Курсовая работа: Особые свойства Гамма-функции Эйлера. Гамма-функцией называется интеграл область определения гамма-функции некоторые свойства гамма-функции бета-функция и ее свойства область определения бета-функции применение интегралов эйлера в вычисле


Экспериментально установлено, что g-излучение (см. § 255) не является самостоятельным видом радиоактивности, а только сопровождает a- и b-распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. g-Спектр является линейчатым. g-Спектр - это распределение числа g-квантов по энергиям (такое же толкование b-спектра дано в §258). Дискретность g-спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.

В настоящее время твердо установлено, что g-излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбуж денным, за время примерно 10 -13 - 10 -14 с, значительно меньшее времени жизни возбужденного атома (примерно 10 -8 с), переходит в основное состояние с испусканием g-излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому g-излучение одного и того же радиоактивного изотопа может содержать несколько групп g-квантов, отличающихся одна от другой своей энергией.

При g-излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. g-Излучение большинства ядер является столь коротковолно вым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому g-излучение рассматривают как поток частиц - g-квантов. При радиоактивных распадах различных ядер g-кванты имеют энергии от 10 кэВ до 5МэВ.

Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только при испускании g-кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания g-кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии. Само явление называется внутренней конверсией. Внутренняя конверсия - процесс, конкурирующий с g-излучением.

Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е, отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Евыделяется в виде у-кванта, то частота излучения v определяется из извест ного соотношения E=hv. Бели же испускаютЛ электроны внутренней конверсии, то их энергии равны Е-А К, E-A L , ..., где А к, A L , ...- работа выхода электрона из К- и L-оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от b-электронов, спектр которых непрерывен (см. § 258). Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электро нами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.

g-Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении g-излучения сквозь вещество они либо поглощаются, либо рассеива ются им. g-Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка у-квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, изменение которой описывается экспоненциальным законом I = I 0 е - m x (I 0 и I - интенсивности g-излучения на входе и выходе слоя поглощающего вещества толщиной х, m- коэффициент поглощения). Так как g-излучение - самое проникающее излучение, то mдля многих веществ - очень малая величина; mзависит от свойств вещества и от энергии g-квантов.

g-Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике доказывается, что основными процессами, сопровождающими прохождение g-излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.

Фотоэффект, или фотоэлектрическое поглощение g-нзлучення, - это процесс, при котором атом поглощает g-квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электронами из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом поглощения в области малых энергий g-квантов (E g < 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить g-квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.

По мере увеличения энергии g-квантов (Е g » 0,5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия g-квантов с веществом является комптоновское рассеяние (см. § 206).

При Е g >1,02 МэВ = 2m е с 2 (m е - масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероятность этого процесса пропорциональна Z 2 и увеличивается с ростом Е g .Поэтому при Е g » 10 МэВ основным процессом взаимодействия g-излучения в любом веществе является образование электроиво-позитронных пар.

Если энергия g-кванта превышает энергию связи нуклонов в ядре (7-8 МэВ), то в результате поглощения g-кванта может наблюдаться ядерный фотоэффект - выброс из ядра одного из нуклонов, чаще всего нейтрона.

Большая проникающая способность g-излучения используется в гамма-дефектоскопии - методе дефектоскопии, основанном на различном поглощении g-излучения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.

Воздействие g-излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения. Различаются:

Поглощенная доза излучения - физическая величина, равная отношению энергии излучения к массе облучаемого вещества.

Единица, поглощенной дозы излучения - грей (Гр)*: 1 Гр= 1 Дж/кг - доза из лучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.

Экспозиционная доза излучения - физическая величина, равная отношению суммы электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха.

Единила экспозиционной дозы излучения - кулон на килограмм (Кл/кг); внеси стемной единицей является рентген (Р): 1 Р=2,58× 10 -4 Кл/кг.

Биологическая доза - величина, определяющая воздействие излучения на организм.

Единица биологической дозы - биологический эквивалент рентгена (бэр): 1 бэр - доза любого вида ионизирующего излучения, производящая такое же биоло гическое действие, как и доза рентгеновского или g-излучения в 1 Р (1 бэр= 10 -2 Дж/кг).

Реферат

Целью данной курсовой работы является изучение особых свойств Гамма-функции Эйлера. В ходе работы была изучена Гамма-функция, её основные свойства и составлен алгоритм вычисления с разной степенью точности. Алгоритм был написан на языке высокого уровня - Си. Результат работы программы сверен с табличным. Расхождений в значениях обнаружено не было.

Пояснительная записка к курсовой работе выполнена в объёме 36 листов. Она содержит таблицу значений гамма-функции при некоторых значениях переменных и тексты программ для вычисления значений Гамма-функции и для построения графика, а также 2 рисунка.

Для написания курсовой работы было использовано 7 источников.

Введение

Выделяют особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра.

Такие функции называются интегралами зависящими от параметра. К их числу относятся гамма и бета функции Эйлера.

Бета функции представимы интегралом Эйлера первого рода:

Гамма функция представляется интегралом Эйлера второго рода:

Гамма-функция относится к числу самых простых и значимых специальных функций, знание свойств которой необходимо для изучения многих других специальных функций, например, цилиндрических, гипергеометрических и других.

Благодаря её введению значительно расширяются наши возможности при вычислении интегралов. Даже в случаях, когда конечная формула не содержит иных функций, кроме элементарных, получение её всё же часто облегчает использование функции Г, хотя бы в промежуточных выкладках.

