Центровка и выверка валов. Центровка валов при помощи одной пары радиально-осевых скоб


Коллинеарность (соосность) валов считается идеальной, когда центры валов находятся на одной осевой линии. Соответственно несоосность показывает обратный результат. Последствия нарушения коллинеарности выражаются следующими моментами:

  • преждевременный выход из строя подшипников, сальников, муфтовых соединений;
  • усиление осевой и радиальной вибрации;
  • повышение температуры нагрева подшипниковых узлов и смазывающей жидкости;
  • ослабление или поломка элементов крепежа к фундаменту.

Для центровки валов агрегатов удобно применять измерительные наборы, подобные серийным от фирмы Baltech

Когда проверяется, например, коллинеарность муфтового соединения насоса и электродвигателя, определяется как стационарный, а вал электродвигателя как подвижный. Центровка соединения всегда производится, исходя из положения подвижного вала относительно стационарного.

Центр вращения стационарного вала

Центр вращения стационарного вала – это опорная линия с нулевыми координатами. В системе координат X-Y плюсовыми значениями являются перемещения вправо по горизонтали и вверх по вертикали.

Несоосность вычисляется путём определения положения центра подвижного вала в двух плоскостях, относительно положения центра оси стационарного вала (горизонтальная ось X и вертикальная Y).

Горизонтальная коллинеарность

Состояние несоосности (вид сверху), которое корректируется перемещением электродвигателя в боковых направлениях по оси X – это горизонтальная центровка.

Один индикатор определяет отклонения по оси X, другой по оси Y. Удобный, эффективный, недорогой инструмент, помогающий быстро центровать, к примеру, муфтовое соединение между электродвигателем и насосом.

Пошаговая инструкция центровки пары электродвигатель-насос

  1. Проверить правильность установки рамы агрегата на фундаменте при помощи строительного уровня. Выполняется эта операция в продольном и поперечном направлениях.
  2. Если расстояние между анкерными болтами рамы превышает 800 мм, установить под раму дополнительные подкладки в центральной точке межанкерного расстояния. Подкладки должны плотно прилегать к раме и фундаменту.
  3. Ослабить болты крепления насоса и болты крепления подшипниковой опоры. Убедиться, что на подшипниковую опору не действуют какие-либо нагрузки.
  4. Затянуть крепёжные болты на основании насоса, оставив ослабленным крепёж подшипниковой опоры.

На картинке несколько первых шагов, показывающих как выполняется центровка валов агрегатов

Дальнейший процесс центровки:

  1. Измерить величину зазора между муфтами электродвигателя и насоса. Эта величина не должна превышать значений 3-5 мм. В случае несоответствия, ослабить крепление электродвигателя и выставить мотор на место до получения указанных цифр. Получив результат, закрепить двигатель.
  2. Проверить свободный ход вращения, прокручивая валы агрегата вручную. Свободное вращение, без наличия заеданий – свидетельство корректного состояния устройств.
  3. Используя червячные хомуты, разместить на полумуфтах механизм центровки. Основная и ответная часть механизма устанавливаются с осевым зазором между ними в 2-3 мм. При вращении валов, они не должны соприкасаться.
  4. Закрепить к механизму центровки индикаторы часового типа и приступить к операции центровки валов электродвигателя / насоса.

Процесс центровки пары мотор / насос часовым индикатором


Индикаторы часового типа нужно установить так, чтобы без затруднений снимать показания

Индикаторами часового типа измеряют боковые зазоры (А) и угловые зазоры (В). Для этого приборы закрепляют на оснастке с таким расчётом, чтобы их наконечники упирались в тело полумуфт на валу двигателя и насоса. Также при установке приборов следует учесть удобство считывания показаний.

Упирают измерительные стержни индикаторов в тело полумуфт с выбегом в 2-3 мм по шкале. Затем вращением ободков приборов совмещают стрелки с нулевой отметкой. Начинают измерение в четырёх пространственных точках:

  1. Первыми измеряют зазоры А и В верхнего положения.
  2. Поворачивают валы на 90º в направлении рабочего вращения привода.
  3. Вновь измеряют зазоры А и В по среднему положению.
  4. Повторяют процедуру для двух оставшихся положений.

Последним контрольным замером – пятым по счёту, будет повторное измерение в начальной верхней точке. Полученные цифры замеров в 1 и 5 положениях должны совпадать.

