Вакуумные системы и установки. Вакуумная техника


Компания ЗЭНКО ПЛАЗМА, в сотрудничестве с FHR Anlagenbau GmbH (Германия), предлагает системы вакуумного напыления для задач микроэлектроники, фотовольтаики, сенсоров, оптики, МЭМС, органических дисплеев (OLED), для производства архитектурного стекла. Компанию FHR отличает высочайшее немецкое качество сборки, собственный парк оборудования для демонстрационных процессов, возможность изготовить практически любую систему на заказ и более чем 20 летний опыт в производстве высокотехнологичного оборудования. В тоже время, FHR входит в холдинг Сentrotherm photovoltaics AG – один из мировых лидеров в производстве оборудования для фотовольтаики, микроэлектроники, полупроводникового производства. ЗЭНКО ПЛАЗМА производит консультирование, поставку, пуско-наладку, гарантийное и пост гарантийное обслуживание.

Предлагаются системы вакуумного напыления следующих серий:

Roll-to-Roll - промышленные системы магнетронного или термического напыления металлических, оксидных и нитридных слоев на полимерные и металлические пленки (по принципу с рулона на рулон) шириной до 2400 мм (2,4 м). Данные системы применяются при обработке рулонных материалов на основе тонких металлических и полимерных пленок, в пищевой промышленности, в производстве гибкой (органической) электроники, гибких солнечных элементов (тонкопленочные технологии CIGS, CdTe, a-Si), для осаждения оптических покрытий с высокой отражающей способностью, барьерных, проводящих, изолирующих слоев. Поддерживают следующие технологические процессы: магнетронное напыление (DC, MF, RF режимы), зачистка поверхности ионным пучком, сухое травление, термическое напыление, термический отжиг, плазмохимическое осаждение (PECVD).В зависимости от процесса, возможна конструкция с вакуумным загрузочным шлюзом.

Line – промышленные системы вакуумного напыления с горизонтальной или вертикальной обработкой стеклянных или металлических подложек размером до 2,2 м в ширину и длиной до 4 м. В основном применяются для напыления прозрачных проводящих оксидов (TCO) в производстве тонкопленочных солнечных элементов; в производстве архитектурного стекла для улучшения коэффициента теплопередачи, светопропускания; в производстве дисплеев (в т.ч. OLED), в области нанесения защитных покрытий. Поточная линия обработки, обеспечивает высочайшие показатели производительности и качество напыляемых пленок. Возможна индивидуальная конфигурация в зависимости от размеров подложки, производительности и параметров процесса напыления.

Star – данная серия представляет собой системы кластерного типа с одиночной обработкой для мелкосерийного производства и НИОКР в области микроэлектроники, оптики, МЭМС, датчиков. Позволяет работать как с одиночной загрузкой пластин диаметром до 300 мм, так и с кассетами. Центральный робот обеспечивает перемещение подложки между технологическими модулями системы. Может оснащаться шлюзом загрузки пластин, технологическими модулями: травления (PE, RIE), термического испарения, электронно-лучевого испарения, термического отжига (RTP/FLA), магнетронного напыления, плазмохимического осаждения (PECVD, CVD), атомно-слоевого осаждения (ALD). Системы данной серии актуальны, когда необходимо иметь несколько технологических процессов в пределах одной установки. Возможна установка в условиях чистых комнат через стену.

Boxx – системы напыления данной серии обеспечивают групповую обработку подложек при производстве небольших партий оптических систем, МЭМС и датчиков. Системы могут оснащаться вакуумным шлюзом загрузки. Загрузка подложек осуществляется вручную на вращающийся барабан внутри рабочей камеры. Во время вращения барабана, подложки проходят различные секции магнетронного напыления (DC, RF), что позволяет напылять несколько материалов в одном процессе. Секция плазменной очистки поверхности устанавливается по необходимости. Опционально, возможно установить до нескольких таких барабанов, использовать шлюзовую загрузку, а также обеспечить нагрев подложек во время процесса напыления. Возможна установка в условиях чистых комнат через стену.

Micro – установки напыления данной серии в основном предназначены для научно-исследовательских, опытно-конструкторских работ и мелкосерийного производства. Установки предназначены для одиночной обработки подложек диаметром до 200 мм, в том числе квадратных, прямоугольных. Установки позволяют напылять как металлические, так и диэлектрические слои. Доступны системы магнетронного напыления и термического испарения. Системы отличаются своей компактностью, гибкой конфигурацией, простотой в установке, использовании и обслуживании.

Мы предлагаем возможность изготовить мишени для установок магнетронного напыления. Современные технологии производства позволяют изготовить как планарные, так и цилиндрические мишени, в том числе нестандартные по чертежам. Доступны следующие типы материалов: металлические, сплавы (Al, Cr, Ti, Ni, In), бориды, карбиды, нитриды, оксиды, силициды, сульфиды, теллуриды. Сообщите нам ваши требования, и мы предоставим подходящее решение.

Марийский государственный технический университет

Кафедра конструирования и производства радиоаппаратуры

Вакуумное напыление

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по дисциплине

Основы физики твёрдого тела и микроэлектроники

Разработал: студент группы ЭВС-31

Колесников

Консультировал: доцент

Игумнов В.Н

Йошкар-Ола 2003г.

Введение

1.Термическое вакуумное напыление

1.1 Резистивное напыление

1.2 Индукционное напыление

1.3 Электронно-лучевое напыление

1.4 Лазерное напыление

1.5 Электродуговое напыление

2. Распыление ионной бомбардировкой

2.1 Катодное распыление

2.2 Магнетронное распыление

2.3 Высокочастотное распыление.

