Компенсация температурных удлинений трубопроводов тепловой сети. Компенсация температурных деформаций трубопроводов


Теплопроводы системы отопления монтируют в «коробке» строящегося здания при различной температуре наружного воздуха. В весенне-осенний период эта температура близка к +5°С. В зимний период для удобства выполнения отделочных и монтажных работ в строящемся здании стремятся также поддерживать временными средствами положительную температуру.

Так как эксплуатация различных отопительных труб проводится при температуре теплоносителя от 30 до 150°C, стальные трубы удлиняются по сравнению с монтажной их длиной в большей или меньшей степени.

Температурное удлинение нагреваемой трубы - приращение ее длины Δl - определяется по формуле:

Δl=α*{t т -t н)l,

где α - коэффициент линейного расширения материала трубы (для мягкой стали в рассматриваемом интервале температуры близок к 1,2 10 -5);

t т - температура теплопровода, близкая к температуре теплоносителя, °C (при расчетах учитывается наивысшая температура);

tн - температура окружающего воздуха в период производства монтажных работ, °C;

l - длина отопительной трубы, м.

Δl=1,2*10 -2 *(t т -5)l, мм,

удобном для ориентировочных расчетов.

Можно установить, что при низкотемпературной воде 1 м подающей стальной трубы предельно удлиняется приблизительно на 1 мм, обратной трубы - на 0,8 мм, а при высокотемпературной воде и паре удлинение каждого метра трубы достигает 1,75 мм.

Очевидно, что это необходимо учитывать при конструировании системы отопления, особенно при высокотемпературном теплоносителе, и принимать меры для уменьшения усилий, возникающих при температурном удлинении подводок, стояков и магистралей.

Компенсация удлинения подводок к отопительным приборам предусматривается в горизонтальных однотрубных системах путем изгибов подводок (добавления уток) для того, чтобы напряжение на изгиб в отводах труб не превышало 78,5 МПа (800 кгс/см 2); между каждыми пятью-шестью приборами вставляют П-образные компенсаторы, которые рационально размещать в местах пересечения разводящей трубой внутренних стен и перегородок помещений.

В системах отопления с вертикальными стояками подводки к приборам в большинстве случаев выполняются без изгибов, однако в высоких зданиях возможен специальный изгиб подводок к одному или нескольким приборам для обеспечения беспрепятственного перемещения труб стояка при температурном удлинении.

При длинных гладкотрубных приборах, а также при установке нескольких приборов другого типа «на сцепке» необходимы такие же специальные изгибы подводок к ним для компенсации их температурного удлинения.
Игнорирование этого явления приводит при эксплуатации системы если не к излому труб и арматуры, то к возникновению течи в резьбовых соединениях.

Компенсация удлинения вертикальных стояков систем отопления малоэтажных зданий обеспечивается путем их изгиба в местах присоединения к подающим магистралям. В более высоких (4-7-этажных) зданиях вертикальные однотрубные стояки изгибают в местах присоединения не только к подающей, но и к обратной магистрали.

Изгибы труб для компенсации удлинения вертикальных стояков систем отопления зданий

а – одно - трехэтажных; б – четырех - семиэтажных; в - восьмиэтажных и более высоких.

В зданиях, имеющих более семи этажей, таких изгибов стояков недостаточно и для компенсации удлинения средней части вертикальных стояков применяют либо специальные П-образные компенсаторы, либо дополнительные изгибы труб, удаляя отопительные приборы от оси стояка. В этом случае трубы стояков между компенсаторами в отдельных точках закрепляют, устанавливая неподвижные опоры (так называемые «мертвые») для обеспечения перемещения труб в заданном направлении при изменении их температуры.

В местах пересечения междуэтажных перекрытий трубы заключают в гильзы для облегчения их перемещения при удлинении или при ремонте. При замоноличивании в панели стен трубы соединяют в разрывах между панелями с изгибами для компенсации усилий, возникающих при осадке зданий.

В вертикальной однотрубной системе для компенсации удлинения используют изгибы труб каждого этаже-стояка.

Для компенсации удлинения вертикальных главных стояков систем отопления многоэтажных зданий применяют П-образные компенсаторы, ширина и вылет которых определяются расчетом. Следует иметь в виду, что неподвижные опоры между компенсаторами в этом случае воспринимают не только силу упругости компенсатора, но и действие массы трубы с водой и изоляцией.

Компенсация удлинения магистралей выполняется прежде всего естественными их изгибами, обусловленными планировкой конкретного здания, и только прямые магистрали значительной длины, особенно при высокотемпературном теплоносителе, снабжаются П-образными компенсаторами.

Для трубопроводов из полимерных материалов применяются подвижные опоры, допускающие перемещение трубопровода в продольном направлении, и неподвижные, не допускающие таких перемещений.

В местах прохода через строительные конструкции трубы из полимерных материалов необходимо прокладывать в гильзах. Длина гильзы должна превышать толщину строительных конструкций на толщину отделочных материалов стен и возвышаться над поверхностью пола на 20 мм. Стыки труб в гильзах располагать не допускается.

Неподвижные опоры на трубах следует выполнять с помощью приваренных или приклеенных к телу трубы упорных колец, муфт для труб диаметром до 160 мм или сегментов труб – для труб диаметром больше 160 мм. Крепление трубы путем ее заневоливания (создания сжимающей нагрузки) не допускается.

В качестве подвижных опор применяются подвески или хомуты, выполненные из металла или полимерного материала, внутренний диаметр которых должен быть на 1-3 мм больше наружного диаметра монтируемого трубопровода. Между трубопроводом и металлическим хомутом следует располагать прокладку из мягкого материала. Ширина прокладки должна превышать ширину хомута на менее чем на 2 мм.

