Этапы разработки солнечных панелей. Производство солнечной батареи: технология и оборудование


Солнечные батареи - источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?

Другое дело, когда сделана солнечная батарея своими руками - затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.

В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

Галерея изображений

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте .

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.

Каркас и прозрачный элемент

Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.

Второй вариант более предпочтителен по целому ряду причин:

  • Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
  • При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
  • Не впитывает влагу из окружающей среды, не гниёт.

При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.

От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.

Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.

От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.

Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.

По соотношению стоимости к показателям преломления света и поглощения ИК-излучения оргстекло – самый оптимальный вариант для изготовления гелиобатареи

Проект системы и выбор места

Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.

Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант – батареи, которые могут менять угол наклона.

Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.

Единственное условие – батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.

Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка . Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).

Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.

Каркас для гелиобатареи готов и можно приступать к самой ответственной части – монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.

Шаг #3 – монтаж кремниевых пластин-фотоэлементов

Монтаж и пайка кремниевых пластин – самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.

Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.

  1. Производим пайку фотоэлементов по следующей электросхеме: “+” дорожки расположены на лицевой стороне пластины, “-” – на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
  2. Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
  3. Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
  4. Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
  5. Контакты крайних фотоэлементов выводим на шину, соответственно “+” и “-“. Для шины рекомендуется использовать более широкий проводник из серебра.
  6. Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
  7. В дне каркаса сверлим отверстия для вывода проводов наружу.

Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.

Галерея изображений

Шаг #4 – тестирование батареи перед герметизацией

Тестирование солнечной панели необходимо проводить до её герметизации, чтобы иметь возможность устранить неисправности, которые часто возникают во время пайки. Лучше всего производить тестирование после спайки каждого ряда элементов – так значительно проще обнаружить, где контакты соединены плохо.

Для тестирования вам понадобиться обычный бытовой амперметр. Измерения необходимо проводить в солнечный день в 13-14 часов, солнце не должно быть скрыто облаками.

Выносим батарею на улицу и устанавливаем в соответствии с ранее рассчитанным углом наклона. Амперметр подключаем к контактам батареи и проводим измерение тока короткого замыкания.

Смысл тестирования заключается в том, что рабочая сила электрического тока должна быть на 0,5-1,0 А ниже, чем ток короткого замыкания. Показания прибора должны быть выше 4,5 А, что говорит о работоспособности гелиобатареи.

Если тестер выдаёт меньшие показания, то где-то наверняка нарушена последовательность соединения фотоэлементов.

Шаг #5 – герметизация уложенных в корпус фотоэлементов

Герметизацию можно производить, только убедившись, что батарея работает. Для герметизации лучше всего использовать эпоксидный компаунд, но учитывая, что расход материала будет большой, а стоимость его составляет примерно 40-45 долларов. Если дороговато, то вместо него можно применять всё тот же силиконовый герметик.


Используя силиконовой герметик, отдавайте предпочтения тому, на упаковке которого указано, что он подходит для использования при минусовых температурах

Существует два способа герметизации:

  • полная заливка, когда панели заливаются герметиком;
  • нанесение герметика на пространство между фотоэлементами и на крайние элементы.

В первом случае герметизация будет более надёжной. После заливки герметик должен схватиться. Затем сверху устанавливается оргстекло и плотно прижимается к пластинам, покрытым силиконом.

Для обеспечения амортизации и дополнительной защиты между задней поверхностью фотоэлементов и каркасом из ДСП многие мастера советуют устанавливать прокладку из жёсткого поролона шириной 1,5-2,5 см.

Делать это необязательно, но желательно, учитывая, что кремниевые пластины достаточно хрупкие и легко повреждаются.

После установки оргстекла на конструкцию ставят груз, под действием которого происходит выдавливание пузырьков воздуха. Солнечная батарея готова и после повторного тестирования её можно устанавливать в заранее выбранное место и подключать к гелиосистеме вашего дома.

Выводы и полезное видео по теме

Обзор фотоэлементов, заказанных в китайском интернет-магазине:

Видео-инструкция по изготовлению солнечной батареи:

Сделать солнечную батарею своими руками – не простая задача. КПД большинства таких батарей ниже, чем у панелей промышленного производства на 10-20%. Самое важное при конструировании солнечной батареи – правильно выбрать и установить фотоэлементы.

