Электрический конденсатор (история изобретения). Сообщение на тему: конденсаторы


Изобретатель : Юрген фон Клейст, Питер ван Мушенбрук
Страна : Голландия
Время изобретения : 1745 г.

Первая половина XVIII века была временем быстрого накопления опытных фактов об явлениях. Именно в это время, например, выяснилось, что существуют два рода электричества. Однако само явление электризации тел, природа электричества оставались совершенно загадочными.

Обычно считалось, что электричество - это особая жидкость, содержащаяся в каждом заряженном теле. А наблюдавшееся уменьшение заряда на телах естественно трактовалось как «испарение» этой электрической жидкости. Столь же естественной была идея попытаться предотвратить такое «испарение», поместив заряженное тело в … , выбрав в качестве заряженного тела воду.

Такой именно опыт поставил в 1745 году настоятель одного из соборов в Померании Юрген фон Клейст (по другим сведениям опыт был поставлен с целью получить заряженную воду, якобы полезную для здоровья). Он наполнил водой бутылку, закрыл ее пробкой, а через ввел в воду металлический стержень (попросту гвоздь).

Присоединив внешний конец стержня к электрической машине, которая в те времена представляла собой вращающийся шар, о который терлась рука экспериментатора, Клейст сообщил воде значительный электрический заряд. И тут случилось непредвиденное.

Взяв одной рукой бутылку, он имел неосторожность прикоснуться другой рукой к выступавшему из пробки концу гвоздя, и при этом ощутил в руках и плечах сильнейший удар, вызвавший онемение мышц. Потрясенный случившимся, он сообщил об этом в письме одному из своих друзей.

По случайному совпадению, почти такой же опыт и почти в то же время был поставлен в голландском городе Лейдене профессором университета Питером ван Мушенбруком. Только вместо толстостенной бутылки Мушенброк воспользовался тонкостенной стеклянной банкой. Зарядив воду и взяв банку в одну руку, он тоже прикоснулся другой рукой к металлическому стержню, служившему для подвода заряда к воде.

При этом Мушенбрук ощутил такой сильный удар в руки, плечи и грудь, что потерял сознание, и два дня приходил в себя. Сообщая об этом «приключении» в письме своему французскому корреспонденту, Мушенбрук добавляет, что не согласился бы повторить опыт, даже если бы ему было обещано французское королевство!

Сначала наблюдения Клейста и Мушенбрука были понятны, как проявления так называемого «живого электричества», поскольку в этих опытах такую важную роль играли руки человека. Но довольно скоро стало ясно, что рука, держащая банку, и заряженная жидкость в ней являются, как мы теперь говорим, обкладками конденсатора и что еще более эффективный прибор получится, если внешнюю и внутреннюю поверхности стенок банки покрыть слоем металла, например, оловянной фольги.

Первый конденсатор был создан в 1745 г. голландским ученым Питером Мушенбруком , профессором Лейденского универси-тета. Проводя опыты по электризации тел, он опустил проводник от кондуктора элект-рической машины в стеклянный графин с водой. Случайно коснувшись пальцем этого проводника, ученый ощутил сильный элект-рический удар. Позже жидкость заменили металлическими проводниками изнутри и снаружи банки и назвали эту банку лейден-ской (рис. 4.68). В таком виде она про-существовала почти 200 лет.

Более сложные и совершенные конден-саторы нашли широкое применение в со-временных электротехнике и радиоэлектрон-ной технике. Они есть в фильтрах адаптеров, которые подают постоянное напряжение для питания электронных приборов, в радио-приемниках и радиопередатчиках как эле-менты колебательных контуров или состав-ные различных функциональных схем элект-ронной аппаратуры. В фотовспышках кон-денсаторы накапливают большой заряд, не-обходимый для работы импульсной лампы.

Мушенбрук Питер ван (1692 — 1761)— голландский физик. Родился в Лейде-не. Окончил Лейденский университет, был профессором Дуйсбургского, Утрехт-ского и с 1740 г. Лейденского универ-ситетов. Работы посвящены электри-честву, теплоте, оптике. В 1745 г. не-зависимо от Клейста изобрел первый конденсатор — лейденскую банку и провел с ней ряд опытов, в частности обратил внимание на физиологическое действие тока. Был автором первого си-стемного курса физики, а его двухтом-ное издание «Введение в натуральную философию» (1762 г.) было энциклопе-дией физических знаний того времени.