2.4 Плазмоионное распыление в несамостоятельном газовом разряде

3. Технология тонких пленок на ориентирующих подложках

3.1 Механизмы эпитаксиального роста тонких пленок

3.2 Молекулярно-лучевая эпитаксия

Заключение

Литература


ВВЕДЕНИЕ

Тонкие пленки, наносимые в вакууме, широко применяются в производстве дискретных полупроводниковых приборов и интегральных микросхем (ИМС).

Получение высококачественных и воспроизводимых по электрофизическим параметрам тонкопленочных слоев является одним из важнейших технологических процессов формирования структур как дискретных диодов и транзисторов, так и активных и пассивных элементов ИМС.

Таким образом, от совершенства технологических процессов нанесения тонких пленок в значительной степени зависят надежность и качество изделий микроэлектроники, технический уровень и экономические показатели их производства.

Тонкопленочная технология базируется на сложных физико-химических процессах и применении различных металлов и диэлектриков. Так, тонкопленочные резисторы, электроды конденсаторов и межсоединения выполняют осаждением металлических пленок, а межслойную изоляцию и защитные покрытия – диэлектрических.

Важным этапом является контроль параметров тонких пленок (скорости их нанесения, толщины и ее равномерности, поверхностного сопротивления), который проводится с помощью специальных приборов, как при выполнении отдельных технологических операций, так и по завершении всего процесса.

Методы ионно-плазменного и магнетронного напыления находят широкое применение в современной микроэлектронике. Высокие скорости напыления и энергия падающих на подложку атомов в процессе напыления позволяют использовать эти методы для получения пленок различного состава и структуры, и, в частности, для низкотемпературной эпитаксии.

В настоящее время исследованиям в данной области уделяется значительный интерес.

Целью данной курсовой работы является рассмотрение основных методов напыления и распыления в вакууме, физико-химических процессов, а также описание и работа установок использующихся в данных методах.

Процесс нанесения тонких пленок в вакууме состоит в создании (генерации) потока частиц, направленного в сторону обрабатываемой подложки, и последующей их концентрации с образованием тонкопленочных слоев на покрываемой поверхности.

Для модификации свойств поверхности твердого тела используют различные режимы ионной обработки. Процесс взаимодействия ионного пучка с поверхностью сводится к протеканию взаимосвязанных физических процессов: конденсации, распыления и внедрения. Превалирование того или иного физического эффекта определяется главным образом энергией E 1 бомбардирующих ионов. При Е 1 =10-100 эВ конденсация преобладает над распылением, поэтому имеет место осаждение покрытия. При повышении энергии ионов до 10 4 эВ начинает преобладать процесс распыления с одновременным внедрением ионов в металл. Дальнейшее повышение энергии бомбардирующих ионов (Е 1 >10 4 эВ) приводит к снижению коэффициента распыления и установлению режима ионной имплантации (ионного легирования).

Технологический процесс нанесения тонкопленочных покрытий в вакууме включает 3 основных этапа:

Генерация потока частиц осаждаемого вещества;

Переноса частиц в разреженном пространстве от источника до подложки;

Осаждения частиц при достижении подложки.

Существуют 2 метода нанесения вакуумных покрытий, различающихся по механизму генерации потока осаждаемых частиц: термическое напыление и распыление материалов ионной бомбардировкой. Испаренные и распыленные частицы переносятся на подложку через вакуумную среду (или атмосферу реактивных газов, вступая при этом в плазмохимические реакции). Для повышения степени ионизации потока осаждаемого вещества в вакуумную камеру могут быть введены специальные источники заряженных частиц (например, термокатод) или электромагнитного излучения. Дополнительное ускорение движения ионов к обрабатываемой поверхности может достигаться за счет приложения к ней отрицательного напряжения.

Общими требованиями, предъявляемыми к каждому из этих методов, является воспроизводимость свойств и параметров получаемых пленок и обеспечения надежного сцепления (адгезии) пленок с подложками и другими пленками.

Для понимания физических явлений, происходящих при нанесении тонких пленок в вакууме, необходимо знать, что процесс роста пленки на подложке состоит из двух этапов: начального и завершающего. Рассмотрим, как взаимодействуют наносимые частицы в вакуумном пространстве и на подложке.

Покинувшие поверхность источника частицы вещества движутся через вакуумное (разреженное) пространство с большими скоростями (порядка сотен и даже тысяч метров в секунду) к подложке и достигают ее поверхности, отдавая ей при столкновении часть своей энергии. Доля передаваемой энергии тем меньше, чем выше температура подложки.

Сохранив при этом некоторый избыток энергии, частица вещества способна перемещаться (мигрировать) по поверхности подложки. При миграции по поверхности частица постепенно теряет избыток своей энергии, стремясь к тепловому равновесию с подложкой, и при этом может произойти следующее. Если на пути движения частица потеряет избыток, своей энергии, она фиксируется на подложке (конденсируется). Встретив же на пути движения другую мигрирующую частицу (или группу частиц), она вступит с ней в сильную связь (металлическую), создав адсорбированный дуплет. При достаточно крупном объединении такие частицы полностью теряют способность мигрировать и фиксируются на подложке, становясь центром кристаллизации.

Вокруг отдельных центров кристаллизации происходит рост кристаллитов, которые впоследствии срастаются и образуют сплошную пленку. Рост кристаллитов происходит как за счет мигрирующих по поверхности частиц, так и в результате непосредственного осаждения частиц на поверхность кристаллитов. Возможно также образование дуплетов в вакуумном пространстве при столкновении двух частиц, которые в конечном итоге адсорбируются на подложке.

Образованием сплошной пленки заканчивается начальный этап процесса. Так как с этого момента качество поверхности подложки перестает влиять на свойства наносимой пленки, начальный этап имеет решающее значение в их формировании. На завершающем этапе происходит рост пленки до необходимой толщины.