Эйлеровы интегралы представляют собой хорошо изученные неэлементарные функции. Задача считается решённой, если она приводится к вычислению эйлеровых интегралов.


1. Бэта-функци я Эйлера

Бэта – функции определяются интегралом Эйлера первого рода:

Он представляет функцию от двух переменных параметров и : функцию B . Если эти параметры удовлетворяют условиям и ,то интеграл (1.1) будет несобственным интегралом, зависящим от параметров и ,причём особыми точками этого интеграла будут точки и

Интеграл (1.1) сходятся при .Полагая получим:

= - =

т.e. аргумент и входят в симметрично. Принимая во внимание тождество

по формуле интегрирования почестям имеем


Откуда получаем

При целом b = n последовательно применяя (1.2)

при целых = m,= n, имеем

но B(1,1) = 1,следовательно:

Положим в (1.1) .Так как график функции симметрична относительно прямой ,то

и в результате подстановки , получаем

полагая в(1.1) ,откуда , получим

разделяя интеграл на два в пределах от 0 до 1 и от 1 до и применение ко второму интегралу подстановки ,получим

2. Гамма-функция

2.1 Определение

Восклицательный знак в математических трудах обычно означает взятие факториала какого-либо целого неотрицательного числа:

n! = 1·2·3·...·n.

Функцию факториал можно еще записать в виде рекурсионного соотношения:

(n+1)! = (n+1)·n!.

Это соотношение можно рассматривать не только при целых значениях n.

Рассмотрим разностное уравнение

Несмотря на простую форму записи, в элементарных функциях это уравнение не решается. Его решение называется гамма-функцией. Гамма-функцию можно записать в виде ряда или в виде интеграла. Для изучения глобальных свойств гамма-функции обычно пользуются интегральным представлением.

2.2 Интегральное представление

Перейдем к решению этого уравнения. Будем искать решение в виде интеграла Лапласа:

В этом случае правая часть уравнения (2.1) может быть записана в виде:

Эта формула справедлива, если существуют пределы для внеинтегрального члена. Заранее нам не известно поведение образа [(G)\tilde](p) при p®±¥. Предположим, что образ гамма-функции таков, что внеинтегральное слагаемое равно нулю. После того, как будет найдено решение, надо будет проверить, верно ли предположение о внеинтегральном слагаемом, иначе придется искать G(z) как-нибудь по-другому.

Левая часть равенства (2.1) записывается следующим образом:

Тогда уравнение (2.1) для образа гамма-функции имеет вид:

Это уравнение легко решить:

Нетрудно заметить, что найденная функция [(Г)\tilde](p) на самом деле такова, что внеинтегральный член в формуле (2.2) равен нулю.

Зная образ гамма-функции, легко получить и выражение для прообраза:

Это неканоническая формула, для того, чтобы привести ее к виду, полученному Эйлером, надо сделать замену переменной интегрирования: t = exp(-p), тогда интеграл примет вид:

Постоянная C выбирается так, чтобы при целых значениях z гамма-функция совпадала с функцией факториал: Г(n+1) = n!, тогда:

следовательно C = 1. Окончательно, получаем формулу Эйлера для гамма-функции:

Эта функция очень часто встречается в математических текстах. При работе со специальными функциями, пожалуй, даже чаще, чем восклицательный знак.

Проверить, что функция, определенная формулой (2.3), действительно удовлетворяет уравнению (2.1), можно, проинтегрировав интеграл в правой части этой формулы по частям:

2.3 Область определения и полюсы

В подынтегральной функции интеграла (2.3) при экспонента exp(-tz ) при R(z ) > 0 убывает гораздо быстрее, чем растет алгебраическая функция t (z-1) . Особенность в нуле - интегрируемая, поэтому несобственный интеграл в (2.3) сходится абсолютно и равномерно при R (z) > 0. Более того, последовательным дифференцированием по параметру z легко убедиться, что Г(z ) - голоморфная функция при R (z ) > 0. Однако, непригодность интегрального представления (2.3) при R (z ) 0 не означает, что там не определена сама гамма-функция - решение уравнения (2.1).

Рассмотрим поведение Г(z) в окрестности нуля. Для этого представим:

где - голоморфная функция в окрестности z = 0 . Из формулы (2.1) следует:

то есть Г(z) имеет полюс первого порядка при z = 0.

Также легко получить:

то есть в окрестности точки функция Г(z ) также имеет полюс первого порядка.

Таким же образом можно получить формулу:

Из этой формулы следует, что точки z = 0,-1,-2,... - простые полюсы гамма-функции и других полюсов на вещественной оси эта функция не имеет. Нетрудно вычислить вычет в точке z = -n, n = 0,1,2,...:

2.4 Представление Ганкеля через интеграл по петле

Выясним, имеет ли гамма-функция нули. Для этого рассмотрим функцию

Полюсы этой функции и есть нули функции Г(z).

Разностное уравнение для I(z ) легко получить, воспользовавшись выражением для Г(z ):

Выражение для решения этого уравнения в виде интеграла можно получить так же, как было получено интегральное выражение для гамма-функции - через преобразование Лапласа. Ниже приведены вычисления.ни такие же, как и в п.1).ии теграла будут точки ____________________________________________________________________________

После разделения переменных получим:

Проинтегрировав получаем:

Переход к прообразу Лапласа дает:

В полученном интеграле сделаем замену переменной интегрирования:

Тогда

Здесь важно заметить, что подынтегральная функция при нецелых значениях z имеет точку ветвления t = 0. На комплексной плоскости переменной t проведем разрез по отрицательной вещественной полуоси. Интеграл по этой полуоси представим как сумму интеграла по верхнему берегу этого разреза от до 0 и интеграла от 0 до по нижнему берегу разреза. Чтобы интеграл не проходил через точку ветвления, устроим вокруг нее петлю.