В электротехнике конденсаторы обеспе-чивают необходимый режим работы элект-родвигателей, автоматических и релейных приборов, линий электропередач и т.п. Материал с сайта

Рис. 4.70. Разные типы конденсаторов постоянной емкости

Во многих широкодиапазонных радио-приемниках конденсаторы переменной ем-кости (рис. 4.69) позволяют плавно изме-нять собственную частоту колебательного контура при поиске передачи необходимой радиостанции. Широко распространены кон-денсаторы, емкость которых можно изме-нять электрическим способом. Их называют варикапами.

Конструктивно конденсаторы могут быть плоскими , трубчатыми , дисковыми . В ка-честве диэлектрика в них применяют парафи-нированную бумагу, слюду, воздух, пласт-массы, керамику и т. п. (рис.4.70). Благодаря искусственным изоляционным материалам в наше время созданы конденсаторы боль-шой емкости, приходящейся на единицу объема.

Первая половина XVIII века была временем быстрого накопления опытных фактов об электрических явлениях. Именно в это время, например, выяснилось, что существуют два рода электричества. Однако само явление электризации тел, природа электричества оставались совершенно загадочными.

Обычно считалось, что электричество - это особая жидкость, содержащаяся в каждом заряженном теле. А наблюдавшееся уменьшение заряда на телах естественно трактовалось как «испарение» этой электрической жидкости. Столь же естественной была идея попытаться предотвратить такое «испарение», поместив заряженное тело в... бутылку, выбрав в качестве заряженного тела воду.

Такой именно опыт поставил в 1745 году настоятель одного из соборов в Померании Юрген фон Клейст (по другим сведениям опыт был поставлен с целью получить заряженную воду, якобы полезную для здоровья). Он наполнил водой бутылку, закрыл ее пробкой, а через пробку ввел в воду металлический стержень (попросту гвоздь).

Присоединив внешний конец стержня к электрической машине, которая в те времена представляла собой вращающийся стеклянный шар, о который терлась рука экспериментатора, Клейст сообщил воде значительный электрический заряд. И тут случилось непредвиденное.

Взяв одной рукой бутылку, он имел неосторожность прикоснуться другой рукой к выступавшему из пробки концу гвоздя, и при этом ощутил в руках и плечах сильнейший удар, вызвавший онемение мышц. Потрясенный случившимся, он сообщил об этом в письме одному из своих друзей.

По случайному совпадению, почти такой же опыт и почти в то же время был поставлен в голландском городе Лейдене профессором университета Питером ван Мушенбруком. Только вместо толстостенной бутылки Мушенброк воспользовался тонкостенной стеклянной банкой. Зарядив воду и взяв банку в одну руку, он тоже прикоснулся другой рукой к металлическому стержню, служившему для подвода заряда к воде.

При этом Мушенбрук ощутил такой сильный удар в руки, плечи и грудь, что потерял сознание, и два дня приходил в себя. Сообщая об этом «приключении» в письме своему французскому корреспонденту, Мушенбрук добавляет, что не согласился бы повторить опыт, даже если бы ему было обещано французское королевство!

Сначала наблюдения Клейста и Мушенбрука были понятны, как проявления так называемого «живого электричества», поскольку в этих опытах такую важную роль играли руки человека. Но довольно скоро стало ясно, что рука, держащая банку, и заряженная жидкость в ней являются, как мы теперь говорим, обкладками конденсатора и что еще более эффективный прибор получится, если внешнюю и внутреннюю поверхности стенок банки покрыть слоем металла, например, оловянной фольги.

Так появился на свет первый электрический конденсатор, который французский физик Жан Нолле назвал Лейденской банкой - название, не забытое и в наши дни. Вероятно, отголоском тогдашних наивных представлений об электричестве и о «бутылочном» происхождении конденсатора осталось слово, обозначающее главную характеристику конденсатора - емкость.

Объясняя, что такое конденсатор, мы должны четко представлять физические основы работы и конструкцию этого незаменимого элемента каждого мало-мальски серьезного электронного устройства.

К недостаткам танталовых конденсаторов можно отнести чувствительность к пульсациям тока и перенапряжениям, а также относительную дороговизну этих изделий.

Силовые конденсаторы, как правило, используются в системах высокого напряжения. Они широко применяются для компенсации потерь в линиях электропередач, а также для улучшения коэффициента мощности в промышленных электроустановках. Изготавливаются из высококачественной металлизированной пропиленовой пленки с применением специальной пропитки нетоксичным изоляционным маслом.

Могут иметь функцию самоликвидации внутренних повреждений, что придает им дополнительную надежность и увеличивает срок службы.

Керамические конденсаторы имеют в качестве материала диэлектрика керамику. Отличаются высокой функциональностью по рабочему напряжению, надежностью, низкими потерями и дешевизной.