Последствия нарушения центровки валов


Такими обещают быть последствия посредственного подхода к центровке валов агрегатов

Изменения параметров центровки валов (соосности), прежде всего, вызывают эффект вибрации. Влияние вибрации на муфту и на близко расположенные подшипники очевидно: детали подвергаются ускоренному износу.

На муфте изнашивается эластичная вставка, появляются дефекты подшипников мотора и насоса, . Если же перекос осей значительный, в конечном итоге неизбежен срез вала.

О том, как центруют валы агрегатов анализатором часового типа

Центровка по образующей муфты с помощью линейки

Применяется при грубом центрировании валов. Линейку прикладывают к образующей первой полумуфты по оси вала в вертикальной и горизонтальной плоскостях. Визуально определяют радиальный зазор и угол наклона между линейкой и 2-0й полумуфтой, определяют величины сдвига опор

Точность такого способа не больше 500 мкм с учетом погрешности изготовления и дефектов поверхности до 1000 мкм.

Центровка по полумуфтам при помощи щупов

На одной из полумуфт жестко крепится измерительная стойка, нависающая над 2-ой полумуфтой. Измерение зазоров производят в 4-х положениях поворотом валов на угол 0º, 90º, 180º, 270º. При каждом положении замеряют радиальный и угловой зазоры (Р и а). В случае правильного выполнения зазоров выполняются равенства P 1 +P 3 = P 2 + P 4 ; a 1 + a 3 = a 2 + a 4 . Радиальный зазор – между щупом и поверхностью полумуфты; угловой – между торцами полумуфт возле точки измерения Р.

Центровка валов способом «обхода одной точкой»

В тех случаях, когда нет возможности поворота одного из валов при центровке, зазор между полумуфтами и величину радиального смещения измеряют при повороте только одного вала. При повороте одного из валов, с помощью набора щупов, контролируется зазор Р между штифтом и образующей полумуфты в радиальном направлении. Угловое смещение определяется как разность зазоров между полумуфтами, в вертикальной и горизонтальной плоскостях. Для того чтобы измерения проводились в одних и тех же точках на неподвижной полумуфте делают риски, относительно которых и производят измерения.Точность такой центровки очень низкая (300..500 мкм).

Центровка с помощью радиально-осевых скоб

Центровка при помощи одной или двух пар скоб (рисунок 5)

Данный способ центровки имеет высокую точность по сравнению с рассмотренными и не зависит от качества изготовления полумуфт. Для измерения зазоров используют штангенциркули, щупы и микрометры. Приспособление с одной парой применяют для агрегатов без осевого перемещения валов. Для компенсации осевых смещений при повороте используют две пары скоб. Угловая расцентровка на таких приспособлениях рассчитывается как разность двух пар (величин зазоров) скоб, измеренных при 180 0 и 0 0 .


Для приспособления с одной парой скоб расчет аналогичен случаю центровки при помощи щупов. Точность достигает 20-30 мкм, но данный способ требует больших затрат времени 12-16 часов) для 2-х - 4-х человек.

Центровка насосного агрегата с помощью индикаторов часового типа.

Перед соединением роторы должны быть расположены так, чтобы их упругие линии явились продолжением друг друга без смещения и излома (рисунок 1). Нарушение центровки влечет за собой повышенную вибрацию установки.

Центровочное приспособление включает в себя 3 индикатора часового типа. Индикатором Р измеряют радиальное расцентрирование, индикаторами А и В – осевое центрирование. Пределы измерения приборов от 0 до 10мм.После предварительной центровки устанавливают и настраивают приспособление. Показания фиксаторов в исходном положении фиксируют А 0 , В 0 и Р 0 . После поворота муфты на 180 0 снова снимают показания индикаторов А 1 , В 1 и Р 1 .

Коэффициент радиального смещения определяют по формуле:

Коэффициент радиального смещения находят по формуле:

Для определения коэффициентов радиальных и осевых смещений находят величины коррекции для передней и задней опор: где D – расстояние между точками опор индикаторов А и В. При полож значении коррекции опору приподнять, а при отриц – опустить соответс на вел V и H. Центровочные приспособления с лазерными излучателями используютсядля центровки оборудования с высокими требованиями на соосность валов. Отклонения от соосности измеряются при этом с точностью 1 мкм. Достоинства : -возможность компенсации влияния внешней вибрации; -для контроля соосности достаточно поворота валов на 60°;-высокая точность измерений. Недостатки отсутствие учета осевых смещений

Говорят, что валы сосны (коллинеарны), когда их центры вращения лежат на одной линии.