Рис1: Петля в интегральном представлении Ганкеля.

В результате получим:

Чтобы выяснить значение постоянной, вспомним, что I(1) = 1, с другой стороны:

Интегральное представление

называется представлением Ганкеля по петле.

Легко видеть, что функция 1/Г(z ) не имеет полюсов в комплексной плоскости, следовательно, гамма-функция не имеет нулей.

С помощью этого интегрального представления можно получить формулу для произведения гамма-функций. Для этого в интеграле сделаем замену переменной , тогда:

2.5 Предельная форма Эйлера

Гамма-функцию можно представить в виде бесконечного произведения. Это можно заметить, если в интеграле (2.3) представить

Тогда интегральное представление гамма-функции:

В этой формуле мы можем поменять пределы - предел интегрирования в несобственном интеграле и предел при внутри интеграла. Приведем результат:

Возьмем по частям этот интеграл:

Если провести эту процедуру n раз, получим:

Переходя к пределу, получим предельную форму Эйлера для гамма-функции:

2.6 Формула для произведения

Ниже понадобится формула, в которой произведение двух гамма-функций представляется через одну гамма-функцию. Выведем эту формулу, используя интегральное представление гамма-функций.

Повторный интеграл представим как двойной несобственный интеграл. Это можно сделать, воспользовавшись теоремой Фубини. В результате получим:

Несобственный интеграл равномерно сходится. Его можно рассматривать, например, как интеграл по треугольнику, ограниченному осями координат и прямой x+y = R при R. В двойном интеграле сделаем замену переменных:

Якобиан этой замены

Пределы интегрирования: u меняется от 0 до ∞, v при этом меняется от 0 до 1. В результате получим:

Перепишем опять этот интеграл как повторный, в результате получим:

где Rp > 0, Rv > 0.

2. Производная гамма функции

Интеграл

сходится при каждом ,поскольку ,и интеграл при сходится.

В области , где - произвольное положительное число, этот интеграл сходится равномерно, так как и можно применить признак Вейрштраса. Сходящимся при всех значениях является и весь интеграл так как и второе слагаемое правой части является интегралом, заведомо сходящимся при любом.Легко видеть что интеграл сходится пов любой области где произвольно. Действительно для всех указанных значений и для всех ,и так как сходится, то выполнены условия признака Вейерштрасса. Таким образом, в области интеграл сходится равномерно.

Отсюда вытекает непрерывность гамма функции при.Докажем дифференцируемость этой функции при .Заметим что функция непрерывна при и, и покажем,что интеграл:

сходится равномерно на каждом сегменте , . Выберем число так, чтобы ; тогда при .Поэтому существует число такое, что и на.Но тогда на справедливо неравенство

и так как интеграл сходится, то интеграл сходится равномерно относительно на . Аналогично для существует такое число , что для всех выполняется неравенство . При таких и всех получим , откуда в силу признака сравнения следует, что интеграл сходится равномерно относительно на . Наконец, интеграл

в котором подынтегральная функция непрерывна в области

Очевидно, сходится равномерно относительно на . Таким образом, на интеграл

сходится равномерно, а, следовательно, гамма-функция бесконечно дифференцируема при любом и справедливо равенство

.

Относительно интеграла можно повторить те же рассуждения и заключить, что

По индукции доказывается, что Г-функция бесконечно дифференцируема прии для ее я -ой производной справедливо равенство

Изучим теперь поведение - функции и построим эскиз ее графика. (см. Приложение 1)

Из выражения для второй производной -функции видно, что для всех . Следовательно, возрастает. Поскольку , то по теореме Роля на сегменте производная при и при , т. е. Монотонно убывает на и монотонно возрастает на . Далее, поскольку , то при . При из формулы следует, что при .

Равенство , справедливое при , можно использовать при распространении - функции на отрицательное значение .

Положим для, что . Правая часть этого равенства определена для из (-1,0) . Получаем, что так продолженная функция принимает на (-1,0) отрицательные значения и при , а также при функция .

Определив таким образом на , мы можем по той же формуле продолжить ее на интервал (-2,-1). На этом интервале продолжением окажется функция, принимающая положительные значения и такая, что при и . Продолжая этот процесс, определим функцию , имеющею разрывы в целочисленных точках (см. Приложение 1.)

Отметим еще раз, что интеграл

определяет Г-функцию только при положительных значениях , продолжение на отрицательные значения осуществлено нами формально с помощью формулы приведения .

4. Вычисление некоторых интегралов.

Формула Стирлинга

Применим гамма функцию к вычислению интеграла:

где m > -1,n > -1.Полагая, что ,имеем

и на основании (2.8) имеем

В интеграле

Где k > -1,n > 0,достаточно положить

Интеграл

Где s > 0,разложить в ряд

=

где дзетта функция Римана

Рассмотрим неполные гамма функции (функции Прима)

связанные неравенством

Разлагая, в ряд имеем

Переходя к выводу формулы Стирлинга, дающей в частности приближенное значение n! при больших значениях n ,рассмотрим предварительно вспомогательную функцию

(4.2)

Непрерывна на интервале (-1,) монотонно возрастает от до при изменении от до и обращаются в 0 при u = 0.Так как

И так производная непрерывна и положительна во всем интервале ,удовлетворяет условию

Из предыдущего следует, что существует обратная функция, определенная на интервале непрерывная и монотонно возрастающая в этом интервале,

Обращающаяся в 0 при v=0 и удовлетворяющая условие

Формулу Стирлинга выведем из равенства

полагая ,имеем

,

полагая на конец,,получим

в пределе при т.е. при (см 4.3)

откуда вытекает формула Стирлинга

которую можно взять в виде

где ,при

для достаточно больших полагают

вычисление же производится при помощи логарифмов

если целое положительное число, то и (4.5) превращается в приближенную формулу вычисления факториалов при больших значениях n

приведем без вывода более точную формулу

где в скобках стоит не сходящийся ряд.