При прочих неизменных условиях рост температуры подложки увеличивает энергию, т.е. подвижность адсорбированных молекул, что повышает вероятность встречи мигрирующих молекул и приводит к формированию пленки крупнокристаллической структуры. Кроме того, при увеличении плотности падающего пучка повышается вероятность образования дуплетов и даже многоатомных групп. В то же время рост количества центров кристаллизации способствует образованию пленки мелкокристаллической структуры.

Разреженное состояние газа, т.е. состояние, при котором давление газа в некотором замкнутом герметичном объеме ниже атмосферного, называют вакуумом.

Вакуумная техника занимает важное место в производстве пленочных структур ИМС. Для создания вакуума в рабочей камере из нее должны быть откачаны газы. Идеальный вакуум не может быть достигнуть, и в откачанных рабочих камерах технологических установок всегда присутствует некоторое количество остаточных газов, чем и определяется давление в откачанной камере (глубина, или степень вакуума).

Сущность данного процесса нанесе6ния тонких пленок заключается в нагреве вещества в вакууме до температуры, при которой возрастающая с нагревом кинетическая энергия атомов и молекул вещества становится достаточной для их отрыва от поверхности и распространения в окружающем пространстве. Это происходит при такой температуре, при которой давление собственных паров вещества превышает на несколько порядков давление остаточных газов. При этом атомарный поток распространяется прямолинейно и при соударении с поверхностью испаряемые атомы, и молекулы конденсируются на ней.

Процесс испарения осуществляется по обычной схеме: твердая фаза – жидкая фаза – газообразное состояние. Некоторые вещества (магний, кадмий, цинк и др.) переходят в газообразное состояние, минуя жидкую фазу. Такой процесс называется сублимацией.

Основными элементами установки вакуумного напыления, упрощенная схема которой представлена на рис.1, являются: 1 - вакуумный колпак из нержавеющей стали; 2 - заслонка; 3 - трубопровод для водяного нагрева или охлаждения колпака; 4 - игольчатый натекатель для подачи атмосферного воздуха в камеру; 5 - нагреватель подложки; 6 - подложкодержатель с подложкой, на которой может быть размещен трафарет; 7 - герметизирующая прокладка из вакуумной резины; 8 - испаритель с размещённым в нём веществом и нагревателем (резистивным или электронно-лучевым).

Навигация:

Процесс вакуумного напыления состоит из группы методов напыления покрытий (тончайших плёнок) в вакуумной сфере, при каких компенсация выходит действием непосредственного конденсирования пара, причиняемого элемента.

Существуют следующие этапы вакуумного напыления:

  • Выработка газов (пара) с компонентов, производящих возмещение;
  • Транспортировка паров к подложке;
  • Накопление паров в подложке и создание напыления;

К перечню методов напыления вакуумным способом относятся приведенные ниже научно-технические движения, а помимо этого быстрые типы этих операций.

Перечень методов термо-напыления:

  • Испарение при помощи гальванического луча;
  • Испарение при помощи лазерного луча.

Испарение вакуумной дугой:

  • Сырье выпаривается в катодном пятнышке, за это отвечает электрическая дуга;
  • Эпитаксия при помощи молекулярного луча.

Ионное рассеивание:

  • Первоначальные сырьевые материалы распыляются бомбардировкой ионным потоком и воздействуют на подложку.

Применение

Вакуумное возмещение применяют с целью развития в плоскости компонентов, устройств и механизмов эксплуатационных покрытий - проводников, изолянтов, износостойких, коррозионно-стабильных, эрозийно-устойчивых, антифрикционных, антизадирных, барьерных и прочих. Данные манипуляции используются с целью нанесения украшающих покрытий, к примеру, при сборке часовых механизмов с позолоченной поверхностью и покрытие оправы для очков. Единый из основных операций микроэлектроники, где применяется с целью нанесения проводящих слоев (металлизации). Вакуумное возмещение используется с целью извлечения оптических покрытий: просветляющих, отражающих, фильтрующих.

В научно-техническую область способен быть внедрён химико активный газ, к примеру, ацетилен (с целью покрытий, вводящих углерод), неметалл, воздушное пространство. Хим. отклик в плоскости подложек запускается нагреванием, либо ионизацией и диссоциацией газов одной из конфигураций газового строя.

Благодаря использованию методов вакуум напылений обретают покрытие толщина которого может составлять несколько ангстрем либо достигать многих микрон, как правило в следствии нанесения напыления поверхность не требует дополнительного обрабатывания.

Методы вакуумного напыления

Судьба каждой из крупиц напыляемого компонента при соударении с поверхностью, составляющие пребывает в зависимости от ее энергии, температуры плоскости и хим. сродства элементов пленки и составляющих. Атомы или молекулы, достигнувшие плоскости, имеют все возможности либо отразиться с нее, либо адсорбироваться и через конкретный период времени, покинуть ее (десорбция), либо адсорбироваться и создавать в плоскости конденсат (уплотнитель). При высоких энергиях крупиц, высокой температуре плоскости и незначительном хим. сродстве, элемент отражается поверхностью. Температура плоскости детали, больше которой все частицы отражаются с нее и слой не сформируется, называется серьезной температурой напыления вакуумного, её значимость пребывает в зависимости от естества элементов пленки и плоскости составляющих, и от состояния плоскости. При крайне небольших потоках испаримых элементов, в том числе и в случае если данные частицы в плоскости адсорбируются, однако редко встречаются с другими аналогичными частицами, они десорбируются и не могут создавать зародышей, то есть слой совершенно не возрастает. Серьезной частотой потока испаримых компонентов с целью данной температуры плоскости называется наименьшая плотность, при которой частицы конденсируются и образовывают покров.

