Что ремонтируют теплосети, когда у вас отключают горячую воду. Закрытая система теплоснабжения


Для транспортировки тепла к потребителям используют трубопроводы - тепловые сети, которые могут передавать тепло с помощью воды и пара, их соответственно называют водяными и паровыми. В настоящее время тепловые сети передают тепло на большие расстояния. Во избежание больших теплопотерь они должны быть теплоизолированными.

Различают транзитные, магистральные, распределительные и кольцевые трубопроводы. Тепловые сети, которые подводят тепло к промышленным предприятиям, называют промышленными, к жилым и общественным зданиям - коммунальными, к предприятиям и гражданским зданиям -- смешанными.

Схемы тепловых сетей в плане могут быть двух видов: радиальные и кольцевые. Радиальная схема теплоснабжения представляет собой тупиковые ответвления ко всем объектам. В случае аварии эти объекты оказываются отключенными. Кольцевая схема теплоснабжения более надежна и бесперебойна в работе. В ней все ветки мелких ответвлений объединены в общий контур. Тепловые сети разных районов города могут быть соединены между собой, чтобы в случае выхода из строя одного источника тепла его мог дублировать другой. Это позволяет бесперебойно снабжать теплом все районы города и одновременно устранять неисправность.

Тепловые сети делают двух- и многотрубными. Наиболее распространена двухтрубная система, при которой одна труба - подающая, другая - обратная. В этой системе вода циркулирует по замкнутому кругу: отдав свое тепло потребителю, она возвращается в котельную.

В жилых районах применяют два вида водяных систем теплоснабжения: открытую и закрытую. Разница заключается в том, что при закрытой системе теплоснабжения в трубопроводах циркулирует постоянное количество воды, а при открытой системе - часть воды непосредственно из системы разбирается на нужды горячего водоснабжения. В открытой системе теплоснабжения вода должна быть по качеству равноценна питьевой, а запас воды на источнике тепла должен постоянно пополняться.

Однотрубная система подает теплоноситель для отопления и вентиляции, а затем выпускает его в качестве горячего водоснабжения. Вариант наиболее дешевый, но трудно рассчитываемый. Трехтрубная система обеспечивает подачу тепла по двум трубам с разными параметрами теплоносителя, а возврат осуществляется по третьей трубе. В четырехтрубной системе подача тепла на отопление и горячее водоснабжение разделена по двум парам труб. Наиболее применима в настоящее время в населенных пунктах раздельная двухтрубная система теплоснабжения ввиду удобства и экономичности ее использования.

Для горячего водоснабжения используют открытый и закрытый варианты присоединения к тепловым сетям. В открытых сетях горячая вода поступает прямо из теплосети и восполняет в ней тепло из источника. Качество горячей воды невысокое. В закрытых сетях вода теплосети полностью возвращается к тепловому источнику, нагревая водопроводную воду для горячего водоснабжения в теплообменных аппаратах. В этом случае качество горячей воды высокое.

Тепловые сети прокладывают над землей и под землей. Надземная прокладка дешевле, но часто недопустима по эстетическим соображениям. Подземная прокладка наиболее распространена. Различают канальную и бесканальную прокладки трубопроводов.

Канальная прокладка трубопроводов дороже, но надежнее, так как стенки канала защищают трубы от случайных воздействий, блуждающих токов и т.д. Каналы делают кирпичными и железобетонными. По конструкции они бывают проходные (высотой 2 м), полупроходные (высотой 1,4 м) и непроходные.

Бесканальная прокладка теплопроводов - простой и дешевый способ заложения, поэтому он наиболее распространен, особенно при реконструкции и в малоэтажной застройке. Трубы укладываются прямо в грунт. Этот способ имеет, однако, большие недостатки: коррозия, трудоемкость ремонта, отсутствие периодического надзора. Частично их преодолевают, защищая трубы от внешних воздействий грунта изоляционным материалом, цементной коркой и гидроизоляцией. Применяют и армированный пенобетон, где арматуру выполняют в виде сетки, что придает значительную жесткость трубопроводам.

В настоящее время вместо ранее применявшейся армопенобе-тонной бесканальной прокладки трубопроводов очень широкое применение получили теплоизолированные пенополиуретановые (ППУ) системы трубопроводов. Принципиальной особенностью этого вида прокладки трубопроводов является практически полная герметичность конструкции, позволяющая располагать трубопроводы тепловых сетей во влажных грунтах без дополнительной гидроизоляции и попутного дренажа. Кроме того, конструкция прокладки трубопроводов может быть оборудована системой оперативного дистанционного контроля (СОДК), позволяющей систематически отслеживать и находить места увлажнения изоляции. При этом способе бесканальной прокладки используют трубы с теплоизоляцией из пенополиуретана диаметром от 57 до 1020 мм в гидроизоляционной оболочке из плотного полиэтилена.