5. Примеры вычисления интегралов

Для вычисления необходимы формулы:

Г()

Вычислить интегралы


ПРАКТИЧЕСКАЯ ЧАСТЬ

Для вычисления гамма-функции используется аппроксимация её логарифма. Для аппроксимации гамма-функции на интервале x>0 используется следующая формула (для комплексных z):

Г(z+1)=(z+g+0.5) z+0.5 exp(-(z+g+0.5))

Эта формула похожа на аппроксимацию Стирлинга, но в ней имеется корректирующая серия. Для значений g=5 и n=6, проверено, что величина погрешности ε не превышает 2*10 -10 . Более того, погрешность не превышает этой величины на всей правой половине комплексной плоскости: z > 0.

Для получения (действительной) гамма-функции на интервале x>0 используется рекуррентная формула Г(z+1)=zГ(z) и вышеприведенная аппроксимация Г(z+1). Кроме того, можно заметить, что удобнее аппроксимировать логарифм гамма-функции, чем ее саму. Во-первых, при этом потребуется вызов только одной математической функции - логарифма, а не двух - экспоненты и степени (последняя все равно использует вызов логарифма), во-вторых, гамма-функция - быстро растущая для больших x, и аппроксимация ее логарифмом снимает вопросы переполнения.

Для аппроксимации Ln(Г(х) - логарифма гамма-функции - получается формула:

log(Г(x))=(x+0.5)log(x+5.5)-(x+5.5)+

log(C 0 (C 1 +C 2 /(x+1)+C 3 /(x+2)+...+C 7 /(x+8))/x)

Значения коэффициентов C k - табличные данные (см. в программе).

Сама гамма-функция получается из ее логарифма взятием экспоненты.

Заключение

Гамма функции являются удобным средством для вычисления некоторых интегралов в частности многих из тех интегралов, которые не представимы в элементарных функциях.

Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.

Список литературы

1. Специальные функции и их приложения:

Лебедев И.И.,М.,Гостехтериоиздат,1953

2. Математический анализ часть 2:

Ильин О.А., Садовничий В.А., Сендов Бл.Х.,М.,”Московский университет”,1987

3. Сборник задач по математическому анализу:

Демидович Б.П.,М.,Наука,1966

4. Интегралы и ряды специальные функции:

Прудников А.П., Брычков Ю.А.,М.,Наука,1983

5. Специальные функции:

Кузнецов, М.,”Высшая школа”,1965

6.Асимптотика и специальные функции

Ф.Олвер, М.,Наука,1990.

7.Зоопарк чудовищ или знакомство со спецмальными функциями

О.М.Киселёв,


ПРИЛОЖЕНИЯ

Приложение 1 - График гамма-функции действительного переменного

Приложение 2 – График Гамма-функции

Таблица – таблица значений гамма-функции при некоторых значениях аргумента.

Приложение 3 – листинг программы, рисующий таблицу значений гамма-функции при некоторых значениях аргумента.

Приложение 4 – листинг программы, рисующей график гамма-функции


Реферат............................................................. ...................................3

Введение........................................................... ...................................4

Теоретическая часть…………………………………………………….5

Бета функция Эйлера…………………………………………….5

Гамма функция................................................. ...................................8

2.1. Определение………………………………………………...8

2.2. Интегральное представление………………………………8

2.3. Область определения и полюсы…………………………..10

2.4. Представление Ганкеля через интеграл по петле………..10

2.5. Предельная форма Эйлера………………………………...12

2.6. Формула для произведения………………………………..13

Производная гамма функции........................ ..................................15

Вычисление интегралов. Формула Стирлинга...........................18

Примеры вычислений интегралов................... ..................................23

Практическая часть…………………………………………………….24

Заключение....................................................... ..................................25

Список литературы……………………………………………..............26

Приложения……………………………………………………………..27


ПРИЛОЖЕНИЕ 1

График гамма-функции действительного переменного

ПРИЛОЖЕНИЕ 2

График Гамма-функции

ТАБЛИЦА

х g(x)

ПРИЛОЖЕНИЕ 3

#include

#include

#include

#include

#include

static double cof={

2.5066282746310005,

1.0000000000190015,

76.18009172947146,

86.50532032941677,

24.01409824083091,

1.231739572450155,

0.1208650973866179e-2,

0.5395239384953e-5,

double GammLn(double x) {

lg1=log(cof*(cof+cof/(x+1)+cof/(x+2)+cof/(x+3)+cof/(x+4)+cof/(x+5)+cof/(x+6))/x);

lg=(x+0.5)*log(x+5.5)-(x+5.5)+lg1;

double Gamma(double x) {

return(exp(GammLn(x)));

cout<<"vvedite x";

printf("\n\t\t\t| x |Gamma(x) |");

printf("\n\t\t\t_________________________________________");

for(i=1;i<=8;i++)

x=x[i]+0.5;

g[i]=Gamma(x[i]);

printf("\n\t\t\t| %f | %f |",x[i],g[i]);

printf("\n\t\t\t_________________________________________");

printf("\n Dlia vuhoda iz programmu najmite lybyiy klavishy");