Рис.1.2 Соосность

1.3. Несоосность

Валы несоосны, если их центры вращения не лежат на одной линии во время работы машины.


Рис.1.3 Несоосность

1.4. Стационарные и подвижные машины

Когда центруют две машины, одну из них определяют как стационарную, а вторую – как подвижную. Обычно, приводные машины (например: насос) считаются стационарными, а приводы – подвижными (например: электродвигатели). Поэтому центровка выражается в определении положения подвижной машины относительно стационарной. В валопроводах , где составлены несколько машин (3, 4 или 5) чаще всего в качестве стационарной назначается самый тяжелый агрегат (например: редуктор).


Рис.1.4 Стационарная и подвижная машины

Центр вращения стационарной машины – это опорная линия, принятая за ноль. Несоосность определяется нахождением положения центра вращения подвижной машины относительно стационарной машины в двух плоскостях, горизонтальной (X) и вертикальной (Y).


Рис.1.5 Центр вращения стационарной машины – опорная линия. В системе координат плюс – это направление вправо по горизонтали и вверх по вертикали. Символы показывают часовые значения, соответствующие 9-и и 3-м часам по оси Х и 12-и часам по оси Y.


Рис.1.6 Положение подвижного центра вращения относительно стационарного

1.5. Горизонтальная центровка

Состояние несоосности, при виде сверху, корректируемое перемещением машины в боковом направлении, называется горизонтальной центровкой.


Рис.1.7 Горизонтальная центровка

1.6. Вертикальная центровка

Состояние несоосности, при виде сбоку, корректируемое подкладками (или самовыравнивающимися элементами Балтех) под передние и задние лапы машины, относится к вертикальной центровке


Рис.1.8 Вертикальная центровка

1.7. Виды несоосности

Большей частью обсуждения вопроса центровки валов начинаются с определения двух типов несоосности: параллельной и угловой. Наглядно они представлены на следующих рисунках.


Рис.1.9 Параллельная несоосность


Рис.1.10 Угловая несоосность

Эти иллюстрации соответствуют действительности, хотя они и акцентируют внимание на муфтовом соединении. На многих производствах центровка муфт выполняется прикладыванием линейки для устранения смещения и щупов для устранения раскрытия муфт. Глядя на специфичную точку вдоль линии вала, многие люди заменяют понятие «смещения» термином «параллельная несоосность». Такая трактовка подразумевает то, что оси вращения обеих валов расположены на равном расстоянии друг от друга во всех точках вдоль их длины.

В подавляющем большинстве случаев такой параллельности НЕ СУЩЕСТВУЕТ потому, что оба типа несоосности – параллельная и угловая – присутствуют всегда одновременно.

1.8. Смещение вала

Смещение – это отклонение положения от известной опорной точки. Смещения характеризуются величиной и направлением отклонения. При центровке валов смещением называют отклонение оси вращения одного вала относительно другого в заданной точке (или плоскости) вдоль его длины.

Замечания к рисунку ниже:

  • Смещение относится к оси вращения вала подвижной машины относительно вала стационарной.
  • В точке 1 ось вращения подвижного вала расположена на 0,35 мм ниже.
  • В точке 2 ось вращения подвижного вала расположена на 0,12 мм ниже.
  • В точке 3 ось вращения подвижного вала расположена на 0,05 мм выше.
  • В точке 4 ось вращения подвижного вала расположена на 0,38 мм выше.


Рис.1.11 Смещение вала. Отклонение оси вращения одного вала относительно оси вращения другого в заданной точке (или плоскости) по длине вала.

Важно запомнить, что наша цель центровки – сделать оси вращения обеих валов соосными так, чтобы исключить смещение во всех точках по длине вала.

1.9. Угловая несоосность

Угловую несоосность проще определять как угловое взаиморасположение осей вращения двух валов. В большинстве примеров, связанных со смещением, опорный вал изображают параллельно (хотя это довольно редкая ситуация) для простоты восприятия. Поскольку два вала редко бывают параллельны, в нашем примере изображен подвижный вал наклоненным по отношению к опорному валу.