Неподвижные опоры необходимо располагать таким образом, чтобы температурные изменения длины участков трубопровода не превышали компенсирующей возможности этих участков.

Величину температурного изменения длины трубопровода определяется по формуле:

Где - коэффициент теплового линейного расширения материала трубы, ;

Разность между максимальной и минимальной температурами трубопровода;

Длина трубопровода, м.

Продольное усилие в трубе возникающее при изменении температуры, без учета компенсации температурных деформаций, определяется по формуле:

, где - модуль упругости материала трубы, МПа;

Площадь поперечного сечения стенки трубы, м 2 .

Температурные напряжения необходимо учитывать в любом закрепленном участке трубопровода при любой длине участка.

В качестве компенсирующих элементов на трубопроводе могут быть отводы, петлеобразные, П-образные, сильфонные и другие виды компенсаторов. Компенсирующая способность отвода под углом 90 0 определяется по формуле (см. рис. 1):

, где - максимальное допустимое продольное перемещение трубопровода от действия температуры, которое может быть компенсировано отводом, м;

Длина прилегающего к отводу прямого участка трубопровода до подвижной опоры, м;

Радиус изгиба отвода, м;

Наружные диаметр труб, м;

Расчетная прочность, МПа.

Рис. 1. Схема компенсации температурных удлинений отводом.

Компенсирующая способность П-образного отвода определяется по формуле (см. рис. 2):

Где - максимально допустимое продольное перемещение трубопровода от действия температуры, которое может быть воспринято компенсатором, м;

Вылет компенсатора, м;

Радиус изгиба отводов компенсатора, м;

Длина прямого участка компенсатора, м;

Наружный диаметр трубы, м;

Допускаемое напряжение из условий длительной прочности, МПа.

Максимальное допустимое расстояние от оси компенсатора до оси неподвижной опоры трубопровода , см, должно вычисляться по формуле:

.

Расстояние от оси трубы отвода до оси установки скользящей опоры следует принимать равным:

Где - коэффициент, определяемый прочностными и упругими свойствами полимерного материала труб по формуле:

Рис. 2. Схема компенсации температурных удлинений П-образным компенсатором.

Компенсирующая способность трубопровода может быть повышена за счет введения дополнительных поворотов, спусков и подъемов. Компенсирующая способность полимерных трубопроводов может быть обеспечена подольным изгибом при укладке их в виде змейки не опоре, ширина которой должна допускать возможность изгиба трубопровода при перепаде температур.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-04

Независимо от материала, из которого они сделаны, подвержены температурным удлинениям и сокращениям. Чтобы найти величину линейного изменения длины трубопроводов при их расширении и сужении выполняется расчет. Если им пренебречь и не установить необходимые компенсаторы, то, при открытой прокладке трассы, трубы могут провиснуть или даже станут причиной выхода из строя всей системы. Поэтому расчёт температурных удлинений трубопроводов обязателен и требует профессиональных знаний.

В данной части учебного курса « », при участии специалиста компании REHAU, расскажем:

  • Почему нужно учитывать температурные удлинения трубопроводов.
  • Как рассчитать прогиб трубопровода при температурном удлинении.
  • Как рассчитать и смонтировать плечо компенсатора температурных удлинений.
  • Как компенсировать температурные деформации полимерных трубопроводов.
  • Какие полимерные трубопроводы лучше всего использовать при открытой водопроводной и отопительной разводке.

Необходимость расчета температурных удлинений трубопроводов из полимерных материалов

Температурные удлинения или сокращения трубопроводов происходят под влиянием изменения рабочей температуры, перемещаемой по ним воды, а также температуры окружающей среды. Соответственно, при монтаже нужно обеспечить достаточную степень свободы трубопроводов, а также рассчитать необходимые допуски на увеличение их длины. Часто начинающие застройщики не учитывают эти изменения при монтаже водопроводной и отопительной разводки. Типичные ошибки:

  • Замоноличивание труб холодного и горячего водоснабжения в стяжку пола без использования утеплителя или защитной гофры.
  • Открытая прокладка труб, например, при монтаже радиаторов системы отопления, без использования специальных компенсаторов.

Сергей Булкин Руководитель технического отдела направления «Внутренние инженерные системы» компании REHAU

Учет температурных удлинений трубопроводов из полимерных материалов, в частности, из РЕ-Ха, следует производить только при их открытой прокладке. При скрытой прокладке компенсация температурных удлинений происходит за счет изгибов трубопроводов, уложенных в защитной гофротрубе или в теплоизоляции, при изменении направления трассы. В этом случае компенсация удлинений происходит благодаря напряжениям в стяжке или в штукатурке.

Технология скрытой прокладки трубопроводов в штробах или в стяжке должна обеспечивать возможность компенсации возникающих деформаций без механических повреждений труб и соединительных элементов.

Отметим, что стяжка выдерживает напряжение без разрушений, т.к. возникающие усилия очень малы и составляют незначительный процент от имеющегося запаса её прочности. Необходимо только проследить, чтобы при заливке стяжки или оштукатуривании стен раствор не попадал внутрь гофротрубы или под теплоизоляцию. Присоединение труб к водоразборной арматуре производится через настенные угольники, которые прочно закрепляются на строительной конструкции или на специальном кронштейне. В результате - осевые перемещения труб в теплоизоляции или защитной гофротрубе, за счет температурных удлинений, не оказывают усилий на узел присоединения. При присоединении трубопроводов к распределительным коллекторам выполняется поворот под 90° на выходе из стяжки или из-под штукатурки.

Таким образом на узлы присоединения трубопроводов к коллектору будут передаваться усилия от очень коротких участков, которыми можно пренебречь.

При открытой прокладке температурные удлинения полимерных трубопроводов, в частности, трубопроводов из РЕ-Ха, будут очень заметны, т.к. эти трубопроводы имеют большой коэффициент температурного удлинения.