ПРИЛОЖЕНИЕ 4

#include

#include

#include

#include

Double gam(double x, double eps)

Int I, j, n, nb;

Double dze={1.6449340668422643647,

1.20205690315959428540,

1.08232323371113819152,

1.03692775514336992633,

1.01734306198444913971};

Double a=x, y, fc=1.0, s, s1, b;

Printf (“вы ввели неправильные данные, попробуйте снова\n”); return -1.0;

If(a==0) return fc;

For (i=0;i<5;i++)

S=s+b*dze[i]/(i+2.0);

Nb=exp((i.0/6.0)*(7.0*log(a)-log(42/0)-log(eps)))+I;

For (n=1;n<=nb;n++)

For(j=0; j<5; j++)

Si=si+b/(j+1.0);

S=s+si-log(1.0+a/n);

Double dx,dy, xfrom=0,xto=4, yto=5, h, maxy, miny;

Int n=100, I, gdriver=DETECT, gmode, X0, YN0, X, Y, Y0,pr=0;

Initgraph(&gdriver,&gmode, “ ”);

YN0=getmaxy()-20;

Line(30, getmaxy ()-10,30,30);

Line(20, getmaxy ()-30, getmaxx ()-20, getmaxy ()-30);

}while (Y>30);

}while (X<700);

}while (X<=620);

}while (y>=30);

X=30+150.0*0,1845;

For9i=1;i

Dy=gam(dx,1e-3);

X=30+(600/0*i)/n;

If(Y<30) continue;

X=30+150.0*308523;

Line (30,30,30,10);

Line(620,450,640,450);

Line(30,10,25,15);

Line(30,10,25,15);

Line(640,450,635,445);

Line(640,450,635,455);

Line(170,445,170,455);

Line(320,445,320,455);

Line(470,445,470,455);

Line(620,445,620,455);

Line(25,366,35,366);

Line(25,282,35,282);

Line(25,114,35,114);

Line(25,30,35,30);

Outtexty(20,465,"0");

Outtexty(165,465, "1";

Outtexty(315,465, "2";

Outtexty(465,465, "3";

Outtexty(615,465, "4";

Outtexty(630,465, "x";

Outtexty(15,364, "1";

Outtexty(15,280, "2";

Outtexty(15,196, "3";

Outtexty(15,112, "4";

Outtexty(15,30, "5";

Экспериментально установлено, что -излучение (см. § 255) не является самостоятельным видом радиоактивности, а только сопровождает - и -распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т.д. -Спектр является линейчатым. -Спектр - это распределение числа -квантов по энергиям (такое же толкование -спектра дано в § 258). Дискретность -спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.

В настоящее время твердо установлено, что -излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбужденным, за время примерно 10 -13 -10 -14 с, значительно меньшее времени жизни возбужденного атома (примерно 10 -8 с), переходит в основное состояние с испусканием -излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому -излучение одного и того же радиоактивного изотопа может содержать несколько групп -квантов, отличающихся одна от другой своей энергией.

При -излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. -Излучение большинства ядер является столь коротковолновым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому -излучение рассматривают как поток частиц - -квантов. При радиоактивных распадах различных ядер -кванты имеют энергии от 10 кэВ до 5 МэВ.

Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только при испускании -кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания -кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии . Само явление называется внутренней конверсией . Внутренняя конверсия - процесс, конкурирующий с -излучением.

Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е , отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Е выделяется в виде -кванта, то частота излучения определяется из известного соотношения . Если же испускаются электроны внутренней конверсии, то их энергии равны Е А К , Е A L , ... , где А К , A L , ... - работа выхода электрона из К - и L -оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от { -электронов, спектр которых непрерывен (см. § 258). Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электронами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.


Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении -излучения сквозь вещество они либо поглощаются, либо рассеиваются им. -Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка -квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, изменение которой описывается экспоненциальным законом ( и - интенсивности -излучения на входе и выходе слоя поглощающего вещества толщиной х, - коэффициент поглощения). Так как -излучение - самое проникающее излучение, то для многих веществ - очень малая величина; зависит от свойств вещества и от энергии -квантов.

Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике доказывается, что основными процессами, сопровождающими прохождение -излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.

Фотоэффект, или фотоэлектрическое поглощение -излучения ,- это процесс, при котором атом поглощает -квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электронами из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом поглощения в области малых энергий -квантов ( £ 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить -квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.

По мере увеличения энергии -квантов ( » 0,5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия -квантов с веществом является комптоновское рассеяние (см. § 206).

При > 1,02 МэВ = 2 2 ( - масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероятность этого процесса пропорциональна Z 2 и увеличивается с ростом . Поэтому при » 10 МэВ основным процессом взаимодействия -излучения в любом веществе является образование электронно-позитронных пар .

Если энергия -кванта превышает энергию связи нуклонов в ядре (7 – 8 МэВ), то в результате поглощения -кванта может наблюдаться ядерный фотоэффект - выброс из ядра одного из нуклонов, чаще всего нейтрона.

Большая проникающая способность -излучения используется в гамма-дефектоскопии - методе дефектоскопии, основанном на различном поглощении -излу-чения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.