Вакуумно-плазменное напыление

Согласно этому методу нетолстые пленки толщиной 0,02-0,11 мкм получаются в следствии нагрева, улетучивания и осаждения компонента на подложку в отделенной камере при сжатом давлении газа в ней. В камере с помощью вакуумного насоса создается наибольшее воздействие остаточных газов приблизительно 1,2х10-3 Па.

Рабочая камера подразумевает собой металлический или стеклянный колпак с концепцией наружного водяного остужения. Камера расположена в центральной плите и создает с ней вакуумно-защищенное соединение. Подложка, в которой ведется напыление, закреплена на держателе. К подложке прилегает нагреватель, раскаливающий подложку вплоть до 2400-4400 оС, с целью улучшения адгезии напыляемой пленки. Конденсатор включает в себя нагреватель и источник напыляемого компонента. Переходная заслонка закрывает протекание паров с испарителя к подложке. Возмещение длится в процессе времени, когда затворка не захлопнута.

Для нагрева напыляемого компонента в основном используется 2 типа испарителей:

  • Прямонакальный многопроволочный либо двухленточный теплообменник, изготовляемый с вольфрама или молибдена;
  • Электронно-радиальные испарители с нагревом испаримого компонента гальванической бомбардировкой.

Для напыления пленок с многокомпонентых элементов применяется взрывное улетучивание. При этом конденсатор нагревается вплоть до 15000 оС и посыпается порошком из смеси испаримых элементов. Аналогичным методом удаётся приобретать композиционные напыления.

Некоторые популярные элементы для покрытий (к примеру, золото) располагают некачественной адгезией с кремнием и другими полупроводниковыми элементами. В случае низкокачественной адгезии испаримого элемента к подложке, испарение прокладывают в 2 пласта. Сначала поверх подложки наносят пласт сплава, имеющего отменную адгезию к полупроводниковой подложке. Затем напыляют главный слой, у которого присоединение с подслоем ранее отличное.

Ионно-вакуумное напыление

Данный метод заключается в распылении элемента причиняемого компонента, присутствующего перед негативным потенциалом, из-за бомбардировки ионами бездейственного газа, возникающих в процессе возбужденности тлеющего разряда внутри установки вакуумного напыления.

Материал отрицательно заряженного электрода распыляется пред влиянием ударяющихся о него ионизованных атомов бездейственного газа. Данные пульверизированные переходные атомы и осаждаются поверх подложки. Главным преимуществом ионно-вакуумного метода напыления является отсутствие необходимости нагрева испарителя вплоть до высокой температуры.

Механизм возникновения перетлевающего разряда. Разлагающийся разряд отслеживается в камерах с низким давлением газа между 2-я металлическими электродами, на которые подается высокое напряжение вплоть до 1-3 кВт. При этом негативный электрод как правило заземлен. Катодом является мишень с распыляемого элемента. С камеры предварительно откачивается воздушное пространство, далее запускается газ вплоть до давления 0,6 Па.

Тлеющий разряд получил свое название из-за наличия в мишени (катоде) так называемого тлеющего сияния. Это сиянье обуславливается большим падением способности в тесном пласте объёмного заряда около катода. К зоне TC прилегает область фарадеевого тёмного места, переходящая в положительный столбец, что является самостоятоятельной частью разряда, совершенно непригодной с прочих слоев разряда.

Вблизи анода, помимо этого, имеется небольшой слой объёмного заряда, называемый анодным слоем. Другой элемент межэлектродного промежутка захвачен квазинейтралом плазмы. Подобным методом, в камере отслеживается растровое свечение с чередующихся тёмных и светлых полос.

Для прохождения тока между электродами необходима устойчивая эмиссия электронов катода. Эту эмиссию разрешается вызвать согласно принуждению с помощью нагрева катода, или облучения его ультрафиолетовым светом. Подобного рода разряд является несамостоятельным.

Вакуумное напыление алюминия

В отдельных вариантах, в особенности при напылении пластмассы, используется металлизация алюминием, а этот металл — сырье достаточно легкое и никак не износостойкое, в этом случае нужны определенные специальные научно-технические способы. Пользователю необходимо понимать, что аналогичные компоненты лучше всего беречь от загрязнения сразу же по истечении штамповки, а помимо этого, нежелательно пользоваться различными смазывающими порошками и присыпками в пресс-фигурах.

Вакуумное напыление металлов

Металлы, которые могут испаряться только при температуре ниже зоны их плавления, разрешается прогревать прямоточным воздействием тока, серебряные и золотые компоновки испаряют в челночных ваннах с танталовой или вольфрамовой. Возмещение требуется производить в камере под давлением меньше 10-3 mm рт. ст.

Вакуумное ионно-плазменное напыление

Для возникновения самостоятельного тлеющего разряда необходимо вызвать эмиссию электронов с катода с помощью подачи высокого напряжения величиной 2-4 кВт между электродами. В случае если заложенное напряжение превышает способности ионизации газа в камере (как правило Ar), в этом случае, в следствии столкновений электронов с молекулами Ar, газ ионизируется с образованием положительно заряженных ионов Ar+. В следствии, в области катодного черного пространства возникает небольшой зрительный разряд и следовательно, сильное электрическое поле.

Ионы Ar+, приобретающие энергию в предоставленной зоне, выбивают атомы элемента катода, в тот же момент, провоцируя эмиссию побочных электронов с катода. Эта эмиссия и сохраняет самостоятельный тлеющий разряд. Переходные атомы с элемента катода доходят подложки и осаждаются на ее плоскости.

Установка вакуумного напыления УВН

Конструкция вооружена значимым комплексом современных приборов и устройств, что гарантируют осаждение покрытий металлов их синтезов и сплавов с учрежденными особенностями, отличной адгезией и высокой равномерностью согласно части площади.