Физический смысл коэффициента температурного удлинения состоит в том, что он показывает, на сколько миллиметров удлинится 1 м трубы при его нагреве на 1 градус.

Эта же величина имеет и обратный смысл, т.е. если трубопровод охладить на 1 градус, то коэффициент температурного удлинения покажет, на сколько миллиметров укоротится 1 м трубопровода.

Коэффициент температурного удлинения – это физическая характеристика материала, из которого изготовлен трубопровод.

Расчет температурного удлинения трубопроводов из сшитого полиэтилена РЕ-Ха

Температурные удлинения или сокращения трубопроводов происходят из-за изменения рабочей температуры циркулирующей по ним воды, а также температуры окружающей среды. При открытой прокладке трубопровод должен свободно удлиняться или укорачиваться без перенапряжения материала труб, соединительных деталей и соединений трубопровода. Это достигается за счет компенсирующей способности элементов трубопровода. Например:

  • Правильной расстановкой опор (креплений).
  • Наличием отводов в трубопроводе в местах поворота, других гнутых элементов и установкой температурных компенсаторов.

Устройство компенсаторов необходимо только при значительных линейных удлинениях трубопроводов . Поскольку система должна быть рациональна, то сначала рассчитывается температурное удлинение трубопровода. Возьмём трубопроводы из сшитого полиэтилена РЕ-Ха. Для расчета нам потребуется:

Таб. 1. Коэффициент температурного удлинения и константа материала для водопроводных труб.

Сергей Булкин

Температурное удлинение участка трубопровода пропорционально его длине и разнице температур монтажа и максимальной рабочей температуры. Если мы, например, монтируем участок трубопровода горячей воды длиной 10 м, и температура окружающего воздуха, т.е. температура монтажа, составляет 20°С, а максимальная рабочая температура составит 70°С, то температурное удлинение можно посчитать по формуле

ΔL = L α ΔТ (t макс. раб. – t монтажа). Где:

  • ΔL - температурное удлинение в мм;
  • L - длина трубопровода в м;
  • α - коэффициент температурного удлинения в мм/м·К;
  • ΔТ - разность температур в К.

Подставляем значения в формулу:

ΔL = L α (t макс. раб. – t монтажа) = 10 0,15 (70 – 20) = 75 мм.

Т.е. 10-метровый участок при этом удлинится на 75 мм или 7.5 см. Это приведет к деформации системы и провисанию трубопровода. Данные деформации, прежде всего, нарушают внешний вид системы. Но на значительной длине могут разрушить, прежде всего, крепежные устройства или привести к поломке запорно-регулировочной арматуры или фасонной части. Человеческий глаз способен воспринимать прогиб трубопровода (ΔН), начиная от 5 мм .

Прогиб трубы в результате температурного удлинения.

Следующий шаг - расчет величины прогиба (провисания) трубопровода.

Расчет прогиба трубопровода и способы компенсации температурных деформаций полимерных трубопроводов

Зная длину участка между хомутами (L) и его длину при максимальной рабочей температуре (L 1), прогиб трубопровода определяется с помощью зависимости:

Итого, при температурном удлинении трубопровода на 75 мм на 10-метровом отрезке прогиб составит:

Сергей Булкин

Бороться с температурными деформациями полимерных трубопроводов можно разными способами :

  • Установкой дополнительных хомутов крепления.
  • Устройством Г-образного компенсатора.
  • Устройством П-образного компенсатора.
  • Применением фиксирующего желоба как компенсатора.
  • Устройством дополнительных неподвижных опор.
  • Применением металлополимерных трубопроводов, в которых слой алюминия прочно приклеен к внутреннему самонесущему слою из РЕ-Ха.

Рассмотрим каждый из этих способов.

Способы компенсации температурных деформаций полимерных трубопроводов

1. Устройство дополнительных хомутов крепления.

За счет устройства дополнительных хомутов крепления предотвращается провисание или прогиб трубопроводов. Рекомендуемое максимальное расстояние между хомутами для полимерных труб из РЕ-Ха приведены в таблице 2.

2. Устройство Г-образного компенсатора.

Г-образные компенсаторы устраиваются так же, как и при прокладке стальных трубопроводов. Устраивать Г-образные компенсаторы на полимерных трубах из РЕ-Ха значительно эффективнее, т.к. эти трубы отличаются высокой эластичностью. При этом, в качестве Г-образных компенсаторов можно использовать места поворота трубопроводов под 90°. Необходимо по формуле, как было описано выше, определить температурное удлинение ΔL от прямого участка перед поворотом. Эта величина влияет на расстояние от трубопровода до строительной конструкции. Расстояние до строительной конструкции должно быть не менее величины ΔL. Кроме этого, необходимо дать трубе возможность свободно изгибаться. Для этого первый хомут крепления, после поворота, следует устанавливать на определенном расстоянии от поворота.

Устройство Г-образного компенсатора на полимерных трубах .

  • LBS – длина плеча компенсатора;
  • х – минимальное расстояние от стены;
  • ΔL – температурное удлинение;
  • FP – неподвижная опора;
  • L – длина трубы;
  • GS – скользящий хомут.

Длина плеча компенсатора, в основном, зависит от материала (константы материала С). Компенсаторы обычно устанавливаются в местах изменения направления трубопровода.

Фиксирующие желоба на компенсаторы не устанавливают, чтобы не нарушить изгиб трубы.

Длина плеча компенсатора определяется по формуле:

  • С – константа материала трубы;
  • d – наружный диаметр трубопровода в мм;
  • ΔL – температурное удлинение участка трубопровода.