Воздействие -излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения . Различаются:

Поглощенная доза излучения - физическая величина, равная отношению энергии излучения к массе облучаемого вещества. Единица поглощенной дозы излучения - грей (Гр) (С. Грей (1666-1736) - английский физик): 1 Гр = 1 Дж/кг - доза излучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.

Экспозиционная доза излучения - физическая величина, равная отношению суммы электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха. Единица экспозиционной дозы излучения - кулон на килограмм (Кл/кг); внесистемной единицей является рентген (Р): 1 Р = 2,58×10 -4 Кл/кг.

Биологическая доза - величина, определяющая воздействие излучения на организм. Единица биологической дозы - биологический эквивалент рентгена (бэр): 1 бэр - доза любого вида ионизирующего излучения, производящая такое же биологическое действие, как и доза рентгеновского или -излучения в 1 P (1 бэр = 10 -2 Дж/кг).

Мощность дозы излучения - величина, равная отношению дозы излучения к времени облучения. Различают: 1) мощность поглощенной дозы (единица - грей на секунду (Гр/с)); 2) мощность экспозиционной дозы (единица - ампер на килограмм (А/кг)).

§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра)

Как уже указывалось, дискретный спектр -излучения обусловлен дискретностью энергетических уровней ядер атомов. Однако, как следует из соотношения неопределенностей (215.5), энергия возбужденных состояний ядра принимает значения в пределах , где - время жизни ядра в возбужденном состоянии. Следовательно, чем меньше , тем больше неопределенность энергии возбужденного состояния. = 0 только для основного состояния стабильного ядра (для него ). Неопределенность энергии квантово-механической системы (например, атома), обладающей дискретными уровнями энергии, определяет естественную ширину энергетического уровня (Г ). Например, при времени жизни возбужденного состояния, равного 10 -13 с, естественная ширина энергетического уровня примерно 10 -2 эВ.

Неопределенность энергии возбужденного состояния, обусловливаемая конечным временем жизни возбужденных состояний ядра, приводит к немонохроматичности -излучения, испускаемого при переходе ядра из возбужденного состояния в основное. Эта немонохроматичность называется естественной шириной линии -излучения.

При прохождении -излучения в веществе помимо описанных выше (см. § 259) процессов (фотоэффект, комптоновское рассеяние, образование электронно-позитронных пар) должны в принципе наблюдаться также резонансные эффекты. Если ядро облучить -квантами с энергией, равной разности одного из возбужденных и основного энергетических состояний ядра, то может иметь место резонансное поглощение -излучения ядрами : ядро поглощает -квант той же частоты, что и частота излучаемого ядром -кванта при переходе ядра из данного возбужденного состояния в основное.

Наблюдение резонансного поглощения -квантов ядрами считалось долгое время невозможным, так как при переходе ядра из возбужденного состояния с энергией Е в основное (его энергия принята равной нулю) излучаемый -квант имеет энергию несколько меньшую, чем Е , из-за отдачи ядра в процессе излучения:

где - кинетическая энергия отдачи ядра. При возбуждении же ядра и переходе его из основного состояния в возбужденное с энергией Е -квант должен иметь энергию несколько большую, чем Е , т. е.

где - энергия отдачи, которую -квант должен передать поглощающему ядру.

Таким образом, максимумы линий излучения и поглощения сдвинуты друг относительно друга на величину 2 (рис.344). Используя закон сохранения импульса, согласно которому в рассмотренных процессах излучения и поглощения импульсы -кванта и ядра должны быть равны, получим

(260.1)

Например, возбужденное состояние изотопа иридия имеет энергию 129 кэВ, а время его жизни порядка 10 -10 с, так что ширина уровня Г » 4×10 -5 эВ. Энергия же отдачи при излучении с этого уровня, согласно (260.1), приблизительно равна 5×10 -2 эВ, т.е. на три порядка больше ширины уровня. Естественно, что никакое резонансное поглощение в таких условиях невозможно (для наблюдения резонансного поглощения линия поглощения должна совпадать с линией излучения). Из опытов также следовало, что на свободных ядрах резонансное поглощение не наблюдается.

Резонансное поглощение -излучения в принципе может быть получено только при компенсации потери энергии на отдачу ядра. Эту задачу решил в 1958 г. Р. Мёссбауэр (Р. Мёссбауэр (р. 1929) - немецкий физик, Нобелевская премия 1961 г.). Он исследовал излучение и поглощение -излучения в ядрах, находящихся в кристаллической решетке, т. е. в связанном состоянии (опыты проводились при низкой температуре). В данном случае импульс и энергия отдачи передаются не одному ядру, излучающему (поглощающему) -квант, a всей кристаллической решетке в целом. Так как кристалл обладает гораздо большей массой по сравнению с массой отдельного ядра, то в соответствии с формулой (260.1) потери энергии на отдачу становятся исчезающе малыми. Поэтому процессы излучения и поглощения -излучения происходят практически без потерь энергии (идеально упруго).

Явление упругого испускания (поглощения) -квантов атомными ядрами, связанными в твердом теле, не сопровождающееся изменением внутренней энергии тела, называется эффектом Мёссбауэра . При рассмотренных условиях линии излучения и поглощения -излучения практически совпадают и имеют весьма малую ширину, равную естественной ширине Г . Эффект Мёссбауэра был открыт на глубоко охлажденном (с понижением температуры колебания решетки «замораживаются»), а впоследствии обнаружен более чем на 20 стабильных изотопах (например, 57 Fe , 67 Zn и т. д.).