Диапазон емкостей их варьируется от нескольких пикофарад до примерно 0,1 мкФ. В настоящее время являются одним из наиболее широко используемых типов конденсаторов, используемых в электронном оборудовании.

Серебряные слюдяные конденсаторы пришли на смену широко распространенным ранее слюдяным элементам. Обладают высокой стабильностью, герметичным корпусом и большой емкостью на единицу объема.

Широкому применению серебряно-слюдяных конденсаторов мешает их относительная дороговизна.

У бумажных и металлобумажных конденсаторов обкладки изготовляются из тонкой алюминиевой фольги, а в качестве диэлектрика используется специальная бумага, пропитанная твердым (расплавленным) или жидким диэлектриком. Применяются в низкочастотных цепях радиоустройств при больших токах. Отличаются относительной дешевизной.

Для чего нужен конденсатор

Имеется целый ряд примеров использования конденсаторов в самых разнообразных целях. В частности, их широко применяют для хранения и и цифровых данных. используются в телекоммуникационной связи для регулировки частоты и настройки телекоммуникационного оборудования.

Типичным примером их применения является использование в источниках питания. Там эти элементы сглаживания (фильтрацию) выпрямленного напряжения на выходе этих устройств. Они также могут быть использованы в для генерации высокого напряжения, многократно превышающего входное напряжение. Конденсаторы широко применяются в различного рода преобразователях напряжения, устройствах бесперебойного питания для компьютерной техники и т.д.

Объясняя, что такое конденсатор, нельзя не сказать, что этот элемент может служить и отличным хранилищем электронов. Однако реально эта функция имеет определенные ограничения по причине неидеальности изоляционных характеристик используемого диэлектрика. Тем не менее конденсатор обладает свойством достаточно длительное время хранить электрическую энергию при отключении от цепи заряда, поэтому он может быть использован как временный источник питания.

Благодаря своим уникальным физическим свойствам эти элементы нашли настолько широкое применение в электронной и электротехнической промышленности, что сегодня редко какое электротехническое изделие не включает в себя по крайней мере один такой компонент для какой-либо цели.

Подводя итоги, можно констатировать, что конденсатор - это бесценная часть огромного множества электронных и электротехнических устройств, без которых был бы немыслим дальнейший прогресс в науке и технике.

Вот что такое конденсатор!

Конденсатор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».

Свойства конденсатора

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

где — мнимая единица, — частота протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

Резонансная частота конденсатора равна

При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах, на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

где — напряжение (разность потенциалов), до которого заряжен конденсатор.

Обозначение конденсаторов на схемах

В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74 либо международному стандарту IEEE 315-1975:

Обозначение
по ГОСТ 2.728-74ОписаниеКонденсатор постоянной ёмкостиПоляризованный конденсаторПодстроечный конденсатор переменной ёмкости

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 - 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

Характеристики конденсаторов Основные параметры Ёмкость

Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Номинальное напряжение

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

Полярность

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

  • - собственная ёмкость конденсатора;
  • - сопротивление изоляции конденсатора;
  • - эквивалентное последовательное сопротивление;
  • - эквивалентная последовательная индуктивность.
Электрическое сопротивление изоляции конденсатора — r

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут, где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

Эквивалентное последовательное сопротивление — R

Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.)).

Эквивалентная последовательная индуктивность — L

Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

Тангенс угла потерь

Тангенс угла потерь - отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол, где — угол диэлектрических потерь. При отсутствии потерь. Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная, называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:

,

где ΔT - увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.

Диэлектрическое поглощение

Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.

Классификация конденсаторов

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
  • Конденсаторы с газообразным диэлектриком.
  • Конденсаторы с жидким диэлектриком.
  • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
  • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка.

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термо-конденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
  • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

Применение конденсаторов

Конденсаторы находят применение практически во всех областях электротехники.

  • Конденсаторы (совместно с катушками индуктивности и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п..
  • При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, импульсных лазерах с оптической накачкой, генераторах Маркса, (ГИН; ГИТ), генераторах Кокрофта-Уолтона и т. п.
  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • В промышленной электротехнике конденсаторы используются для компенсации реактивной мощности и в фильтрах высших гармоник.
  • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
  • ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
  • ИП влажности древесины
  • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.
Источники и внешние ссылки:
  • Описание работы конденсатора и емкости на аналогии с водопроводом.
  • Статические конденсаторы для компенсации реактивной мощности
  • Программа для расчёта реактивного сопротивления конденсатора
  • Электрический конденсатор — Википедия