофрированных трубах или теплоизоляции.

При выполнении компенсации такого типа следует обращать внимание на исправность фитингов. Чрезмерное напряжение, возникающее из-за изгиба труб, могут привести к образованию трещин на тройнике (рис. 6). Чтобы этого гарантировано избежать, изменение направления трассы трубопроводов должно происходить на расстоянии - минимум 10 наружных диаметров от штуцера фитинга, а труба рядом с фитингом должна быть жестко закреплена, это, в свою очередь, минимизирует воздействие изгибающих нагрузок на штуцеры фитинга.

рис.6

Еще одним видом естественной температурной компенсации является, так называемое, “жесткое” крепление трубопроводов. Оно представляет собой разбивку трубопровода на ограниченные участки температурной компенсации таким образом, чтобы минимальное увеличение трубы значимым образом не влияло на линейность ее прокладки, а излишние напряжения уходили в усилия на крепления точек неподвижных опор (рис.7).

рис.7

Компенсация этого типа работает на продольный изгиб. Для защиты трубопроводов от повреждения необходимо разделить трубопровод точками неподвижных опор на участки компенсации не более 5 м. Следует обратить внимание, что при такой прокладке на крепления трубопроводов воздействует не только вес оборудования, но и напряжения от температурных удлинений. Это ведет к необходимости каждый раз рассчитывать предельно допустимую нагрузку на каждую из опор.

Силы, возникающие от тепловых удлинений и воздействующие на точки неподвижной опоры, рассчитываются по следующей формуле:

DZ - наружный диаметр трубопровода [мм]

s - толщина стенки трубопровода [мм]

α - коэффициент теплового удлинения трубы

E - модуль упругости (Юнга) материала трубы [Н/мм]

ΔT - изменение (прирост) температуры [K]

Кроме этого, на точку неподвижной опоры также действует собственный вес отрезка трубопровода, заполненного теплоносителем. На практике основной проблей является то, что ни один производитель крепежа не дает данных по предельно допустимым нагрузкам на свои элементы креплений.

Естественными компенсаторами температурных удлинений являются Г,П,Z-образные компенсаторы. Это решение применяется в местах, где возможно перенаправить свободные термические удлинения трубопроводов в другую плоскость (рис. 8).

рис.8

Размер компенсационного плеча для компенсаторов типа „Г” „П” и „Z” определяется в зависимости от полученных тепловых удлинений, типа материала и диаметра трубопровода. Расчет выполняется по формуле:

[м]

K - константа материала трубы

Dz - наружный диаметр трубопровода [м]

ΔL - тепловое удлинение отрезка трубопровода [м]

Константа материала K связана с напряжениями, которые может выдержать данный тип материала трубопровод. Для отдельных Систем KAN-therm значения постоянной материала K представлены ниже:

Push PlatinumK = 33

Компенсационное плечо компенсатора типа „Г” :

A - длина компенсационного плеча

L - начальная длина отрезка трубопровода

ΔL - удлинение отрезка трубопровода

PP - подвижная опора

A - длина компенсационного плеча

PS - точка неподвижной опоры (неподвижная фиксация) трубопровода

S - ширина компенсатора

Для расчета компенсационного плеча А необходимо принять за эквивалентную длину Lэ большее из значений L1 и L2. Ширина S должна составлять S = A/2, но не менее 150 мм.

A - длина компенсационного плеча

L1, L2 - начальная длина отрезков

ΔLx - удлинение отрезка трубопровода

PS - точка неподвижной опоры (неподвижная фиксация) трубопровода

Для расчета компенсационного плеча необходимо принять за эквивалентную длину Lэ сумму длин отрезков L1 и L2: Lэ = L1+L2.

рис.9


Кроме геометрических температурных компенсаторов существует большое количество конструктивных решений такого вида элементов:

  • сильфонные компенсаторы,
  • эластомерные компенсаторы,
  • тканевые компенсаторы,
  • петлеобразные компенсаторы.

Ввиду относительно высокой цены некоторых вариантов, такие компенсаторы чаще всего применяются в местах, где ограничено пространство или технические возможности геометрических компенсаторов или естественной компенсации. Эти компенсаторы имеют ограниченный срок эксплуатации, рассчитанный в рабочих циклах - от полного расширения до полного сжатия. По этой причине для оборудования, работающего циклически или с переменными параметрами, трудно определить конечное время эксплуатации устройства.

Сильфонные компенсаторы для компенсации тепловых удлинений используют упругость материала сильфона. Сильфоны часто изготавливаются из нержавеющей стали. Такая конструкция определяет срок службы элемента - приблизительно 1000 циклов.

Срок службы осевых компенсаторов сильфонного типа значительно снижается в случае несоосного монтажа компенсатора. Эта особенность требует высокой точности их монтажа, а также их правильного крепления:

  • возможно монтировать не более одного компенсатора на участке температурной компенсации между 2 соседними точками неподвижных опор;
  • подвижные опоры должны полностью охватывать трубы и не создавать большого сопротивления компенсации. Максимальный размер люфтов не более 1 мм;
  • осевой компенсатор рекомендуется, для большей стабильности, устанавливать на расстоянии 4Dn от одной из неподвижных опор;
  • Если у Вас возникают вопросы по температурным компенсациям трубопроводов Системы KAN-therm, Вы можете обратиться к .