Не пытайтесь сразу создать огромную по площади панель. Попробуйте сначала соорудить маленький прибор, чтобы понять все нюансы этого процесса.

У вас есть практические навыки создания солнечных батарей? Поделитесь, пожалуйста, своим опытом с посетителями нашего сайта – пишите комментарии в расположенном ниже блоке. Там же можно задать вопросы по теме статьи.

Получение электричества из альтернативных источников питания весьма затратное занятие. Например, использование солнечной энергии при покупке готового оборудования придется потратить значительную сумму денег. Но в наше время возможно собрать солнечные батареи своими руками для дачи или частного дома из готовых фотоэлементов или других подручных материалов. И прежде, чем приступить к покупке необходимых компонентов и проектированию конструкции, необходимо понять, что такое солнечная батарея и ее принцип работы.

Солнечная батарея: что это и как работает

У людей, которые впервые сталкиваются с этой задачей, сразу возникают вопросы: «Как собрать солнечную батарею?» или «Как сделать солнечную батарею?». Но изучив устройство и принцип его работы, проблемы с реализацией данного проекта отпадают сами собой. Ведь конструкция и принцип действия просты и не должны вызвать затруднений при создании источника питания в домашних условиях.

Солнечная батарея (СБ) - это фотоэлектрические преобразователи энергии, излучаемой солнцем, в электрическую, которые соединены в виде массива элементов и заключены в защитную конструкцию . Преобразователи - полупроводниковые элементы из кремния для генерации постоянного тока . Они производятся трех видов:

  • Монокристаллический;
  • Поликристаллический;
  • Аморфный (тонкопленочный).

Принцип работы устройства основан на фотоэлектрическом эффекте . Солнечный свет, падая на фотоэлементы, выбивает свободные электроны с последних орбит каждого атома кремниевой пластины. Перемещение большого количества свободных электронов между электродами батареи вырабатывают постоянный ток. Далее, он преобразовывается в переменный ток для электрификации дома.

Выбор фотоэлементов

До начала проектных работ по созданию панели в домашних условиях нужно выбрать один из трех типов преобразователей солнечной энергии. Для выбора подходящих элементов нужно знать их технические характеристики:

  • Монокристаллические . КПД этих пластин 12–14%. Однако, они чувствительны к количеству попадающего света. Небольшая облачность значительно снижает количество вырабатываемого электричества. Срок службы до 30 лет.
  • Поликристаллические . Эти элементы способны выдавать КПД 7–9%. Но на них не влияет качество освещенности и они способны выдавать такое же количество тока в облачную и даже пасмурную погоду. Эксплуатационный период - 20 лет.
  • Аморфные . Изготавливаются на основе гибкого кремния. Вырабатывают КПД около 10%. Количество производимого электричества не снижается из-за качества погоды. Но дорогое и сложное производство делает их труднодоступными.

Для изготовления СБ своими силами можно приобрести преобразователи типа В (второй сорт). К ним относятся элементы с небольшими дефектами, даже при замене некоторых компонентов себестоимость батарей будет в 2–3 раза меньше рыночной, благодаря этому сэкономите свои средства.

Для обеспечения частного дома электричеством от альтернативного источника энергии лучше всего подходят первые два типа пластин.

Выбор места и проектирование

Батареи лучше располагать по принципу: чем выше, тем лучше . Отличным местом будет крыша дома, на нее не попадает тень от деревьев или других построек. В случае, если конструкция перекрытий не позволяет выдержать вес установки, то место следует выбирать на участке дачи, который больше всего воспринимает излучение от солнца.

Собранные панели необходимо располагать под таким углом, чтобы солнечные лучи максимально перпендикулярно падали на кремниевые элементы . Идеальным вариантом будет наличие возможности корректирования всей установки по направлению за солнцем.

Изготовление батареи своими руками

Обеспечить дом или дачу электричеством в 220 В от солнечной батареи вам не удастся, т.к. размеры такой батареи будут огромны. Одна пластина генерирует электрический ток с напряжением 0,5 В. Оптимальным вариантом считается СБ с номинальным напряжением 18 В. Исходя из этого рассчитывается необходимое количество фотоэлементов для устройства.