Рис.1.12 Угловая несоосность. Угловое взаимоположение осей двух валов.

Наклон может быть просто оценен, сначала определением разницы между смещениями вала, измеренными в двух плоскостях, ортогональных линии опорного вала, (смещение 1 – смещение 2), и делением этой разницы на расстояние между точками пересечения этих плоскостей с линией вала.

1.10 Обзор допусков на центровку

«ДОПУСКИ ЦЕНТРОВКИ» - предмет многих дебатов и один из часто задаваемых вопросов.

  • Насколько плоха она может быть и до каких значений можно считать ее хорошей?
  • Какова вибрация механизма?
  • Какова частота вращения вала машины?
  • Сколько времени затратить на эту работу?
  • Какие подшипники установлены в машине?
  • Как долго служат подшипники?
  • Критична ли машина на рабочих режимах?
  • Каков тип муфтового соединения?

Все ответы на эти вопросы важны; более важны на высокооборотных механизмах и критичных машинах, но для простоты мы спрашиваем о том, «НАСКОЛЬКО ТОЧНЫ мы должны быть?»

1.11. Пример таблицы допусков на центровку

Пока принимаются окончательные решения о принятии допусков на центровку отдельными предприятиями, основываясь на типе механизмов и условиях их работы, можно пользоваться общей таблицей допусков на центровку.

Частота вращения Угловая несоосность Параллельное смещение
Об/мин мм /100 мм мм
Отлично Допустимо Отлично Допустимо
0-1000 0,06 0,10 0,07 0,13
1000-2000 0,05 0,08 0,05 0,10
2000-3000 0,04 0,07 0,03 0,07
3000-4000 0,03 0,06 0,02 0,04
4000-5000 0,02 0,05 0,01 0,03
5000-6000 0,01 0,04 <0,01 <0,03
Табл. 1.1 Таблица допусков рекомендуемая компанией Балтех

Выверка и наладка передач, соединяющих валы двигателя и машины, необходимы для нормальной работы электропривода. Они выполняются в процессе монтажа электропривода и заключаются в том, чтобы добиться необходимого расположения электродвигателя относительно закрепленной рабочей машины. Их взаимное расположение определяется видом передач. Различные передачи выверяют различными способами.

Достаточно трудоемкой является выверка непосредственных соединений валов электродвигателя и рабочей машины или механизма с помощью муфт. Для нормальной работы электропривода здесь требуется такое взаимное расположение ЭД и производственного механизма, при котором оси их валов находились бы на одной прямой линии. Подобную выверку передачи часто называют центровкой. Добиться точного выполнения этих требований бывает трудно, поэтому допускаются некоторые отклонения от них. К высокоскоростным электроприводам и жестким соединениям (например, с помощью поперечносвертной муфты) предъявляются более жесткие требования, чем к низкоскоростным электроприводам и эластичным (упругим) соединениям.

Непосредственные соединения выверяют в два приема: предварительно и окончательно. Предварительная выверка может выполняться с помощью металлической линейки (без специальных приспособлений) следующим образом. Линейку прикладывают ребром к ободу в верхней точке полумуфты на валу машины и проверяют, есть ли зазор между ребром линейки и второй полумуфтой. При наличии зазора под лапы электродвигателя подбивают стальные прокладки толщиной 0,5-0,8 мм до его ликвидации. Если таких прокладок требуется более трех-четырех, их заменяют одной соответствующей толщины, так как большое число прокладок нарушает центровку двигателя при закреплении. Осевое смещение определяют, прикладывая линейку к боковым поверхностям полумуфт, а осевые зазоры устраняют поворотом электродвигателя в горизонтальной плоскости.

При высокой точности центровки пользуются специальными скобами, которые закрепляют на ступицах обеих полумуфт с помощью болтов и хомутов (рисунок 8, а). Зазоры А и Б замеряют с помощью щупов в четырех точках по окружности через 90°, начиная с верхней точки. Изменяя положение вала электродвигателя, добиваются равенства одноименных зазоров при любом угле поворота.

Рисунок 8 – Выверка соосности валов электродвигателя и машины при соединении их муфтами:
а - с помощью скоб; б - с помощью изогнутых проволок; 1 - вал машины; 2 - скобы; 3 - вал электродвигателя; 4 - проволока; 5 - полумуфты.