Из этого же вида тепловой изоляции изготавливают фасонные изделия для прокладки трубопроводов: отводы, z-образные элементы для компенсации температурных удлинений, тройники, неподвижные опоры, спускники и воздушники и др. Трубы применяют только новые стальные, черные или оцинкованные марок Ст. 10, Ст. 20, Ст. 17ГС и другие в соответствии с требованиями Госгортехнадзора России.

При строительстве теплотрасс из ППУ трубопроводов особое внимание уделяют тепловой и водонепроницаемой изоляциям стыковых соединений. При этом используют специальную сварную муфту, обеспечивающую абсолютно герметичное соединение стыков. Пенополиуретановая изоляция рассчитана на длительное воздействие температуры теплоносителя до 130 “С и на кратковременное воздействие температуры до 150 °С. Все трубы и остальные элементы трубопроводов при использовании такого оборудования снабжены проводами оперативного дистанционного контроля, сигнализирующими о повреждении проводов или о наличии влаги в изоляционном слое при эксплуатации. Система основана на проводимости теплоизоляционного слоя, которая изменяется при изменении влажности. Для поиска мест неисправности (увлажнение изоляции, обрыв сигнальных проводников) используют методы и приборы, основанные на действии импульсной рефлексометрии.

СОДК включает в себя сигнальные медные проводники, заложенные во все элементы теплосети, разъемы по трассе и в местах контроля (ЦТП, котельной), переносные приборы для периодической проверки и стационарные - для непрерывного контроля.

Прокладка в непроходных каналах - наиболее удобный способ Прокладки теплопроводов, чем и объясняется его частое применение. Преимущество этого способа по сравнению с бесканаль-ной прокладкой состоит в том, что трубопровод защищен от колебания давления в грунте, так как заключен в канал, где находится на специальных подвижных и неподвижных опорах. Его недостаток заключается в отсутствии постоянного наблюдения за состоянием сетей, а в случае аварии трудно найти место повреждения. В непроходных каналах теплосети могут располагаться с неф-темазутопроводами, трубопроводами сжатого воздуха давлением до 1,6 МПа и водопроводами.

В проходных коллекторах теплосети могут размещаться совместно с водопроводами диаметром до 300 мм, кабелями связи, силовыми кабелями напряжением до 10 кВ, а в городских коллекторах - также с трубопроводами сжатого воздуха давлением до 1,6 МПа и напорной канализацией. Во внутриквартальных коллекторах допускается совместная прокладка водяных сетей диаметром не более 250 мм с газопроводами природного газа давлением до 0,005 МПа и диаметром до 150 мм. При совместной прокладке теплосети и водопровода во избежание нагревания изолируют, размещая его либо в одном ряду, либо под тепловыми сетями, учитывая при этом нормативную глубину заложения. В проходных коллекторах ведут непрерывное наблюдение и контроль за состоянием сетей. Ремонт таких сетей упрощается.

В сложных участках, например, под центральными магистралями с большим движением, при пересечении железных дорог, под зданиями, где проходные коллекторы невозможно проложить, а непроходные каналы нельзя прокладывать из-за ограниченной возможности развития на случай ремонта, применяют полупроходные каналы. Хотя в них проход очень мал (высота - до 1,4 м, ширина - 0,4…0,5 м), все же можно осмотреть и отремонтировать теплосеть.
Трассу тепловых сетей в городах прокладывают в отведенных для инженерных сетей технических полосах параллельно красным линиям улиц, дорог и проездов вне проезжей части и полосы зеленых насаждений, но при обосновании допускается расположение теплотрассы под проезжей частью или тротуаром. Теплосети нельзя прокладывать вдоль бровок террас, оврагов или искусственных выемок при просадочных грунтах.

Уклон тепловых сетей независимо от направления движения теплоносителя и способа прокладки должен быть не менее 0,002.

В СНиП 2.04.07-86* содержатся особые условия для устройства пересечений тепловыми сетями других подземных сооружений.

Магистральные сети располагаются по главным направлениям от источника тепла и состоят из труб больших диаметров - от 400 до 1200 мм. Разводящие сети имеют диаметр трубопроводов от 100 до 300 мм, а диаметр трубопроводов, ведущих к потребителям,- 50… 150 мм.

Паровые системы Теплоснабжения делают одно- и двухтрубными, при этом конденсат возвращается по специальной трубе - кон-денсатопроводу. Под действием начального давления 0,6… 0,7 МПа, а иногда и 1,3… 1,6 МПа, пар движется со скоростью 30…40 м/с. При выборе способа прокладки теплопроводов главной задачей является обеспечение долговечности, надежности и экономичности решения.