Комплекс устройств и приборов, что входят в структуру аппарата:

  • Полуавтоматический источник управления вакуумной системой;
  • Магнетронная распылительная теория в стабильном токе;
  • Концепция нагревания (с контролем и поддержанием поставленной температуры);
  • Концепция очистки напыляемых товаров в области перетлевающего разряда;
  • Концепция перемещения продуктов в вакуумной сфере;
  • Числовой вакуумметр;
  • Концепция контроля противодействия возрастающих пленок;
  • Инверторный источник питания магнетронов.

Вакуумная установка – это по сути та же система, которая состоит из определенного количества компонентов. Каждый из элементов подобной установки выполняет определенные функции. Один из самых главных компонентов вакуумных установок – это вакуумный насос, коих может быть огромное количество. Зачастую, устройство строится таким образом, чтобы внутри него взаимодействовали все компоненты. Лишь в случае подобного расклада, можно будет добиться по-настоящему высоких показателей производительности. Что касается главной задачи подобных установок, то, несомненно – то создание уровня глубокого технического вакуума.

Подобные процессы играют особенно большую роль, если речь идет об откачке воздушных или же газовых смесей. Но не стоит упускать тот момент, что эффективно использовать вакуумные установки можно не только в промышленности, а еще и в домашних условиях. В домашних задачах, вакуумные установки работают без какой-либо ощутимой нагрузки и способны выдавать огромнейшие показатели производительности.

Что касается востребованности предприятий в подобных установках, то в этом и вовсе нет никаких сомнений. На данный момент огромное количество производителей проявляется интерес к продукции подобного предназначения. Многие производители готовы даже переплачивать за то, чтобы первыми получать подобные установки.

Сейчас мы рассмотрим те отрасли, где вакуумные установки уже стали неотъемлемой частью системы:

  • Текстильная промышленность
  • Машиностроение
  • Металлургия
  • Пищевая промышленность
  • Химическая отрасль
  • Машиностроение
  • Фармацевтика

Но это еще далеко не весь список отраслей, которые нуждаются в оборудовании подобного типа. Но даже глядя на этот список, создается впечатление, что это действительно один из наиболее практичных вариантов среди всего оборудования подобного типа.

Если же стандартной комплектации вакуумной установки пользователю недостаточно, то он без каких-либо проблем может докупить еще и дополнительное оборудование. Предназначено оно для того, чтобы сделать процесс более легким и в то же время эффективным. Многие пользователи пользуются подобными привилегиями и покупают дополнительное оборудование, дабы значительно упростить рабочий процесс и сделать его более надежным.

Главными задачами вакуумных установок можно назвать создание и поддержку высокого и сверхвысокого уровня вакуума внутри системы. Но это еще далеко не весь список возможностей подобных установок. Они также могут быть весьма эффективными при создании различных деталей, что является их основным преимуществом. Но все-таки чаще всего подобные установки покупают для того, чтобы образовывать сверхвысокий вакуум, так как другие установки справиться с этим не в силах.

Но, несмотря на то, что все нахваливают главные элементы подобных систем, есть еще и немалое количество второстепенных элементов, которые также играют особую роль. Ведь получать максимальный эффект от вакуумных установок можно только в том случае, если все элементы системы будут активно взаимодействовать друг с другом. В ином же случае, эффекта от подобного оборудования попросту не будет.

Главные элементы вакуумной установки:

  • Вакуумметр – устройство, для измерения давления внутри системы и контроля ключевых процессов, которые с ним связаны.
  • Вакуумные баллоны – один из ключевых элементов, который важен в процессе образования вакуума внутри системы.
  • Вакуумные трубопроводы – это скорее дополнительное оборудование, которое позволяет производить движение всех жидкостей по определенным отсекам установки.
  • Вакуумные насосы – это фундаментальная часть установки, которая выполняет практически все функции, и без которой образование вакуума внутри системы и вовсе было бы невозможным.

Современный вакуумный рынок предоставляет нам огромный выбор подобной продукции. Одной из лидирующих компаний на рынке является Busch. Данная компания уже давно успела о себе заявить и по сей день держит свою репутацию на высоком уровне.

Одно из главных преимуществ установок компании Busch –это качество, которое находится на максимально высоком уровне. Сейчас на рынке можно увидеть сразу несколько серий продукции данной компании.

  • Вакуумные установки
  • Воздуходувки
  • Вакуумные насосы

Во всех из вышеперечисленных направлений на данный момент компании нету равных. Данный производитель действительно мог занять весомую нишу рынка, чем самым доказав, что именно его продукция соответствует всем стандартам и достойна, занимать первую позицию на рынке.

Установки вакуумного напыления УВН

Установка вакуумного напыления УВН – это агрегат, имеющий целый ряд функциональных особенностей. Но все-таки наиболее главным моментом является сфера применения подобного оборудования. Установки подобного типа активно используются практически во всех отраслях, из-за чего назвать какую-то одну из них весьма проблематично.

Одним из явных преимуществ подобных установок, является наличие четырёх съёмных технологических модулей. Каждый из них выполняет определенные функции, что собственно и позволяет добиваться высоких показателей производительности.

УВН-1М – это одна из наиболее практичных моделей подобных установок, которая, несмотря на свою среднюю стоимость, смогла вместить в себе огромное количество положительных качеств. Данный агрегат может похвастаться не только высокими показателями производительности, а еще и высоким качеством, стабильностью и широкой сферой применения.

Что касается внешнего вида подобных установок, то он не настолько прост и все-таки имеет определенные дополнения. Чаще всего модули подобных систем закрыты специальной вакуумной камерой из стекла. Данное приспособление позволяет защитить модули от различных угроз.

Но это еще далеко не весь список преимуществ, ведь кроме всего прочего есть огромное количество аспектов, которые говорят о том, что подобные установки действительно очень эффективны.