Выверку соединений муфтами валов двигателя и рабочей машины в производственных условиях часто выполняют с помощью двух жестких проволок, закрепленных на ступицах обеих полумуфт. Свободные концы предварительно заточенных на конус проволок загибают навстречу друг другу буквой Г (рисунок 8, б). Между остриями стрелок оставляют небольшой зазор (до 1 мм). Обе полумуфты скрепляют болтом (не жестко) и вращают от руки. Изменение зазоров между проволочками в очках 0°, 90°, 180° и 270° замеряют щупом или определяет визуально. При вращении полумуфт добиваются такого положения двигателя в вышеуказанных точках, чтобы зазоры не изменялись.

Электродвигатели с выверенной передачей закрепляет на опорном основании с помощью болтов и гаек и снова выверяют точность установки, так как при закреплении центровка может быть нарушена.

При выверке ременных передач добиваются, чтобы валы электродвигателя и рабочей машины были параллельны, а поперечные оси шкивов находились на одной прямой. Несоблюдение этих условий при плоскоременной передаче приводит к спаданию ремня, а при клиноременной - к преждевременному ее изнашиванию.

В зависимости от межосевого расстояния выверку можно осуществлять металлической линейкой (при малом), либо с помощью нитки или тонкой проволоки (при любом межцентровом расстоянии). При одинаковой ширине шкивов двигатель перемещают до тех пор, пока натянутая нитка не коснется одновременно четырех диаметрально противоположных точек на торцах обоих шкивов. Если межцентровое расстояние небольшое, то для этой цели удобнее пользоваться металлической линейкой, которую прикладывают к шкивам боковой поверхностью (ребром) и добиваются касания четырех диаметрально противоположных точек шкивов.

Если ширина шкивов различная, выверочную линейку прикладывают ребром к двум диаметрально противоположным точкам на торце большего шкива и добиваются, чтобы зазоры между линейкой и крайними точками на торце меньшего шкива были равны половине разности ширины шкивов. В случае, если межосевое расстояние больше длины линейки, то выверить передачу можно с помощью отвесов, переброшенных через поперечные оси шкивов, под которыми натянута нитка.

После выверки передачи электродвигатель закрепляют на опорном основании, передачу закрывают защитным кожухом, обмотки двигателя соединяют по соответствующей схеме и подключают к источнику питания.

Рисунок 9 – Выверка установки электродвигателя с ременной передачей при разной ширине шкивов

Перед окончательным закреплением выверяют горизонтальное положение двигателя, а также совпадение его оси с осью вала приводимого механизма (выверка линии валов). При ременной передаче такую выверку выполняют с помощью стальных линеек, прикладываемых к торцам шкивов (при одинаковой их ширине). Если ширина шкивов разная, выверку делают шнуровыми отвесами (рисунок 9). От приводимого шкива до пола опускают два отвеса Л и Б и протягивают между ними шнурок, образующий прямую линию. От середины шкива электродвигателя тоже опускают два отвеса В и Г и перемещают электродвигатель до совпадения отвеса его шкива со шнуром.

Необходимость центровки валов возникает как при монтаже нового оборудования, так и при его ремонте и техническом обслуживании. Существует несколько ее методов: с помощью оптических или лазерных приборов, штангенциркулем, щупами, бесконтактными датчиками, а также приспособлениями с индикаторами часового типа. Как практически использовать последние, чтобы получить информацию о реальном положении валов и восстановить их соосность, рассказывают специалисты OOO «Кречина».

Компенсационные возможности муфт

Как уже известно, задача центровки - установить оси валов так, чтобы они составляли одну прямую линию. Понятие «ось» само по себе идеально, а в жизни приходится иметь дело с реальными предметами (деталями машин), у которых всегда есть погрешности изготовления. Поэтому, чтобы избежать возникновения нагрузок от несоосно вращающихся валов, применяют компенсирующие соединительные муфты. Они способны передавать крутящий момент от привода рабочему органу с некоторой расцентровкой валов, компенсируя возникающие нагрузки своими упругими элементами. Допуски на центровку валов агрегатов задаются в зависимости от типа соединительной муфты и рабочей скорости вращения роторов агрегата.