Если температурное удлинение составило 75 мм, константа материала С = 12, а диаметр трубопровода равен 25 мм, то длина плеча компенсатора составит:

Сергей Булкин

Г-образный компенсатор – это самое экономичное устройство для компенсации температурных удлинений. Для его устройства не требуется никаких дополнительных устройств и элементов.

3. Устройство П-образного компенсатора.

П-образные компенсаторы устраиваются в тех случаях, когда нежелательна компенсация температурных удлинений на краях участка. Его устраивают, как правило, посередине отрезка трубопровода, и компенсация температурных удлинений направлена к центру отрезка. Основания П-образного компенсатора смещаются к центру равномерно с обеих сторон, поэтому каждая сторона компенсирует половину температурного удлинения ΔL/2. Плечи П-образного компенсатора являются плечами компенсации LBS.

Длина плеча компенсатора вычисляется по приведенной выше формуле, а ширина основания П-образного компенсатора должна быть не менее половины длины плеча компенсатора.

Устройство П-образного компенсатора на полимерных трубах.

4. Фиксирующий желоб как компенсатор температурных удлинений.

Фиксирующий желоб – это ложемент из оцинкованной стали трехметровой длины с отбортовкой по краям. Фиксирующие желоба выпускаются на соответствующие диаметры трубопроводов. Трубопроводы защелкиваются в фиксирующие желоба. При этом фиксирующий желоб охватывает трубу примерно на 60°.

Силы трения трубопровода о стенки желоба превышают силу температурных удлинений трубопровода.

При установке фиксирующего желоба необходимо выдержать отступ в 2 мм от полимерных надвижных гильз.

При установке фиксирующего желоба снизу трубопровода обеспечивается его механическая защита.

При использовании фиксирующего желоба минимальное расстояние между хомутами крепления при использовании трубопроводов всех диаметров может составлять 2 м.

5. Использование неподвижных опор

Если компенсацию температурных удлинений необходимо произвести на длинном участке трубопровода, на котором имеется много ответвлений, например, водопроводный стояк в 20-й этажном здании, на каждом этаже которого установлены тройники для поквартирной разводки, то компенсацию температурных удлинений можно произвести с помощью установки неподвижных опор. Для этого с обеих сторон тройника за надвижными гильзами устанавливаются обычные скользящие хомуты.

Формирование неподвижной опоры как компенсатора температурных удлинений трубопровода .

Хомуты не позволят фасонной части сдвинуться ни вверх, ни вниз. Тем самым длинный участок разбит на много коротких участков, равных высоте этажа, приблизительно 3 м. Как мы помним из формулы расчета, температурное удлинение прямо пропорционально длине участка, а мы ее сократили. При устройстве неподвижных опор на каждом этаже на стояке не потребуется устройства никаких других компенсаторов температурного удлинения трубопровода. Если есть, например, «холостой» стояк, у которого по всей длине нет боковых отводов, то можно искусственно установить на этом стояке, например, равнопроходные муфты и на них сформировать неподвижные опоры, как было описано выше. Чтобы уменьшить затраты, можно установить на стояке Г или П-образные компенсаторы или поставить сильфонный компенсатор.

Полимерные трубопроводы для устройства современной открытой водопроводной и отопительной разводки

Современные металлополимерные трубопроводы - это труба из сшитого полиэтилена, в которой слой алюминия прочно приклеен к внутреннему самонесущему слою из РЕ-Ха. У таких трубопроводов наименьший коэффициент температурного удлинения, т.к. алюминиевый слой компенсирует температурные удлинения и удерживает внутренний полимерный слой от температурных деформаций.

Коэффициент температурного удлинения металлополимерных трубопроводов – всего 0,026 мм/м·К, что в 5.76 раза меньше, чем у обычных трубопроводов из сшитого полиэтилена.

Температурное удлинение участка металлополимерного трубопровода длиной 10 м при температуре окружающего воздуха (т.е. температуре монтажа 20 °С и максимальной рабочей температуре 70 °С) составит всего:

ΔL = L α (t макс. раб. – t монтажа) = 10 0,026 (70 – 20) = 13 мм.

Для сравнения: ранее мы рассчитали температурное удлинение обычного РЕ-Ха трубопровода длиной 10 м, которое составило 75 мм.

Поэтому металлополимерные трубопроводы позиционируются как трубопроводы для открытой прокладки. Но вариант с металлополимерными трубами окажется дороже, т.к. эти трубы стоят больше, чем обычные трубы из сшитого полиэтилена РЕ-Ха.

Заключение

Нельзя игнорировать температурные удлинения трубопроводов из сшитого полиэтилена РЕ-Ха при открытой прокладке водопроводной разводки и монтаже отопительной системы. Для компенсации удлинений следует применять один из вышеперечисленных в статье методов, строго соблюдая рекомендации производителя.

Существует ряд вариантов температурных удлинений компенсации в теплосетях. Компенсаторы гибкие производят из труб, имеют они чаще всего Г- или П-образную форму. Обычно, компенсаторы гибкие вне зависимости от способа теплопроводной прокладки укладывают в каналах сечения непроходного (нишах), что повторяют в плане форменный вид компенсатора.

В теплосетях подземных, главным образом на трубопроводах диаметра большого, чаще всего потребляются компенсаторы осевые типа скользящего (компенсаторы сальниковые). В областях установки компенсаторы сальниковые имеют свойство секционирования трубопроводов на участки, что не связаны металлически между собой. В данном случае при присутствии разности потенциалов между стаканом компенсатора и корпусом цепь электрическая замкнётся по воде, что может обусловить протекание процесса электрохимического, на внутренних поверхностях компенсатора сальникового коррозионных процессов. Но как показывает практика, во нередких случаях возникает связи металлическая между двумя частями компенсатора, вследствие контакта стакана с грундбуксом. В процессе использования компенсатора сальникового контакт металлический между частями его отдельным может иногда возникать и прерываться.