Тепловые сети монтируют из стальных электросварных труб, расположенных на специальных опорах. На трубах устраивают запорную и регулирующую арматуры (задвижки, вентили). Опоры трубопроводов создают горизонтальное незыблемое основание. Интервал между опорами определяют при проектировании.

Опоры тепловых сетей подразделяют на неподвижные и подвижные. Неподвижные опоры фиксируют расположение конкретных мест сетей в определенной позиции, не допускают никаких смещений. Подвижные опоры допускают перемещение трубопровода по горизонтали вследствие температурных деформаций.

Между неподвижными опорами на расчетных расстояниях располагают П-образные удлинения труб, компенсирующие температурные напряжения, удлиняющие трубопровод. Компенсаторы предохраняют сети от разрушений.

Для размещения на теплотрассе отключающей арматуры, неподвижных опор устраивают камеры высотой 2 м. В них спускаются через люки.

Экономичный расход энергоресурсов в отопительной системе, может быть достигнут, если выполнять некоторые требования. Одним из вариантов, является наличие температурной диаграммы, где отражается отношение температуры, исходящей от источника отопления к внешней среде. Значение величин дают возможность оптимально распределять тепло и горячую воду потребителю.

Высотные дома подключены в основном к центральному отоплению. Источники, которые передают тепловую энергию, являются котельные или ТЭЦ. В качестве теплоносителя используется вода. Её нагревают до заданной температуры.

Пройдя полный цикл по системе, теплоноситель, уже охлаждённый, возвращается к источнику и наступает повторный нагрев. Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём.

Регулирование тепла от центральной системы можно производить двумя вариантами:

  1. Количественный. В этом виде изменяется расход воды, но температуру она имеет постоянную.
  2. Качественный. Меняется температура жидкости, а расход её не изменяется.

В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды. И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше.

Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).

График зависимости может быть различный.

Конкретная диаграмма имеет зависимость от:

  1. Технико-экономических показателей.
  2. Оборудования ТЭЦ или котельной.
  3. Климата.

Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией.

Ниже показан пример схемы, где Т1 – температура теплоносителя, Тнв – наружного воздуха:

Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника. Он считается высоким, когда возвращённая жидкость поступает охлаждённая.

Стабильность схемы зависит от проектных значений расхода жидкости высотными домами. Если увеличивается расход через отопительный контур, вода будет возвращаться не охлаждённой, так как возрастёт скорость поступления. И наоборот, при минимальном расходе, обратная вода будет достаточно охлаждена.

Заинтересованность поставщика, конечно, в поступлении обратной воды в охлаждённом состоянии. Но для уменьшения расхода существуют определённые пределы, так как уменьшение ведёт к потерям количества тепла. У потребителя начнётся опускаться внутренний градус в квартире, который приведёт к нарушению строительных норм и дискомфорту обывателей.

От чего зависит?

Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.

Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.

Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.

Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.

График температуры 95-70:

Температурный график 95-70

Как рассчитывается?

Выбирается метод регулирования, затем делается расчёт. Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды.

Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».

Исходными данными на теплогенерирующую станцию будут:

  1. Тнв – величина наружного воздуха.
  2. Твн – воздух в помещении.
  3. Т1 – теплоноситель от источника.
  4. Т2 – обратное поступление воды.
  5. Т3 – вход в здание.

Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.

При этом, на выходе они будут иметь 70°C.

Полученные результаты сносятся в единую таблицу, для последующего построения кривой:

Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.

Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру. Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.

Регулировка


Регулятор отопления

Автоматический контроль обеспечивается регулятором отопления.

В него входят следующие детали:

  1. Вычислительная и согласующая панель.
  2. Исполнительное устройство на отрезке подачи воды.
  3. Исполнительное устройство , выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
  4. Повышающий насос и датчик на линии подачи воды.
  5. Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.

Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.

Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.

Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.

Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.

Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.

Плюсы регулятора:

  1. Жёстко выдерживается температурная схема.
  2. Исключение перегрева жидкости.
  3. Экономичность топлива и энергии.
  4. Потребитель, независимо от расстояния, равноценно получает тепло.

Таблица с температурным графиком

Режим работы котлов зависит от погоды окружающей среды.

Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.

В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:

Температура наружного воздуха Температура сетевой воды в подающем трубопроводе Температура сетевой воды в обратном трубопроводе
+10 70 55
+9 70 54
+8 70 53
+7 70 52
+6 70 51
+5 70 50
+4 70 49
+3 70 48
+2 70 47
+1 70 46
0 70 45
-1 72 46
-2 74 47
-3 76 48
-4 79 49
-5 81 50
-6 84 51
-7 86 52
-8 89 53
-9 91 54
-10 93 55
-11 96 56
-12 98 57
-13 100 58
-14 103 59
-15 105 60
-16 107 61
-17 110 62
-18 112 63
-19 114 64
-20 116 65
-21 119 66
-22 121 66
-23 123 67
-24 126 68
-25 128 69
-26 130 70

СНиП

Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.

Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.

В.Г. Семенов , генеральный директор ОАО «Объединение ВНИПИэнергопром», президент НП «Энергоэффективный город», главный редактор журнала «ЭНЕРГОСОВЕТ», г. Москва

Серьезных проблем с определением стоимости горячей воды раньше, в период отсутствия приборов учета, не существовало. Обычно применялись два норматива - удельное потребление воды на одного жителя и расход тепловой энергии на кубометр воды. Жители потребляли воду, не задумываясь об экономии, а теплоснабжающие организации устраивал норматив.

Но пришло время оприборивания, и нерешенная централизованно задача - определить, что такое горячая вода, теперь вынужденно решается в многочисленных судах, поскольку при любом нормативе какая-нибудь из сторон оказывается в проигрыше. Для понимания проблемы и создания энергоэффективной модели экономических отношений с горячей водой необходимо серьезно разобраться.

Горячая вода как товар складывается из двух товаров: исходной воды и тепловой энергии, содержащейся в воде (использованной на ее нагрев). Прибор учета горячей воды - это обыкновенный водомер, установленный на вводе в квартиру. Основная проблема водомера - он не измеряет теплосодержание. Если даже поставить тепловычислитель и датчик температуры, то этого для корректных измерений количества тепла, потраченного на нагрев, будет недостаточно, т.к. надо измерить и температуру исходной холодной воды. А это можно сделать при разных схемах подключения в разных точках: в подвале дома, на ЦТП, а то и на теплоисточнике. Поэтому массово применяется усредненная температура исходной воды - зимой +5, а летом +15 градусов, что соответствует расходу тепла 0,055 и 0,045 Гкал/куб. метр (при температуре горячей воды 60 градусов). Такое понимание горячей воды не зависит от типа системы теплоснабжения, типа теплового пункта и совпадает с пониманием жителя, которого интересует, что течет из его крана.

Но во многих домах нормально функционируют циркуляционные системы ГВС и тепловая энергия в этом случае нужна не только для обеспечения параметров горячей воды, выливающейся из крана, а и на компенсацию потерь в полотенцесушителях, стояках и быстро распространяющихся системах теплых полов, которые частенько подключают к цикуляционному контуру ГВС. Эти затраты тепловой энергии уже давно было принято также относить на горячую воду, путем введения повышенных нормативов на подогрев кубометра воды. Так в горячей воде появилась еще одна, уже третья составляющая. Право на установление нормативов было дано муниципалитетам, которые, не смотря на наличие методических указаний Минрегионразвития РФ, иногда стали устанавливать норматив даже ниже исходного, не учитывающего циркуляцию.

Ситуация еще более обострилась из-за требования Санэпидемнадзора о повышении температуры горячей воды до 60 градусов (СНиП требовал не более 55 градусов) - теплосодержание в кубометре воды повысилось, а объем реализации ее наоборот - понизился. Надо было вводить компенсационное повышение норматива, но это, в свою очередь, приводило к повышению тарифа на горячую воду, что политически не приветствовалось.

Массовая установка приборов учета и применение современных водоразборных кранов еще более усугубили ситуацию - люди снизили потребление горячей воды, а потери с циркуляцией остались неизменными, и стали составлять до половины от расхода тепла на нагрев непосредственно потребляемой горячей воды. В крупных городах разногласия стали исчисляться сотнями миллионов рублей.

Рассмотрим варианты при разных схемах присоединения.

1 вариант - индивидуальный тепловой пункт (ИТП)

Прибор учета тепловой энергии установлен, как правило, только на входе в здание до теплового пункта и не может отдельно показать количество тепловой энергии затраченной на подогрев водопроводной воды и на отопление.

В редких случаях, обычно, когда ИТП принадлежит теплоснабжающей организации, приборы учета устанавливаются и после ИТП, отдельно на отопление и на горячую воду, либо только на горячую воду, а отопление рассчитывается по разнице.

В простом случае, владельцы отдельного нежилого здания закупают:

- при открытой системе - тепловую энергию и теплоноситель. Не выделяется теплоноситель, используемый на горячее водоснабжение и на компенсацию утечек в здании.

- при закрытой системе - водопроводную воду, тепловую энергию на ее подогрев и теплоноситель для компенсации утечек в системе отопления здания. Методика распределения оплаты за тепловую энергию между лицами, использующими отдельные части здания, государством не регулируется.

В многоквартирном жилом доме (МКД) у водоканала и теплоснабжающей организации закупаются такие же товары, но проблемы возникают при распределении оплаты за них между жителями.