ООО «Кречина» является официальным дистрибьютером немецкого завода KTR Kupplungstechnik GmbH. Муфты производимые KTR отличаются прецизионной всесторонней обработкой, что позволяет за измерительную базу для контроля соосности валов брать поверхность полумуфт. Компания Продукция завода KTR всегда отличалась качеством и долгим сроком служения, в том числе среди достоинств их продукции числится и компенсирование достаточно большой несоосности. Так среди последних инноваций можно отметить введение нового материала T-PUR для зубчатых венцов Rotex. Так как при большой несоосности валов, в эластомере при работе деформации образуется тепло, то происходит постепенное разрушение муфты. Новый эластомер выдерживает пиковые температурные нагрузки до 150°C.

Обычная муфта ROTEX является однокарданной соединительной муфтой и рассчитана на работу в условиях отсутствия центровки в пределах (максимальные значения):

  • угловая несоосность — до 0,7°;
  • смещение — 0,3 - 1,5 мм.

Для нормальной работы муфты в условиях больших перепадов температур или для более высокой несоосности используются двухкарданные муфты ROTEX DKM и необслуживаемые зубчатые муфты BOWEX - рассчитанные на компенсацию большей несоосности.
Правильно подобранная муфта под Ваше оборудование, с учетом существующей угловой несосности, смещения, больших перепадов температур и расчитанных под крутящий момент и момент инерции Вашей установки обеспечит долгий срок службы и экономию Ваших денег.

Основы центровки часовыми индикаторами

Для удачной центровке валов необходимо выполнить следующие условия:

1. Узнать величину прогиба часового индикатора (если имеется):
Прогиб выносного элемента с навешенными на него индикаторами определяется собственно изгибом штанги, на которой закреплены индикаторы, а также других частей крепления этого устройства на полумуфтах. Изгиб происходит в результате действия сил гравитации и не может быть совсем исключен в большинстве случаев центровочных работ.
Во всех случаях центровки необходимо прилагать все усилия к минимизации суммарного прогиба. Если это не осуществимо, повторные измерения часто не совпадают и, в связи с этим возникают различные ошибки. Если же величина прогиба известна и постоянна, то она может быть скомпенсирована в процессе расчета центровки.

2. Убедится в отсутствии люфта (неплотное прилегание лапы двигателя к платформе на которой он установлен в следствии отсутствия идеально ровных поверхностей).

3. Жестко закрепить штатив с установленным часовым индикатором на одном валу.

4. Убедиться в отсутствии колебаний штатива.

После выполнения вышеперечисленных условий, можно приступать к измерениям. Установите часовой индикатор в положение 12:00 как показано на рис. 1 (шток индикатора должен касатся самой верхней точки вала, как на рисунке 2).

Рисунок 1

Обнулите индикатор (так как шкала на часовом индикаторе подвижная, совместите ноль на шкале с положением стрелки индикатора), а затем проверните вал и запишите показания индикатора в положении 6:00 (нижняя крайняя точка вала). Получаем результаты для вертикального смещения, чтобы измерить горизонтальное смещение делаем аналогичные измерения в положении 9:00 (обнуляем индикатор) и 3:00. При измерениях таким способом разница в показаниях индикаторов равна удвоенной величине смещения. Вам необходимо поделить эту разницу на 2 для определения смещения. Например при измерении получаем разницу в 0,5 мм, значит величина смещения равна 0,25 мм.

Рисунок 2

При этом получаем, что если разница получается отрицательная, значит для вертикального смещения вал на котором установлен штатив находится ниже второго вала, для горизонтального смещения при отрицательной разнице второй вал смещен влево.

Для измерения угловой несоосности штатив оставляем на месте, а индикатор монтируем в контакте с консолью. Пример монтирования индикатора указан на рис. 3.

Рисунок 3

Консоль должна быть установлена под 90° по отношению к валу. Как и в случае со смещением, производим измерение в положениях 12:00 и 6:00 для вертикальной, 9:00 и 3:00 для горизонтальной угловой несоосности. При измерениях таким способом величина угловой несоосности равна разнице в показаниях индикаторов, деленной на диаметр измерительной окружности. Например при измерении получаем разницу в 5,0 мм, а диаметр описываемый штоком индикатора - 100 мм, значит угловая несоосность составляет 0,05 мм.

После вычисления, с помощью калибровочных пластин (рис. 4), подкладываемых под «лапы» двигателя, избавьтесь от угловой и радиальной несоосности. Более трех калибровочных пластин подкладывать под одну лапу запрещается.

Рисунок 4

По вопросам центровки валов обращаться в ООО «Кречина»,