Компенсаторы сальниковые, арматуру запорную как и иное оборудование, что требует обслуживание, помещают в камеры что расположены друг от друга на не более 150-200 метров расстояния. Выполняются камеры из кладки кирпичной, бетона монолитного или железобетона. Из-за ощутимых оборудования габаритов обычно камеры имеют немаленькие размеры. Из-за того, что между ограждающими конструкциями и температурами оборудования резкое различие возникает в камерах постоянная конвекция воздуха влажного и как в результате этого конденсат на поверхностях, которые имеют температуру ниже точки росы.

В итоге, происходит в отдельных участках сосредоточенное увлажнение тепловой изоляции труб в камере и участках, что примыкают к ней, канала, капелью с перекрытий со стен, осуществляется через которые ввод в камеры труб, с помощью плёнки влаги, что стекает с щитовых плоскостей опор, что размещены в камерах. Ввод в камеры труб производится через окна специальные в стенках камер. Структура узла ввода имеет значение важное, главным образом для тепловых проводов прокладки бесканальной в связи с наличием возможности трубной просадки и в итоге этого деформации конструкции изоляции. Структурой ввода труб узла в камеры, обусловлена кроме того и уровень защищённости тепловой изоляции от аэрации и увлажнения на данном участке.

Для того, чтобы обеспечить компенсацию удлинений температурных на довольно коротких участках точки отдельные тепловых проводов фиксируют опорами неподвижными, а иная часть тепловых проводов перемещается свободно по отношению к этим опорам. Данным образом опоры неподвижные теплопровод делят на независимые по отношению к температурным удлинениям участки. Опоры при этом воспринимают усилия, что возникают в трубопроводах, при разновидных способах и схемах компенсации удлинений температурных. Установку опор неподвижных предусматривают при различных способах теплопроводной прокладки.

Участки установки опор неподвижных совмещают как обычно с узлами трубных ответвлений, точками расположения запорной аппаратуры на трубопроводах, компенсаторов сальниковых, грязевиков и иного оборудования. Расстояние между опорами неподвижными зависит основным образом от трубопроводного диаметра, температуры теплового носителя, и способности компенсации компенсаторов установленных. При температуре воды максимальной, что равна 150 градусам, для трубопроводов диаметром от 50-ти до 1000 миллиметров между опорами расстояния могут быть от 60 до 200 метров.

В виде несущей структуры в опорах неподвижных могут потребляться швеллеры стальные, балки железобетонные (опоры лобовые) или щиты железобетонные щиты (опоры щитовые). Опоры лобовые устанавливают обычно в камерах, опоры щитовые в данный момент более широко потребляемые, устанавливают в каналах и камерах. На участке трубного прохода через опору щитовую предполагается зазор. Трубы на данных участках иметь должны покрытие защитное, как и на иных трубных частях. Зазор промеж опор и труб быть должен, заполнен набивкой эластичной, которая предотвращает попадание влаги в зазор. В случае потребления набивок поглощающих влагу, как практика показала, на данном участке может произойти образование опасного очага коррозионных процессов. Опоры щитовые в нижней части своей иметь должны отверстия для пропускания воды и предотвращения грунтом заноса каналов.

Конструкции несущие опор неподвижных имеют контакты непосредственные с грунтом или через конструкцию ограждающие камер и каналов. Потому при отсутствии прокладок диэлектрических промеж упор (опоры лобовые) или кольцами опорными, (опоры щитовые) и конструкцией несущей опора неподвижная является заземлением теплопровода сосредоточенным, то есть элементов, что обуславливает вариант попадания токов блуждающих в теплосеть, а в вариантах потребления защиты электрохимической – элементом, что снижает эффективность её.

Цель занятия. Ознакомление студентов с основными методами соединения труб в трубопроводах и их разгрузки от напряжений, возникающих вследствие температурных деформаций.

Раздел 1. Соединения труб в технологических трубопроводах]

Соединения, отдельных звеньев труб между собой и с арматурой производятся различными способами. Выбор способа зависит от необходимой надежности работы, начальной стоимости, требуемой частоты разборки, свойств материала соединяемых деталей, наличия соответствующего инструмента, навыков монтажного и эксплуатационного персонала.

Все виды соединений можно подразделить на разъемные и неразъемные. К разъемным относятся соединения на резьбе (с помощью муфт, ниппелей), на фланцах, на раструбах и с помощью специальных приспособлений. К неразъемным относятся соединения с помощью сварки, пайки или склейки.

Соединения на резьбе . Резьбовые соединения труб применяются, главным образом в трубопроводах тепло- водоснабжения и газовых линиях хозяйственно-бытового назначения. В химической промышленности такие соединения используют в трубопроводах сжатого воздуха. Для соединения на резьбе концы труб снаружи нарезаются трубной резьбой. Такая резьба отличается от нормальной (метрической) значительно меньшим шагом и меньшей глубиной. Поэтому она не вызывает значительного ослабления стенки трубы. Кроме того, трубная резьба имеет угол при вершине треугольника 55°, в то время как метрическая – 60°.

Трубная резьба выполняется в двух вариантах: со срезом вершины по прямой, и скруглением. Трубные резьбы с прямым и закругленным профилем, изготовленные с надлежащими допусками, взаимозаменяемы.

Для соединения труб в трубопроводах высокого давления применяется коническая резьба. Соединение на конической резьбе отличается исключительной герметичностью.

Концы труб соединяют между собой и с арматурой с помощью резьбовых муфт. Муфтовые резьбовые соединения обычно применяют для трубопроводов диаметром до 75 мм. Иногда этот вид соединения применяется также при прокладке труб больших диаметров (до 600 мм).