Сборка каркаса

В первую очередь самодельная солнечная батарея нуждается в защитной рамке (корпусе) . Ее можно изготовить из алюминиевых уголков 30х30 мм или из деревянных брусков в домашних условиях. При использовании металлического профиля на одной из полок снимается напильником фаска под углом 45 градусов, а вторая полка отрезается под тем же углом. Отрезанные по нужным размерам с обработанными концами детали каркаса скручиваются при помощи угольников из того же материала. К готовой раме на силикон приклеивается защитное стекло.

Спайка пластин

При спаивании элементов в домашних условиях нужно знать, что для увеличения напряжения необходимо соединять последовательно , а для увеличения силы тока - параллельно . Кремневые пластины выкладываются на стекло, оставляя между ними зазор 5 мм с каждой стороны. Этот промежуток необходим для погашения возможного температурного расширения элементов при нагреве. Преобразователи имеют две дорожки: с одной стороны «плюс », с другой - «минус ». Все детали соединяются последовательно в единую цепь. Затем проводники с последних компонентов цепи выводятся на общую шину.

Для избегания саморазряда устройства в ночное время или облачную погоду специалисты рекомендуют предусмотреть монтаж диода Шоттки 31DQ03 или аналога на контакт от «средней» точки.

После окончания паяльных работ при помощи мультиметра необходимо проверить выходное напряжение, которое должно быть 18–19 В для полноценного обеспечения частного дома электроэнергией.

Сборка панели

В готовый корпус укладываются спаянные преобразователи, потом в центр каждого кремневого элемента наносится силикон , и сверху накрывается подложкой из ДВП для их фиксации. После чего конструкция закрывается крышкой, и все стыки герметизируются герметиком или силиконом . Готовая панель монтируется на держатель или каркас.

Солнечные батареи из подручных материалов

Помимо сборки СБ из купленных фотоэлементов их можно собрать из подручных материалов, которые есть у любого радиолюбителя: транзисторов, диодов и фольги.

Батарея из транзисторов

Для этих целей наиболее подходящими деталями являются транзисторы типа КТ или П . Внутри них находится довольно большой кремневый полупроводниковый элемент, необходимый для производства электричества. Подобрав необходимое количество радиодеталей, с них необходимо срезать металлическую крышку. Для этого нужно зажать его в тесках и ножовкой по металлу аккуратно произвести срез верхней части. Внутри можно увидеть пластину, которая будет служить в качестве фотоэлемента.

Транзистор для батареи со спиленной крышечкой

Все эти детали имеют три контакта: база, эмиттер и коллектор. При сборке СБ нужно выбирать коллекторный переход в связи с наибольшей разностью потенциалов.

Сборка осуществляется на ровной плоскости из любого диэлектрического материала. Спаивать транзисторы нужно в отдельные последовательные цепочки , а эти цепочки,в свою очередь соединять параллельно.

Расчет готового источника тока можно производить из характеристик радиодеталей. Один транзистор выдает напряжение 0,35 В и силу тока при КЗ в 0,25 мкА.

Батарея из диодов

Солнечная батарея из диодов Д223Б действительно может стать источником электрического тока. Эти диоды имеют наибольший вольтаж и выполнены в стеклянном корпусе, покрытом краской . Напряжение на выходе готового изделия можно определить из расчета, что один диод на солнце генерирует 350 мВ.

  1. Необходимое количество радиодеталей складываем в емкость и заливаем ацетоном или другим растворителем и оставляем на несколько часов.
  2. Затем, необходимо взять пластину нужного размера из не металлического материала и выполнить разметку под впаивание компонентов источника питания.
  3. После размокания краску можно легко соскрести.
  4. Вооружившись мультиметром, на солнце или под лампочкой определяем плюсовой контакт и загибаем его. Диоды впаиваются вертикально , т.к. в таком положении кристалл лучше всего генерирует электричество из энергии солнца. Поэтому на выходе получим максимальное напряжение, которое будет генерировать солнечная батарея.