Ставить дополнительные приборы учета тепловой энергии отдельно на горячую воду после ИТП не имеет смысла по следующим причинам:

  • приборы эти весьма дороги;
  • погрешность их, отнесенная не к расходу циркулирующей в здании воды, а к расходу воды, выливающейся из кранов, весьма велика;
  • тепло, содержащееся в горячей воде, используется и на цели отопления здания стояками ГВС, полотенцесушителями и с помощью теплых полов.

Проще ввести универсальную для всей страны простейшую формулу норматива расхода тепловой энергии, содержащейся в воде, выливающейся из крана:

q=(Т 1 -Т 2)/1000 [Гкал/м 3 ];

где T 1 - температура горячей воды, т.е. 60 градусов, Т 2 - усредненная температура водопроводной воды.

Тариф на горячую воду будет стабильным и неоспоримым, так как все особенности переменных циркуляционных потерь тепла в конкретном здании будут рассматриваться вне этого тарифа. Отпадает необходимость введения отдельного тарифа на нагрев горячей воды, являющегося переменным и непонятным для жителя, либо, что еще хуже, переменного тарифа на кубометр горячей воды, рассчитываемого по показаниям приборов учета ежемесячно.

Расход тепла в системе ГВС здания до водоразборных кранов (на циркуляцию) лучше относить к общедомовым нуждам и распределять не по количеству жителей, а по квадратным метрам, так же как на отопление. Даже если в квартире никто не зарегистрирован, то владелец ее будет оплачивать свою долю от этого расхода, что справедливо (другим более точным вариантом, является распределение по количеству ванных комнат).

Таким образом, при наличии прибора учета тепла в ИТП, расположенном в МКД, тепло в горячей воде принимается по универсальному нормативу на кубический метр потребленной горячей воды (по водомеру после ИТП), остальное тепло относится на отопление и распределяется пропорционально площади квартир. Переменность расхода тепла на циркуляцию жители будут воспринимать спокойно, так как платежи за отопление, пересчитываемые на квадратный метр, тоже переменны.

При завышении температуры горячей воды жители регулируют ее температуру смешивая с холодной, поэтому потребление тепла с ГВС практически не увеличится, но может увеличиться расход тепла с циркуляцией из-за более горячих труб полотенцесушителей или стояков, это тепло будет учтено общедомовым счетчиком и соответственно отнесено на отопление.

При занижении температуры горячей воды автоматически снижается учитываемый теплосчетчиком расход тепла, потому недоотпуск тепловой энергии на поддержание нормативной температуры ГВС автоматически будет учтен в отопительной составляющей (затраты тепла с циркуляцией приобретают отрицательные значения) и предлагаемый подход только заметно упрощает расчеты и делает их достаточно прозрачными.

Теплоснабжающей организации без разницы, как будет распределяться тепло, потраченное на нагрев горячей воды, по жителям или по квадратным метрам. А для самих жителей есть принципиальная разница - если потребление воды они регулируют сами, то регулировкой циркуляции должна заниматься управляющая компания. При небольшом водопотреблении оплата циркуляционных потерь может превышать плату за горячую воду. Учет этого факта принципиально меняет подход к энергосбережению в части горячей воды - экономить надо не только в квартире, но и во всем доме (контроль температуры, регулировка циркуляции, утепление трубной разводки, установка перемычек и кранов на полотенцесушители).

В рассматриваемом варианте товар - горячая вода появляется непосредственно в водоразборном кране при оказании услуги по горячему водоснабжению.

Затраты на содержание и эксплуатацию теплового пункта несет собственник, если это теплоснабжающая организация, то они учитываются в тарифе на тепловую энергию.

2 вариант - центральный тепловой пункт

Приборы учета тепловой энергии установлены на вводе в здание, один по отоплению, другой по горячей воде.

При открытой схеме - конструкция принципиально не отличается от случая с ИТП. Разница в том, что теплоноситель для целей горячего водоснабжения доставляется в дом не по общей трубе, а по отдельной.

Прибор учета тепловой энергии на вводе в дом показывает расход поступившего в дом теплоносителя, но количество тепловой энергии, потраченное теплоснабжающей организацией на его нагрев, прибор показать не может, у него нет сигнала от датчика температуры исходной водопроводной или артезианской воды. Приходится вручную вводить некую усредненную температуру как минимум в двух вариантах - для отопительного и неотопительного периодов.

Зато потребление тепловой энергии на обеспечение циркуляции тот же прибор рассчитывает без проблем. Циркуляционный расход равен расходу в обратном трубопроводе, а разность температур измеряется тут же.

Напрашивается простая схема аналогичная варианту с ИТП. Теплосодержание горячей воды устанавливается фиксированным (можно с двумя вариациями - лето/зима) и рассчитывается по простейшей формуле. Расход тепла на циркуляцию относится к общедомовым нуждам и распределяется пропорционально количеству квадратных метров и в период оплаты отопления приплюсовывается к ней.