Муфта (рис. 5.1, а и б ) представляет собой короткий полый цилиндр, внутренняя поверхность которого сплошь нарезана трубной резьбой. Муфты изготовляются из ковкого чугуна для условных проходов диаметром от 6 до 100 мм и из стали для условных проходов диаметром от 6 до 200 мм. Для соединения с помощью муфты соединяемые трубы нарезают на половину длины муфты, и свинчивают. Если стыкуют две ранее смонтированные трубы, то применяют сгон (рис. 5.1, в). Для уплотнения муфтового соединения ранее применяли льняную прядь или асбестовый шнур. Для повышения герметичности газовых линий уплотнительный материал пропитывали краской. В настоящее время льняная прядь практически вытеснена фторпластовым уплотнительным материалом (ФУМ) и специальной пастой (гермепласт).



Рис. 5.1.– Резьбовые фасонные части. а, 6 – муфты; в – согон; г – контргайка.

Для разветвлений трубопроводов собранных на резьбе используют тройники и крестовины, для переходов с одного диаметра на другой – специальные муфты или вставки.

Фланцевые соединения. Фланцы – металлические диски, которые привариваются или привинчиваются к трубе, а затем соединяются болтами с другим фланцем (рис. 5.2). Для этого по периметру диска делаются несколько отверстий. Соединить таким образом можно не только два участка трубопровода, но и присоединить трубу к резервуару, насосу, подвести ее к оборудованию или измерительному прибору. Фланцевые соединения применяются в энергетической промышленности, нефтегазовой, химической и других отраслях производства. Фланцы обеспечивают легкость монтажа и демонтажа.

Больше всего производятся стальные фланцы, хотя для некоторых видов труб выпускают и пластиковые. При производстве учитывается диаметр трубы, к которой будет производиться крепление, и ее форма. В зависимости от формы трубы внутреннее отверстие во фланце может быть не только круглым, но и овальным или даже квадратным. На трубу фланец крепят, применяя сварку. Парный фланец крепится на другом участке трубы или оборудования, а затем оба фланца привинчиваются друг к другу болтами через имеющиеся отверстия. Фланцевые соединения делят на беспрокладочные и с прокладками. В первых герметичность обеспечивается за счет тщательной обработки и большого сжатия. Во вторых между фланцами помещается прокладка. Прокладки бывают нескольких видов, в зависимости от формы самих фланцев. Если фланец имеет гладкую поверхность, то прокладка может быть картонной, резиновой или паронитовой. Если один фланец имеет желоб для выступа, который находится на парном фланце, то применяют паронитовую и асбометаллическую прокладку. Делается это обычно при установке на трубах с высоким давлением.

По способу посадки на трубу фланцы делят на приварные (рис. 5.3, е, ж, з), литые заодно с трубой (рис. 5.3, а, б), с шейкой на резьбе (рис. 5.3, в), свободные на отбортованной трубе (рис. 5.3, к) или кольцах (рис. 5.3, з), последние плоские или с шейкой под отбортовку.

По другой классификации различают фланцы свободные (рис. 5.3, з, и, к), воротниковые (рис. 5.3, а, б, ж, з) и плоские (рис. 5.3, в, г, д, е).

Фланцы имеют размеры, зависящие от диаметра трубы (Dy ) и давления (Py ), но присоединительные размеры всех фланцев одинаковы для одинаковых Dy и Py .

Раструбные соединения. Раструбные соединения (рис. 5.4) применяются при прокладке некоторых видов стальных, чугунных, керамиковых, стеклянных, фаолитовых, асбоцементных труб, а также труб из пластмасс. Его преимущество – относительная простота и дешевизна. В то же время ряд недостатков: трудность разъема соединения, недостаточная надежность, возможность нарушения плотности при появлении незначительного перекоса смежных труб,– ограничивают применение этого вида соединений.

Рис. 5.4.– Раструбное соединение. 1 – раструб, 2 – набивка

Для уплотнения раструбного соединения (рис. 5.4) кольцевое пространство образуемое раструбом 1 одной трубы и телом другой, заполняют набивкой 2, в качестве которой используют промасленную прядь, асбестовый шнур или резиновые кольца. После чего наружный участок этого пространства зачеканивают или замазывают какой-либо мастикой. Метод ведения этих работ и род применяемых материалов зависят от материала труб. Так, раструбы чугунных водопроводных труб конопатят льняной прядью и зачеканивают увлажненным цементом, а в особо ответственных случаях заливают расплавленным свинцом, который затем также зачеканивают. Раструбы керамиковых канализационных труб заполняют до половины пеньковой смоляной прядью. Вторая половина заполняется белой, хорошо промятой глиной. В жилищном строительстве заделка раструбов чугунных труб осуществляется асфальтовой мастикой.

Специальные приспособления . Используется большое количество разнообразных специальных соединений для труб. Однако наиболее распространенными являются легкоразборные. В качестве примера рассмотрим соединение с помощью соединительной гайки (рис. 5.5.)

Соединительная гайка состоит из трех металлических частей (1, 2 и 4) и мягкой прокладки 3. Основные части гайки 1 и 4 навертываются на короткие резьбы труб. Средняя часть – накидная гайка 2 – стягивает между собой эти основные части. Герметичность соединения достигается мягкой (резиновой, асбестовой, паронитовой) прокладкой 3. Благодаря наличию прокладки накидная гайка не соприкасается с протекающей по трубам средой, а потому опасность заедания гайки сводится к минимуму.

Соединение труб сваркой, пайкой и склеиванием. В промышленности широкое распространение получили методы соединения труб сваркой, пайкой и склейкой. Сваркой или пайкой можно соединять трубы из черных металлов (кроме чугунных), цветных металлов, а также из винипласта.