Мёссбауэр вооружил экспериментальную физику новым методом измерений невиданной прежде точности. Эффект Мёссбауэра позволяет измерять энергии (частоты) излучения с относительной точностью Г/Е = 10 -15 ¸ 10 -17 , поэтому во многих областях науки и техники может служить тончайшим «инструментом» различного рода измерений. Появилась возможность измерять тончайшие детали -линий, внутренние магнитные и электрические поля в твердых телах и т. д.

Внешнее воздействие (например, зеемановское расщепление ядерных уровней или смещение энергии фотонов при движении в поле тяжести) может привести к очень малому смещению либо линии поглощения, либо линии излучения, иными словами, привести к ослаблению или исчезновению эффекта Мёссбауэра. Это смещение, следовательно, может быть зафиксировано. Подобным образом в лабораторных условиях был обнаружен (1960) такой тончайший эффект, как «гравитационное красное смещение», предсказанный общей теорией относительности Эйнштейна.

ГАММА-ФУНКЦИЯ, Г-функция,- трансцендентная функция T(z), распространяющая значения факториала z! на случай любого комплексного z ≠ 0, -1, -2, .... Г.-ф. введена Л. Эйлером [(L. Euler), 1729, письмо к X. Гольдбаху (Ch. Goldbach)] при помощи бесконечного произведения

из к-рого Л. Эйлер получил интегральное представление (эйлеров интеграл второго рода)

верное для Re z > 0. Многозначность функции x z-1 устраняется формулой x z-1 = e (z-1)ln x с действительным ln х. Обозначение Г(z) и назв. Г.-ф. были предложены А. М. Лежандром (А. М. Legendre, 1814).

На всей плоскости z с выброшенными точками z = 0, -1, -2, ... для Г.-ф. справедливо интегральное представление Ганкеля:

где s z-1 = e (z-1)ln s , причем ln s есть ветвь логарифма, для к-рой 0

Основные соотношения и свойства Г.-ф.

1) Функциональное уравнение Эйлера:

zГ(z) = Г(z + 1),

Г(1) = 1, Г(n + 1) = n!, если n > 0 - целое, при этом считают 0! = Г(1) = 1.

2) Формула дополнения Эйлера:

Г(z)Г(1 - z) = π/sin πz.

В частности,

если n > 0 - целое, то

y - действительное.

3) Формула умножения Гаусса:


При m = 2 это есть формула удвоения Лежандра.

4) При Rе z ≥ δ > 0 или |Im z| ≥ δ > 0 имеет место асимптотич. разложение ln Г(z) в ряд Стирлинга:


где B 2n - Бернулли числа. Из чего следует равенство

В частности,

Более точной является формула Сонина :

5) В действительной области Г(х) > 0 для х > 0 и принимает знак (-1) k+1 на участках -k - 1

ГГ"" > Г" 2 ≥ 0,

т. е. все ветви как |Г(x)|, так и ln |Г(х)| - выпуклые функции. Свойство логарифмич. выпуклости определяет Г.-ф. среди всех решений функционального уравнения

Г(1 + х) = хГ(х)

с точностью до постоянного множителя.

Рис. 2. График функции y = Г(х).

Для положительных х Г.-ф. имеет единственный минимум при х = 1,4616321..., равный 0,885603... . Локальные минимумы функции |Г(х)| при х → -∞ образуют последовательность, стремящуюся к нулю.


Рис. 3. График функции 1/Г(x).

6) В комплексной области, при Re z > 0, Г.-ф. быстро убывает при |Im z| → -∞

7) Функция 1/Г(z) (см. рис. 3) является целой функцией 1-го порядка максимального типа, причем асимптотически при Г → ∞

ln М(r) ~ r ln r,

Она представима бесконечным произведением Вейерштрасса:


абсолютно и равномерно сходящимся на любом компактном множестве комплексной плоскости (здесь С -Эйлера постоянная). Справедливо интегральное представление Ганкеля:

где контур С * изображен на рис. 4.

Интегральные представления для степеней Г.-ф. были получены Г. Ф. Вороным .

В приложениях большую роль играют так наз. полигамма-функции, являющиеся к-ми производными от ln Г(z). Функция (ψ-функция Гаусса)


мероморфна, имеет простые полюсы в точках z = 0,- 1,_-2, ... и удовлетворяет функциональному уравнению

ψ(z + 1) - ψ(z) = 1/z.

Из представления ψ(z) при |z|

эта формула полезна для вычисления Г(z) в окрестности точки z = 1.

О других полигамма-функциях см. . Неполная гамма-функция определяется равенством

Функции Г(z), ψ(z) суть трансцендентные функции, не удовлетворяющие никакому линейному дифференциальному уравнению с рациональными коэффициентами (теорема Гёльдера).

Исключительная роль Г.-ф. в математич. анализе определяется тем, что при помощи Г.-ф. выражается большое количество определенных интегралов, бесконечных произведений и сумм рядов (см., напр., Бета-функция). Кроме того, Г.-ф. находит широкие применения в теории специальных функций (гипергеометрической функции, для которой Г.-ф. является предельным случаем, цилиндрических функций и др.), в аналитич. теории чисел и т. д.