Если теплоснабжающая организация, владеющая ЦТП, завышает температуру выше согласованной, то за превышение потребитель не платит. Периоды снижения температуры ниже требований СанПиН, фиксируются в архиве теплосчетчика, и этого достаточно для предъявления штрафных санкций. Но даже без предъявления штрафов в тепловычислитель прибора учета легко можно «вшить» программу снижения расчетного расхода тепла на циркуляцию пропорционально недогреву горячей воды.

При закрытой схеме на ЦТП для целей горячего водоснабжения подогревается водопроводная вода. По конструкции закона «О теплоснабжении» ЦТП являются частью тепловой сети, а тепловые сети предназначены для передачи теплоносителя. Замена этой конструкции на другую, потребует внесения огромных, неоправданных изменений в закон.

В то же время, введение понятия «горячая вода как теплоноситель, используемый на нужды ГВС» оказалось неоправданным, так как горячая вода в доме тоже стала бы теплоносителем и нормативные документы, регламентирующие отношения с горячей водой внутри дома, транслировались на теплоснабжающие организации. Также возникла бы методологическая сложность отнесения всего объема теплоносителя в открытой системе теплоснабжения к горячей воде, так как большая часть его рано или поздно будет использована на нужды горячего теплоснабжения.

Так что же циркулирует в тепловых сетях после ЦТП, к которым по закрытой схеме присоединены системы горячего водоснабжения потребителей (тепловых сетях ГВС)? Это не вода из системы холодного водоснабжения, так как изменился ее состав (содержание бактерий, железа и т.д.) и температура. В то же время это не теплоноситель из магистральных тепловых сетей, а какой-то другой теплоноситель, соответствующий всем его функциям (передача тепловой энергии, потери в сетях, возможность непосредственного использования). Похоже, что эту развилку можно преодолеть введением понятия циркуляционная вода.

Циркуляционная вода является фактически аналогом теплоносителя в открытой схеме теплоснабжения, который может изготавливаться не только на ЦТП, но и на теплоисточнике (малые ТЭЦ или котельные) при четырехтрубных тепловых сетях. Она также циркулирует по замкнутому контуру в тепловых сетях и также используется как непосредственно на цели ГВС, так и для передачи потребителям тепла через их теплопотребляющие установки - полотенцесушители и теплые полы.

Циркуляционная вода - вид теплоносителя в закрытых системах теплоснабжения, используемый в тепловых сетях после центральных тепловых пунктов для обеспечения нагрузки горячего водоснабжения.

В этом случае система отношений с потребителем, подключенным к ЦТП, будет точно такая же, как и при открытой схеме. Для упрощения расчетов стоимость циркуляционной воды принимается равной стоимости водопроводной воды, затраты на ее изготовление учитываются в составе тарифов на тепловую энергию.

Горячая вода образуется непосредственно в доме и ее стоимость складывается из стоимости циркуляционной воды (по тарифу на холодную воду) и стоимости нормируемого количества тепла на ее подогрев (по тарифу на тепловую энергию).

Охлаждение циркуляционной воды в здании учитывается прибором учета и распределяется между жителями по квадратным метрам как потребление тепловой энергии на общедомовые нужды (по тарифу на тепловую энергию). Потери в тепловых сетях ГВС остаются за теплоснабжающей или теплосетевой организацией.

3 вариант - отсутствие в доме циркуляции горячей воды

При таком варианте потери тепла на циркуляцию отсутствуют, но это не означает, что вода в трубной разводке не остывает. Так как теплоснабжающая организация не отвечает за отсутствие циркуляционных трубопроводов, расчеты за горячую воду должны вестись по фактической ее температуре. Фиксировать количество тепла в кубометре воды невозможно, так как невозможно измерить тепловые потери в трубной разводке.

Для таких случаев особую важность имеет теплоизоляция стояков, так как это способствует не только снижению потерь, но и предотвращает массовые сливы остывшей воды.

Вариант прямого разбора теплоносителя из батарей отопления может рассматриваться как утечка на внутридомовых сетях, с разнесением измеренных прибором учета теплоносителя и тепловой энергии по квадратным метрам площади квартир.

Распространенным сегодня способом получения горячего водоснабжения (ГВС) является использование магистрали тепловой сети. Используются два типа извлечения тепла - открытый и закрытый. До конечного же потребителя нагретая вода доставляется по циркулярному и тупиковому трубопроводу.

Получить горячую воду можно от централизованного источника или индивидуального. В первом случае нагретая вода поступает в жилые дома и организации по тепловой магистрали, а во втором используются персональные водонагреватели для подъезда, частного дома или отдельной квартиры.