Вакуумные литейные установки

Одно из главных предназначений подобных установок – это литье стоматологических сплавов. С подобной задачей, вакуумные установки данного типа справляются довольно неплохо. Именно поэтому, многие и стали покупать подобное оборудование для его подобной эксплуатации.

Стоит отметить наличие у подобных установок активного охлаждения, которое позволяет установке не поддаваться перегреву, что также играет далеко не самую последнюю роль. Ключевым компонентом подобных установок можно считать инертный газ, который дает возможность работать устройству наиболее надежно и избегать окисления разного рода сплавов.

Подобные установки чаще всего используются именно в стоматологическом направлении. При желании, их можно использовать и в других отраслях., но особой пользы от него будет получить довольно проблематично.

Установка вакуумной металлизации

Нанесение качественного покрытия на изделия – это далеко не самый легкий процесс. Дабы результат подобной процедуры был качественным, для этого надо использовать специальное оборудование. Лучше всего в этом себя проявляет установка вакуумной металлизации. Сам процесс металлизации представляет собой нанесение тонкой пленки, которая позволяет защитить материал от воздействия разных факторов.

Одна из наиболее продаваемых вариаций подобных установок – это вариант с вертикальными дверцами. В плане удобства, данный вариант значительно превосходит обычный, так как загружать и выгружать материал намного проще.

Материалы, обрабатываемые в установках вакуумной металлизации:

  • Стекло
  • Пластик
  • Металл
  • Керамика
Производители вакуумных установок

Роль производителя также является далеко не самой последней. Лучше всего покупать подобные установки у проверенных поставщиков, которые могут предоставить вам все гарантии качества и надежности продукции.

Наиболее надежные производители вакуумных установок:

  • Edwards
  • Becker
  • Atlas Copco

Все вышеперечисленные производители являются максимально надежными и им можно доверять. Это можно понять по показателям их продаваемости, так как все эти компании входят в пятерку наиболее качественных и перспективных компаний по продаже вакуумных установок.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Быстрое развитие производства микроэлектронных приборов (МЭП) в последние десятилетие привело к созданию рабочего оборудования, которое возможно меньше влияло бы на процесс формирования тонких пленок и позволяло бы контролировать их параметры. В результате в настоящее время имеется большой выбор вакуумных установок, комплектующих деталей, а так же материалов и методов монтажа позволяющих решать сложные технологические задачи при изготовлении МЭП.

Процесс получения тонких пленок идет в вакуумной среде подколпачного устройства вакуумной установки. Для уменьшения давления в подколпачном устройстве можно использовать два принципа. В первом – газ физически удаляется из вакуумной камеры и выбрасывается наружу. Примером такого способа действия являются механические и пароструйные, паромасляные насосы. Другой метод откачки основан на конденсации или захвате молекул газа на некоторой части поверхности вакуумной камеры без удаления газа наружу. На данном принципе сконструированы криогенные, геттерные и геттеро - ионные насосы.

Количественной мерой переноса или способности поглощения газа насосом является его производительность (Q). Производительность зависит от давления в откачиваемом устройстве и определяется как количество газа, которое протекает через всасывающий патрубок работающего насоса в единицу времени при t = 20 0 C:



Q = Fp· P,

где Fp – быстрота откачки, л/с; P – давление откачиваемых газов, мм рт. ст.

Другой параметр, характеризующий работу насоса - быстрота откачки Fp, которая определяется как отношение производительности насоса к парциальному давлению данного газа вблизи впускного отверстия насоса:

Fp = Q/ P

Большинство вакуумных насосов имеет почти постоянную быстроту откачки в интервале нескольких порядков давления газа. Выше и ниже этой области она резко падает, поэтому откачка этим видом вакуумного насоса становится не эффективной.

При выборе насоса для вакуумной установки необходимо помнить о том, что сами насосы при определенных условиях являются источниками остаточных газов в вакуумной камере. Разные типы насосов сильно различаются между собой как по количеству, так и по природе выделяемых газов. Особенно вредны следы паров органических соединений, обусловленные применяемыми в насосах рабочими жидкостями.

К основным параметрам насоса также относиться предельное давление Pg – это то минимальное давление, которое можно получить с помощью вакуумного насоса, если сам насос газов не выделяет.

Для вращательных насосов Pg зависит от “вредного объема” насоса (то есть той части камеры сжатия, из которой не может быть вытеснен газ, поступающий из откачиваемого объекта) и давления пара веществ, например масла, применяемого для уплотнения. Для пароструйных насосов Pg зависит от скорости молекул пара в сопле, скорости молекул газа в откачиваемом объеме и от молекулярного веса газа.

Допустимое внешнее (впускное) давление – это максимально допустимое давление газа у выпускного патрубка насоса, то есть такое давление, при котором быстрота откачки все еще остается равной максимальной величине. У форвакуумных насосов, сжимающих газ до атмосферного давления, допустимое выпускное давление равно атмосферному, у высоковакуумных насосов величина допустимого выпускного давления равна форвакуумному.

Процесс откачки подколпачного устройства с объемом V и начальным давлением Pо, совершаемый любым насосом с быстротой откачки Fp и предельным давлением Pg может быть описан с помощью дифференциального уравнения, выведенного на основе закона Бойля – Мариотта. Падение давления со временем описывается следующим уравнением:

DP/dt = Fp/V(P - Pg) (1)

Решение этого дифференциального уравнения даст характеристику изменения со временем t давления P в откачиваемом сосуде.

В случае “идеального” насоса Fp = Fp max = const – характеристика насоса P является прямой линией. Быстрота откачки Fp всех технических насосов в отличие от “идеальных” зависит от давления, и поэтому временные характеристики изменения давления получают обычно не расчетным путем, то есть интегрированием уравнения 1, а определяют из эксперимента.