Лит.: Уиттекер Э. Т., Ватсон Дж. Н., Курс современного анализа, пер. с англ., т. 2, 2 изд., М., 1963; Бейтмен Г., Эрдейи А., Высшие трансцендентные функции Гипергеометрическая функция. Функции Лежандра, пер. с англ., М., 1965; Бурбаки Н., Функции действительного переменного. Элементарная теория, пер. с франц., М., 1965; Математический анализ. Функции, пределы, ряды, цепные дроби, (Справочная математическая библиотека), М., 1961; Nielsen N.. Handbuch der Theorie der Gamma-funktion, Lpz., 1906; Сонин Н. Я., Исследования о цилиндрических функциях и специальных полиномах, М., 1954; Вороной Г. Ф., Собр. соч., т. 2, К., 1952, с. 53-62; Янке Е., Эмде Ф., Леш Ф., Специальные функции. Формулы, графики, таблицы, пер. с нем., 2 изд., М., 1968; Анго А., Математика для электро- и радиоинженеров, пер. с франц., 2 изд., М., 1967.

Л. П. Купцов.


Источники:

  1. Математическая Энциклопедия. Т. 1 (А - Г). Ред. коллегия: И. М. Виноградов (глав ред) [и др.] - М., «Советская Энциклопедия», 1977, 1152 стб. с илл.

Каждый человек наверняка слышал о трех типах радиоактивного излучения - альфа, бета и гамма. Все они возникают в процессе радиоактивного распада вещества, и у них есть как общие свойства, так и различия. Наибольшую опасность несет последний тип излучения. Что же он представляет собой?

Природа радиоактивного распада

Чтобы детальнее понять свойства гамма-распада, необходимо рассмотреть природу ионизирующего излучения. Это определение означает, что энергия такого типа излучения очень высока - когда оно попадает в другой атом, называемый «атом-мишень», он выбивает движущийся по его орбите электрон. При этом атом-мишень становится положительно заряженным ионом (поэтому излучение и было названо ионизирующим). От ультрафиолетового или инфракрасного это излучение отличается высокой энергией.

В целом альфа-, бета- и гамма-распады имеют общие свойства. Можно представить себе атом в виде маленького зернышка мака. Тогда орбита электронов будет мыльным пузырем вокруг него. При альфа-, бета- и гамма-распаде из этого зернышка вылетает крошечная частица. При этом заряд ядра меняется, а это означает, что был образован новый химический элемент. Пылинка несется с гигантской скоростью и врезается в электронную оболочку атома-мишени. Потеряв электрон, атом-мишень становится положительно заряженным ионом. Однако при этом химический элемент остается тем же, ведь ядро атома-мишени осталось прежним. Ионизация является процессом химической природы, практически тот же процесс происходит при взаимодействии некоторых металлов, которые растворяются в кислотах.

Где еще происходит γ-распад?

Но ионизирующие излучения происходят не только при радиоактивном распаде. Они также происходят при атомных взрывах и в ядерных реакторах. На Солнце и других звездах, а также в водородной бомбе осуществляется синтез легких ядер, сопровождающийся ионизирующим излучением. В оборудовании для рентгена и тоже происходит этот процесс. Основное свойство, которое имеют альфа-, бета-, гамма-распады - это высочайшая энергия ионизации.

А различия между этими тремя типами излучений определяются их природой. Радиация была открыта в конце XIX столетия. Тогда никто не знал, что представляет собой это явление. Поэтому три типа излучений и были названы буквами латинского алфавита. Гамма-излучение было открыто в 1910 году ученым по имени Генри Грэгг. Гамма-распад имеет такую же природу, как и солнечный свет, инфракрасные лучи, радиоволны. По своим свойствам γ-лучи представляют собой фотонное излучение, однако энергия содержащихся в них фотонов очень высока. Другими словами, это излучение с очень короткой длиной волны.

Свойства гамма-лучей

Это излучение чрезвычайно легко проникает через любые препятствия. Чем более плотный материал стоит на его пути, тем он лучше его задерживает. Чаще всего с этой целью используют свинцовые или бетонные конструкции. В воздухе γ-лучи легко преодолевают десятки и даже тысячи метров.

Гамма-распад очень опасен для человека. При его воздействии могут повреждаться кожа и внутренние органы. Бета-излучение можно сравнить со стрельбой мелкими пулями, а гамма - со стрельбой иглами. Во время ядерной вспышки, помимо гамма-излучения, также происходит образование нейтронных потоков. Гамма-лучи попадают на Землю вместе с Помимо них, оно несет на Землю протоны и другие частицы.

Действие гамма-лучей на живые организмы

Если сравнить альфа-, бета- и гамма-распады, то последний будет наиболее опасным для живых организмов. Скорость распространения этого типа излучения равна скорости света. Именно из-за его высокой скорости оно быстро попадает в живые клетки, вызывая их разрушение. Каким образом?

На пути γ-излучение оставляет большое количество ионизированных атомов, которые в свою очередь ионизируют новую порцию атомов. Клетки, которые подверглись мощному воздействию гамма-излучения, изменяются на различных уровнях своей структуры. Трансформировавшись, они начинают разлагаться и отравлять организм. И самым последним этапом является появление дефектных клеток, которые уже не могут нормально выполнять свои функции.

У человека разные органы имеют разную степень чувствительности к гамма-излучению. Последствия зависят от полученной дозы ионизирующего излучения. В результате этого в организме могут происходить различные физические процессы, нарушаться биохимия. Наиболее уязвимыми являются органы кроветворения, лимфатическая и пищеварительная системы, а также структуры ДНК. Это воздействие опасно для человека и тем, что излучение накапливается в организме. А также оно имеет скрытый период воздействия.

Формула гамма-распада

Чтобы вычислить энергию гамма-излучения, можно воспользоваться следующей формулой:

В этой формуле h - постоянная Планка, v - частота кванта электромагнитной энергии, с - скорость света, λ - длина волны.