Источником тепла для нагрева магистральной воды являются тепловые станции, котельные. Таким способом можно прокачать большие объемы воды, поэтому централизованная магистраль применяется для снабжения многоквартирных домов и целых микрорайонов. По способу извлечения тепла от магистрали системы ГВС делятся на открытые и закрытые.

Открытая система теплоснабжения

На улицах городов можно встретить трубы большого диаметра, укутанные в теплоизолятор - это и есть теплосеть. По ним течет горячая вода, нагретая на тепловой станции. К каждому, например, жилому дому, от такой трубы через подстанцию (ЦТП) проходит ответвление. По нему вода попадает в систему центрального отопления - батареи. В открытой системе ГВС горячая вода в водопроводный смеситель на кухне или в ванной поступает из того же источника, что и в батарею. Температура в системе ГВС может колебаться от +50˚С, до +75˚С. Но в магистрали она обычно намного выше, поэтому допускается ее смешивание с холодной водой. Такая процедура технически не всегда возможна, поэтому часто, особенно холодной зимой, температура горячей воды из крана близка к критической.

Открытый способ получения ГВС считается самым простым: нет необходимости в дополнительных элементах нагрева. При этом для соблюдения санитарных норм часто приходится очищать воду от загрязнений. Их наличие хорошо заметно при первом включении пробного отопления: вода в горячий кран приходит такая же, как и пропускаемая через окисленные после летнего простоя батареи. Качество получаемой воды напрямую зависит от износа отопительного оборудования и наличия фильтрующих элементов. Несмотря на это, открытая система довольно распространена благодаря ее массовому применению в советское время.

Закрытая система теплоснабжения

Этот метод также использует тепловую магистраль, как и описанный выше. Разница состоит в способе нагрева: если в открытом вода нагревается на ТЭЦ и напрямую поступает в дом, то при закрытом она имеет отдельный, выделенный контур. В него закачивается очищенная холодная вода, которая проходит через нагревательные теплообменники. Они в свою очередь забирают тепло от магистральной воды, нагретой ТЭЦ. Той самой, которая напрямую подается при открытом способе ГВС. Возможны и иные источники тепла, но самым распространенным является конвекция, передача тепла от ГВС открытого типа.

При таком способе качество воды никак не зависит от труб центрального отопления. Для закрытого метода необходимо наличие теплообменников, дополнительных насосов, что повышает себестоимость при переходе с открытого типа на закрытый. Но возможна и последующая экономия из-за стабильности заданных температурных режимов: в открытом типе часто приходится излишне греть магистральную воду из-за ее разделения для нужд отопления и бытовых целей. Также выигрывает закрытая система по органолептическим и бактериологическим показателям. Температура воды в доме всегда стабильная и не зависит от температуры воздуха зимой, как в открытом методе получения ГВС. Однако приготовить горячую воду мало, надо ее еще без потерь доставить в дома или квартиры. Сегодня существуют два варианта подачи - циркулярный и тупиковый.

Циркулярный способ подачи

В нем нагретая жидкость постоянно циркулирует по замкнутому кругу ТЭЦ или котельная, магистраль, подстанция, водопровод и назад. Сделано это по ряду причин, среди которых большое количество абонентов, потери тепла при простое воды. На практике такой способ позволяет получить из крана горячую воду моментально. Она всегда в пути и готова к использованию. При ее остановке произойдет остывание, что чревато большими потерями. В высотных домах для этого используется разделение стояка на блоки или дополнительные насосы.

Возможны при циркулярном способе и небольшие трудности: все владельцы полотенцесушителей в ванной комнате знают о невозможности уменьшить их жар в летнее время года: нагретая вода в них циркулирует круглосуточно и круглогодично. Единственным способом корректировать температуру этого устройства будет монтаж крана-регулятора и врезка дополнительной трубы, по которой жидкость будет течь при закрытом кране на полотенцесушителе.

Тупиковый способ подачи

Здесь система горячего водоснабжения работает менее эффективно: потребитель имеет законченный, тупиковый водопровод. В нем присутствуют только подающие воду трубы, лишенные возвратного контура. Нагретая жидкость движется при открытии крана смесителя, а при его закрытии вода в трубе останавливается и постепенно остывает. На практике это означает, что при длительном, в частности ночном, бездействии смесителя из крана сначала потечет прохладная вода и только потом горячая. Тупиковый способ подачи обычно используется в частных домах, подключенных к водопроводу. В последнее время именно тупиковый метод подключения стал популярным из-за распространения индивидуальных нагревателей - бойлеров.