Отличие сварки от пайки заключается в том, что в первом случае для соединения труб используется такой же материал, как и тот, из которого они изготовлены. Во втором – сплав (припой) с температурой плавления существенно меньшей, чем у материала трубы. Припои принято делить на две группы – мягкие и твёрдые. К мягким относятся припои с температурой плавления до 300 °С, к твёрдым – выше 300 °С. Кроме того, припои существенно различаются по механической прочности. Мягкими припоями являются оловянно-свинцовые сплавы (ПОС). Большое количество оловянно-свинцовых припоев содержит небольшой процент сурьмы. Наиболее распространёнными твёрдыми припоями являются медно-цинковые (ПМЦ) и серебряные (ПСр) с различными добавками.

Стоимость подготовки труб под сварку и стоимость самой сварки во много раз ниже стоимости фланцевого соединения (пары фланцев, прокладки, болтов с гайками, работы по посадке фланца на трубу). Хорошо выполненное сварное соединение весьма долговечно и не требует ремонта и связанных с этим остановок производства, что имеет место, например, при вырывании прокладок у фланцевого соединения.

На сварном трубопроводе фланцы ставят лишь в местах установки арматуры. Возможны, однако, случаи применения стальной арматуры с концами под приварку.

Несмотря на преимущества сварки и пайки труб перед другими видами соединений, их не следует производить в трех случаях:

· если передаваемый по трубам продукт действует разрушающе на наплавленный металл или на нагреваемые при сварке концы труб;

· если трубопровод требует частой разборки;

· если трубопровод находится в цехе, характер производства которого исключает работу с открытым пламенем.

При соединении труб из углеродистой стали может быть применена как кислородно-ацетиленовая (газовая), так и электродуговая сварка. Газовая сварка имеет по сравнению с электродуговой следующие преимущества:

· металл в шве получается более вязким;

· работы могут быть произведены в трудно доступных местах;

· потолочные швы выполняются гораздо легче.

Электродуговая сварка имеет, однако, свои преимущества:

· она в 3-4 раза дешевле газовой сварки;

· свариваемые детали прогреваются слабее.

При подготовке к сварке труб толщиой не менее 5 мм кромки труб запиливают под углом 30-45°. Внутренняя часть стенки остается нескошенной на толщине 2-3 мм. Для обеспечения хорошего провара труб между ними оставляют зазор 2-3 мм. Этот зазор предохраняет также концы труб от сплющивания и изгибания. По наружной поверхности шва наплавляют усиливающий валик высотой 3-4 мм. Для предохранения от попадания капелек расплавленного металла внутрь трубы шов не доваривают на 1 мм до внутренней поверхности трубы

Соединение труб из цветных металлов с помощью сварки или пайки производится по одному из способов, показанных на рис. 5.6.

Сварка встык (рис. 5.6, а) широко применяется при соединении свинцовых и алюминиевых труб. Сваркой (пайкой) с разбортовкой и подкаткой концов (рис.21, б, в и г) пользуются при соединении свинцовых и медных труб. В тех случаях, когда к соединению предъявляются требования особенно высокой прочности, сварной шов выполняется, как показано на рис. 5.6, д.

Для усиления шва при соединении алюминиевых труб проводят наплавку металла валиком (рис. 5.6, а), а при соединении свинцовых и медных труб наружные края труб, кроме того, слегка отбортовывают (рис. 5.6, б, в, г).

Соединение алюминиевых и свинцовых труб производится наплавкой металла, одинакового с основным металлом труб, т. е. сваркой; соединение медных труб – как сваркой, так и пайкой (твердым припоем).

Трубы из фаолита можно соединять путем склеивания по способам, показанным на рис. 5.6, в, д. Трубы из винипласта соединяют по способам, показанным на рис. 5.6, а, б и в, причем соединение по способу, показанному на рис. 5.6, б, отличается большой прочностью.

Раздел 2. Температурное удлинение трубопроводов и его компенсация.

Температура нормальной эксплуатации трубопроводов отличается, часто существенно, от температуры при которой производился их монтаж. В результате температурных удлинений в материале труб возникают механические напряжения, которые, если не принять специальных мер, могут привести к их разрушению. Такие меры называются компенсацией температурных удлинений или просто – температурной компенсацией трубопровода.

Рис. 5.7. Изгиб трубопровода при самокомпенсации

Простейшим и наиболее дешевым методом температурной компенсации трубопроводов является так называемая «самокомпенсация». Сущ­ность этого метода заключается в том, что трубопровод прокладывается с поворотами таким образом, чтобы прямые участки не превышали определенной расчетной длины. Прямой участок трубы, расположенный под углом к другому его отрезку и составляющий с ним одно целое (рис. 5.7), может воспринять его удлинение за счет собственной упругой деформаций. Обычно оба расположенные под углом участка трубы взаимно воспринимают тепловые удлинения и таким образом играют роль компенсаторов. Для иллюстрации на рис. 5.7 сплошной линией изображен трубопровод после монтажа, а штрихпунктирной – в рабочем, деформированном состоянии (деформация утрирована).

Самокомпенсация легко осуществляется на трубопроводах из стали, меди, алюминия и винипласта, так как эти материалы обладают значительной прочностью и эластичностью. На трубопроводах из других материалов удлинение воспринимается обычно с помощью компенсаторов, описание которых дается ниже.

Пользуясь деформацией прямого участка трубы, можно, вообще говоря, воспринять тепловое удлинение любой величины при условии, что компенсирующий участок имеет достаточную длину. На практике, однако, обычно не идут дальше значений 400 мм для стальных труб и 250 мм для винипластовых.

Если самокомпенсация трубопровода недостаточна для разгрузки температурных напряжений или ее невозможно осуществить, то прибегают к использованию специальных устройств, в качестве которых применяют линзовые и сальниковые компенсаторы, а также компенсаторы гнутые из труб.