УСТРОЙСТВО УСТАНОВКИ ВАКУУМНОГО НАПЫЛЕНИЯ

Вакуумная установка предназначена для создания и поддержания вакуума в рабочем объеме (подколпачном устройстве). Установка состоит из вакуумного блока и стойки управления. Конструктивно вакуумный блок (рис.1.1) представляет собой корпус 1, на котором установлено подколпачное устройство 2. На корпусе смонтированы также вакуумная система, система охлаждения, газовая система и гидропривод подъема колпака. В подколпачном устройстве устанавливается рабочее давление газов от 1·10 -3 до 5·10 -4 мм рт. ст. и производится осаждение материалов распыляемой мишени на подложке при помощи распылительного устройства.

Вакуумная система установки (рис.1.2) состоит из механического насоса НВР-5Д и вакуумного агрегата ВА-2-3Р-Н, клапанной коробки, электромагнитного натекателя, трубопроводов и датчиков для измерения давления.

Рис.1.1. Внешний вид установки: 1 – корпус; 2 – колпак; 3 – система

вакуумная; 4 – система охлаждения; 5 – механизм перемешивания;

6 – распылительное устройство; 7 – клапанная коробка; 8 – вакуумметр

Трубопроводы вакуумной системы соединяют ее с механическим насосом, подколпачным устройством и выпускным патрубком паромасляного насоса. Вентиль – натекатель предназначен для разгерметизации рабочего объема.

Управление откачивающими средствами вакуумной системы установки осуществляется блоком управления вакуумной системой.

Для запуска механического насоса необходимо включить соответствующий тумблер на панели управления. При этом срабатывает магнитный пускатель, который одним нормально-разомкнутым контактом становится на самоблокировку, а тремя другими контактами включает электродвигатель привода электромеханического насоса в вакуумном блоке.


Рис.1.2. Вакуумная система установки: 1 – механический насос НВР-5Д;

2 – нижняя рукоятка клапанной коробки; 3 – электромагнитный натекатель;

4 – верхняя рукоятка клапанной коробки; 5 – клапанная коробка;

6 – термопара; 7 – манометрический датчик; 8 – вентиль-натекатель;

9 – затвор; 10 – вакуумный агрегат типа ВА-2-3РМ; 11 – трубопроводы

Для включения механического насоса необходимо включить соответствующий тумблер на панели управления. При этом срабатывает магнитный пускатель, который

одним нормально-разомкнутым контактом становится на самоблокировку, а тремя другими контактами включает электродвигатель привода электромеханического насоса в вакуумном блоке

Включение нагревателя паромасляного насоса ЭН-1 возможно только после включения механического насоса, так как питание магнитного пускателя осуществляется через нормально разомкнутый контакт магнитного пускателя, при этом на панели управления загорается сигнальная лампа.

При помощи клапанной коробки 2 обеспечиваются все переключения вакуумной системы необходимые для работы установки. Управление клапанной коробкой выведено на переднюю стойку установки (Рис.1.1). При вытягивании верхней рукоятки механической насос откачивает рабочий объем подколпачного устройства, при вытягивании нижней рукоятки откачивается полость паромасляного насоса.

Электромагнитный натекатель расположен на клапанной коробке 5 и предназначен для напуска атмосферного воздуха в трубопровод механического насоса.

Включение электромагнитного натекателя производится переключателем “натекатель”, находящимся в блоке управления вакуумной системой. Натекатель срабатывает только в том случае, если механический насос отключен. При выдвинутой нижней рукоятке клапанной коробки этим же натекателем напускается атмосферный воздух в полость паромасляного насоса. Конструктивно натекатель представляет собой соленоид, торцовая часть которого выполнена в виде уплотнительного клапана. В натекателе есть фильтр из пористого стекла, который задерживает частицы пыли из воздуха.

Контроль вакуума осуществляется вакуумметром ВИТ-2 от датчиков, подключаемых к нему переключателем “Выбор датчика”.

При установке переключателя “Выбор датчика” в положение “1” вакуумметр измеряет низкий вакуум в форвакуумной магистрали. При установке в положение “2” измеряется высокий вакуум в подколпачном устройстве с помощью ионизационного датчика давления, при переключении в положение “0” оба датчика отключаются.

Насос вакуумный механический. Насос пластинчато-роторного типа с масляным уплотнением предназначен для откачки воздуха, химически неактивных газов и парогазовых смесей не воздействующих на материалы конструкции и рабочую жидкость. Такие насосы могут нормально откачивать конденсируемые пары и парогазовые смеси допустимой концентрации.

Процесс откачки газов в пластинчато-роторных насосах основан на механическом всасывании газа вследствие периодического увеличения рабочей камеры.

Принцип работы такого насоса иллюстрируется рисунком 1.3 и происходит следующим образом.


Рис.1.3. Пластинчато-роторный насос: 1 – цилиндр; 2 – ротор; 3 – лопатки;

4 – пружина; 5 – клапан; А и Б – полости

В цилиндре 1 в направлении, указанном стрелкой вращается эксцентрично установленный ротор 2. В прорези ротора помещены лопатки 3, которые пружиной 4 прижимаются к внутренней поверхности цилиндра. При вращении ротора лопатки скользят по внутренней поверхности цилиндра, полость, образованная цилиндром, ротором и лопатками делится на полость А и полость В.

При вращении ротора объем полости А периодически увеличивается и в нее поступает газ из откачиваемой системы; объем полости Б периодически уменьшается и в нем происходит сжатие. Сжатый газ выбрасывается через клапан 5. Уплотнение между полостями всасывания А и сжатия В осуществляется при помощи масляной пленки. Так работает насос в одноступенчатом исполнении. В двух ступенчатом исполнении выход первой ступени соединен со входом второй ступени и газ через клапан выбрасывается в атмосферу.