Локальные системы ГВС

Бойлер для горячей воды является альтернативой любой системе ГВС при ее отсутствии или запасным вариантом на случай традиционного летнего отключения. Источником тепловой энергии является газ или электричество. Также бойлеры подразделяются на проточные и накопительные. В первом случае холодная вода из крана пропускается через нагреватель и сразу выводится наружу. Второй более основательный, и в нем нагретая вода до желаемой температуры хранится в резервуаре емкостью до 200 л. Слив ее производится через обычный смеситель, который подключен через запираемый разветвитель на бойлер и магистральный горячий водопровод.

Локальные системы ГВС могут применяться и на весь многоквартирный дом в индивидуальном порядке. Такое иногда используется в новостройках, которые оборудованы автономным тепловым пунктом. По сути это один большой бойлер на весь дом. Такая независимая система позволяет экономить на транспортировке горячей воды по длинной магистрали и практически исключает традиционные летние отключения на регламентные работы.

Какая бы система горячего водоснабжения не использовалась, каждая из них обладает плюсами и минусами. На качество горячей воды могут влиять не только наличие/отсутствие тупикового водопровода, но и давление холодной воды в магистрали. При его увеличении и плохой работе смесителя порой трудно добиться идеального баланса холодной и горячей воды на выходе. Если в доме часто случаются отключения ГВС, то стоит приобрести и установить бойлер: его присутствие поможет комфортно пережить время ремонта тепловой магистрали.

Привет всем! Система горячего водоснабжения при централизованном теплоснабжении бывает двух видов: открытая и закрытая. В этой статье рассмотрим подробнее именно открытую схему ГВС. Прежде всего в чем принципиальное отличие этих двух схем. При открытой схеме ГВС водоразбор горячей воды ведется непосредственно из тепловой сети, то есть говоря проще, горячая вода из крана смесителя бежит та же самая, что и в радиаторах отопления.

Присоединение системы горячего водоснабжения производится непосредственно в тепловом пункте здания. На фото ниже видно, как это происходит. Одно ответвление врезано с подающего трубопровода,

а второе ответвление с обратного трубопровода.

Две эти ветки смешиваются в регуляторе температуры горячего водоснабжения, функция которого выдавать потребителю горячую воду с необходимыми параметрами, а именно не ниже 60 °С для открытой схемы ГВС, и не выше 75 °С и для для закрытой и для открытой схемы согласно СНиП 2.04.01-85 «Внутренний водопровод и канализация зданий».

И уже после регулятора температуры горячая вода поступает во внутреннюю систему ГВС здания.

Закрытая схема ГВС характеризуется тем, что контур горячей воды отделен от контура отопления. То есть вода через подачу поступает в отопительный контур, проходит через внутреннюю систему отопления здания (трубы, радиаторы) и возвращается в обратку, попутно через теплообменник нагревая в тепловом пункте здания контур горячего водоснабжения. Горячее водоснабжение циркулирует отдельно по своему контуру, а водоразбор в здании компенсируется подпиткой из линии холодного водоснабжения. Такова суть и разница этих двух систем ГВС.

Для закрытой системы ГВС существуют несколько типов схем — одноступенчатые, двухступенчатые, параллельные, последовательные. Открытая же система ГВС подключается именно по такой схеме, как на фото в статье ниже.

Для открытой схемы ГВС существуют вариации — циркуляционная и тупиковая разводка. Как становится понятно из наименований этих схем, при циркуляционной схеме горячая вода циркулирует по внутренней системе ГВС, и в идеале, когда вы открываете кран с горячей водой, горячая вода должна бежать оттуда практически сразу. Но это в идеале, и далеко не всегда так бывает.

Тупиковая схема — при этой схеме горячая вода не циркулирует в системе, и чтобы получить воду нужной температуры, ее нужно сбросить через кран. То есть открываете кран, ждете когда сольется остывшая вода, затем льется уже горячая вода.

Открытая система ГВС в процентном соотношении более распространена, так как стоимость монтажа относительно невелика (меньше расход труб и отсутствие теплообменников). Лично я в подавляющем количестве обслуживаемых зданий сталкивался и сталкиваюсь именно с открытой системой ГВС. Но кроме достоинств (относительно небольшие капиталовложения при монтаже, простота конструкции) есть у такой схемы и недостатки.

Прежде всего, качество воды при такой схеме должно соответствовать питьевой воде, то есть в воду не должны попадать нефтепродукты, например от сальниковой набивки на задвижках большого диаметра, не должна попадать ржавчина, окалина, в воде не должно быть излишнего количества солей жесткости. К сожалению, не всегда это соблюдается. Вот например, в городе где я живу, практически не сталкивался с проблемой низкого качества воды в системе горячего водоснабжения. Вода в системе ГВС соответствует нормативам. Но знаю, что не везде, не во всех городах ситуация одинаковая.

И вторая беда открытой схемы ГВС — частый выход из строя регулятора температуры ГВС, его некорректная работа в общей схеме. Об этом я писал в .

Буду рад комментариям к статье.