Линзовые компенсаторы. Работа линзового компенсатора основана на прогибе круглых пластин или волнообразных уширений, составляющих тело компенсатора. Линзовые компенсаторы могут быть изготовлены из стали, красной меди или алюминия.

По способу выполнения различают следующие типы линзовых компенсаторов: сварные из отштампованных полуволн (рис. 5.8, а и б), сварные тарельчатые (рис. 5.8, в), сварные барабанные (рис. 5.8, г) и предназначенные специально для работы на вакуум-трубопроводах (рис. 5.8, д).

Рис. 5.8.– Линзовые компенсаторы.

Общими преимуществами линзовых компенсаторов всех без исключения типов является их компактность и нетребовательность в отношении обслуживания. Эти преимущества в большинстве случаев обесцениваются существенными их недостатками. Основные из них следующие:

· линзовый компенсатор создает значительные осевые усилия, действующие на неподвижные опоры трубопровода;

· ограниченная компенсирующая способность (максимальная деформация линзового компенсатора не превышает 80 мм):

· непригодность линзовых компенсаторов для давлений выше 0,2-0,3 МПа;

· сравнительно высокое гидравлическое сопротивление;

· сложность изготовления.

В силу перечисленных соображений линзовые компенсаторы применяются очень редко, а именно при совпадении ряда специфических условий: при низком давлении среды (от вакуума до 0,2 МПа), при наличии трубопровода большого диаметра (не менее 100 мм), при малой длине участка, обслуживаемого компенсатором (обычно не более 20 м), при передаче по трубопроводу газов и паров, но не жидкостей.

Сальниковые компенсаторы. Простейший тип сальникового компенсатора (так называемый односторонний неразгруженный компенсатор) показан на рис. 5.9. Он состоит из корпуса 4 с лапой (которой он крепится к неподвижной опоре), стакана 1 и сальника. Последний включает, сальниковую набивку 3 и грундбуксу (уплотнитель набивки) 2. Набивка сальника выполняется обычно из натертого графитом асбестового шнура, уложенного в виде отдельных колец. Стакан и корпус присоединяются посредством фланцев к трубопроводу. Стакан имеет бортик (помечен буквой а ), предотвращающий выпадение стакана из корпуса.

Основными достоинствомами сальниковых компенсаторов являются их компактность и значительная компенсирующая способность (обычно до 200 мм и выше).

Недостатки сальниковых компенсаторов:

· большие осевые усилия,

· необходимость периодического обслуживания сальников (что требует остановки трубопровода),

· возможность пропуска (протечки) среды через сальник,

· возможность заедания сальника, приводящая к поломке какой-либо детали трубопровода.

Заедание сальника может произойти вследствие неточной укладки трубопровода по прямой линии, оседания одной из опор в процессе эксплуатации, искривления продольной оси трубопровода под влиянием температурных изменений в ответвлении, разъедания поверхностей скольжения и отложения на них накипи или ржавчины.

В силу перечисленных недостатков сальниковые компенсаторы на трубопроводах общего назначения применяются чрезвычайно редко (например, на теплотрассах в стесненных городских условиях). Они находят применение на трубопроводах, выполненных из таких материалов, как: чугун (ферросилид и антихлор), стекло и фарфор, фаолит. Эти материалы по своим свойствам требуют укладки на жесткие основания, которые могут обеспечить хорошую работу сальниковых компенсаторов и из-за своей хрупкости исключают возможность применения самокомпенсации. Сальниковые компенсаторы, устанавливаемые на трубопроводах из этих материалов, выполняются из коррозионностойких материалов, что исключает заедание от ржавления трущихся поверхностей.

Все прочие трубопроводы, требующие компенсации тепловых удлинений, рекомендуется выполнять самокомпенсируемыми или снабжать, по возможности, компенсаторами из гнутых труб. О них ниже.

Компенсаторы, гнутые из труб. Компенсаторы этого типа в условиях предприятий и на магистральных трубопроводах являются наиболее распространенными. Гнутые компенсаторы выполняются из стальных, медных, алюминиевых и винипластовых труб.

а б
Рис. 5.11.– Гнутые компенсаторы а – П-образный; б – S-образный

В зависимости от способа изготовления различают компенсаторы: гладкие (рис. 5.10, а), складчатые (рис. 5.10, б), волнистые (рис. 5.10, в), а в зависимости от конфигурации – лирообразные (рис. 5.10), П-образные (рис. 5.11, а) и S-образные (рис. 5.11, б).

Под термином «складчатый» понимается компенсатор, кривизна которого получается вследствие образования складок на внутренней поверхности изгибов, под термином «волнистый» – компенсатор, имеющий на криволинейных участках волны по всему сечению трубы. Основное различие между этими компенсаторами заключается в их компенсирующей способности и гидравлическом сопротивлении. Если принять компенсирующую способность гладкого компенсатора за единицу, то при прочих равных условиях компенсирующая способность складчатого компенсатора составит около 3, а волнистого около 5 – 6. В то же время гидравлическое сопротивление этих устройств минимально у гладкого и максимально у волнистого компенсатора.

К недостаткам гнутых компенсаторов всех без исключения типов следует отнести:

· значительные габариты, затрудняющие применение этих компенсаторов в тесных местах;

· сравнительно большое гидравлическое сопротивление;

· возникновение со временем явлений усталости в материале компенсатора.

Наряду с этим гнутые компенсаторы обладают следующими преимуществами:

· значительной компенсирующей способностью (обычно до 400 мм);

· незначительной величиной осевых усилий, нагружающих неподвижные опоры трубопровода;

· легкостью изготовления на месте монтажа;

· нетребовательностью в отношении прямолинейности трубопровода и появления перекосов в нем в процессе работы;

· простотой эксплуатации (не требует обслуживания).