Все пластинчато-роторные насосы имеют подобное конструкционное исполнение, но отличаются размерами, что определяет быстроту откачки насосов. Конструкция одноступенчатого пластинчато-роторного насоса показана на рисунке 1.4.

При присоединении насоса к вакуумной системе, трубопровод должен иметь малую длину и большой диаметр, не менее диаметра входного отверстия насоса. Невыполнение этих условий ведет к уменьшению быстроты откачки насоса.

Используемый в установке механический пластинчато-роторный насос ВН-05-2 имеет следующие основные эксплуатационные характеристики:

Быстрота откачки 0,5 л/ с

Остаточное давление 5·10 -3 мм рт. ст.

Насос высоковакуумный паромасляный. Насос высоковакуумный паромасляный Н-05 предназначен для откачки воздуха, неагрессивных газов, паров

и парогазовых смесей.

Насос должен работать только совместно со вспомогательным насосом предварительного разряжения. Место паромасляного насоса в высоковакуумной системе показано на рисунке 1.5.

Широко применяемые трехступенчатые паромасляные насосы состоят из следующих основных узлов: корпуса, паропровода, электронагревателя, маслоотражателя и гидрореле. Конструкция насоса показана на рисунке 1.5.



Корпус 1 насоса представляет собой стальной цилиндр с приваренным к нему днищем, входным фланцем 2, выпускным патрубком с фланцем 3. Для установки деталей эжектора на выпускном патрубке есть заплуженный фланец 4.

Рис.1.5. Общий вид насоса: 1 – электронагреватель; 2 – паропровод; 3 – корпус; 4 – маслоотражатель; 5 – сопло; 6 – подсопельник;

7 – сопло; 8 – подсопельник; 9 – эжекторное сопло

Основная конструкционная деталь насоса – паропровод, в котором осуществляется такая циркуляция масла, при которой пары масла из кипятильника, расположенного в нижней части корпуса по паропроводящим каналам попадают в верхнее, нижнее и эжекторные сопла, выходя, откуда конденсируются на холодных стенках корпуса насоса и выпускного патрубка. Стекая в кипятильник, масло попадает сначала в участок кипятильника, связанный с последним (выпускным) соплом и лишь в последнюю очередь, проходя по лабиринту, попадает в участок, связанный с наиболее ответственным внутренним паропроводом, подающим пар в высоковакуумное сопло. Благодаря этому высоковакуумное сопло, ближайшее к откачиваемому объекту, работает только на масле, имеющем наименьшее давление насыщенного пара, а сопло, ближайшее к насосу предварительного разряжения, работает на самых легких фракциях.

Паропровод насоса трехступенчатый. Первые две ступени зонтичного типа, третья ступень – эжекторная. Пары масла из кипятильника по паропроводам попадают в сопла трех ступеней насоса и, истекая из них, образуют струи. Откачиваемый газ диффундирует в струи пара и переносится ими в область предварительного разряжения. Пар, достигнув охлаждаемой стенки насоса, конденсируется и стекает обратно в кипятильник.

Пуск насоса осуществляется в следующей последовательности:

а) включить форвакуумный насос и, открыв вентиль, откачать систему

с паромасляным насосом до давления 5·10 -2 - 1·10 -2 мм рт. ст.;

б) пустить воду для охлаждения корпуса насоса;

в) включить электронагреватель паромасляного насоса.

Для остановки насоса включить электронагреватель насоса и подать воду для охлаждения дна. После остывания насоса перекрыть вентиль, выключить форвакуумный насос и прекратить подачу воды.

Основные характеристики паромасляного насоса:

Предельное остаточное давление не более 5·10 -7 мм рт. ст.

Быстрота откачки Fp 500 л/ с

Максимальное выпускное давление не менее 0.25 мм рт. ст.

Натекание атмосферного воздуха не более 0.02 л×мм рт. ст./с

Марка масла ВМ-1 ГОСТ 7904-56

предварительного разряжения ВН-2МГ или НВР-5Д

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Включить установку, для чего автомат “сеть” переводится в положение “Вкл.”.

2. Включить механический насос переводом ручки переключателя в положение “Вкл.”.

3. Откачать объем паромасляного насоса, открыть нижний клапан клапанной коробки.

4. Включить нагреватель паромасляного насоса тумблером “Вкл.”.

5. Через 35 – 40 минут после включения нагревателя паромасляного насоса включить азотный питатель.

6. После прогрева паромасляного насоса закрыть нижний клапан и произвести предварительную откачку подколпачного объема, открыв верхний клапан клапанной коробки.

7. Снять и построить характеристику P(t) при откачке на механическом насосе для этого в течение одного часа фиксировать показания термопарного вакуумметра через каждые 10 минут. Данные свести в таблицу и начертить кривую P(t).

8. Снять и построить характеристику P(t) для диффузионного насоса. Опыт провести также как и в пункте 7.

9. Оценить возможности обоих насосов при достижении уровня предварительного вакуума: механического в течение 40 минут, высоковакуумного – в течение 1 часа.

10. Дать заключение о предварительном вакууме, который можно получить при предложенной системе откачки.

11. Полученные при эксперименте данные привести в виде таблиц и графиков.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как классифицируется вакуум. Объяснить принцип работы установки вакуумного напыления, назначение узлов.

2. Объяснить правильную последовательность включения и выключения вакуумных насосов в вакуумной установке. Объяснить, чем ограничен предельный вакуум, который можно получить на такой установке.

3. Объяснить работу паромасляного насоса.

4. Объяснить работу механического насоса.

5. Объяснить принцип измерения вакуума и работу термоэлектронного и ионизационного датчиков.

6. Объяснить назначение и работу вентиля – натекателя.

7. Объяснить принцип действия и устройство азотной и электромагнитной ловушек.

8. Прокомментировать полученные вакуумные характеристики установки.