Помимо описанных выше двух способов источник питания можно собрать из фольги. Самодельная солнечная батарея, сделанная согласно пошаговой инструкции, описанной ниже, сможет давать электроэнергию, хотя и очень малой мощности:

  1. Для самоделки понадобится медная фольга площадью 45 кв. см. Отрезанный кусок обрабатывается в мыльном растворе для удаления жира с поверхности. Так же желательно вымыть руки, чтобы не оставлять жировые пятна.
  2. Наждаком необходимо удалить защитную оксидную пленку и любой другой вид коррозии с плоскости отреза.
  3. На горелку электрической плитки мощностью не меньше 1,1 кВт ложится лист фольги и нагревается до образования красно-оранжевых пятен. При дальнейшем нагреве образовавшиеся окислы превращаются в оксид меди. Этому свидетельствует черный цвет поверхности куска.
  4. После образования оксида нагрев необходимо продолжать в течение 30 минут , чтобы образовалась оксидная пленка достаточной толщины.
  5. Прожарка останавливается, и лист остывает вместе с печкой. При медленном охлаждении медь и оксид остывают с разной скоростью, что способствует последнему легко отслоиться.
  6. Под проточной водой удаляются остатки оксида . При этом нельзя сгибать лист и механически отдирать мелкие кусочки, чтобы не повредить тонкий слой окиси.
  7. Вырезается второй лист по размерам первого.
  8. В пластиковый бутыль объемом 2–5 литров с обрезанным горлом нужно поместить два куска фольги. Закрепить их зажимами «крокодил». Располагать их надо, чтобы они не соединялись .
  9. К обработанному куску подводится минусовая клемма, а ко второму - плюсовая.
  10. В банку заливается солевой раствор. Его уровень должен быть ниже верхней кромки электродов на 2,5 см . Для приготовления смеси 2–4 столовые ложки соли (в зависимости от объема бутылки) растворяются в небольшом количестве воды.

Все солнечные батареи не пригодны для обеспечения дачи или частного дома помещения электричеством в виду своей маломощности. Но они способны служить источником питания для радиоприемников или зарядки мелких электроприборов.

Видео по теме

На сегодняшний день из всех известных человечеству источников альтернативной энергии наиболее популярными являются солнечные панели, батареи и прочие генераторы на основе гелиоэнергии. Учитывая текущую стоимость расходов на энергоресурсы, многие интересуются, где приобрести солнечные панели для своего дома, каковы цены на них и есть ли готовые решения. И поскольку рост курса валюты прямо отражается на платежной способности населения, все больше граждан стремятся узнать побольше о панелях российского производства.

Что такое солнечные панели и как их используют для дома

Несмотря на то что данному виду энергоснабжения домов уже более 30 лет, не так много специалистов в этой области. Почему использование солнечных панелей для частного дома так выгодно? Ответ прост: платить надо только за оборудование и установку, впоследствии энергоноситель бесплатен! В таких странах, как КНР, Соединенные Штаты, Франция, Италия и Германия, до 30 % населения устанавливает на крышу батареи, чтобы пользоваться миллиардами неиссякаемых киловатт солнечной энергии. Если это бесплатно, в чем секрет?


Принцип работы батареи следующий: представим себе полупроводники из кристаллов (например, из кремния), которые преобразовывают кванты света в составляющие электрического тока. Панель содержит сотни тысяч таких кристаллов. В зависимости от требуемой мощности площадь такого покрытия составляет от пары квадратных сантиметров (вспомним калькулятор) до сотен квадратных метров – например, для орбитальных станций.

Несмотря на кажущуюся простоту устройств, их использование на территории России очень ограничено – климатом, погодой, временем года и суток. Плюс к тому, чтобы система подавала ток в сеть, необходимо приобрести:

  • аккумулятор, который будет накапливать энергию на случай перепадов напряжения;
  • инвертор, который будет переводить постоянный ток в переменный;
  • систему, контролирующую заряд аккумулятора.

Кратко о потреблении

Среднестатистическая семья из 4 человек потребляет 250–300 кВт в месяц. Солнечные модули для бытового пользования дают в среднем 100 Вт с 1 кв. м в сутки (в ясную погоду). Для того чтобы питать полностью дом, нужно установить минимум 30, в идеале 40 секций, что обойдется не менее чем в 10 000 у. е. При этом крыша должна быть ориентирована на южную сторону, а количество солнечных дней в месяц в среднем не должно быть не меньше 18–20. Ниже приведена карта солнечных дней.


Вывод: солнечные панели хороши в качестве резервного источника электрической энергии. Кроме того, нужно знать, как их подобрать, чтобы мощности хватало для обеспечения бытовых нужд. Зато, вне зависимости от аварий, ваш дом всегда будет снабжен электричеством.

1. Панели от ЗАО «Телеком-СТВ»

Российская компания «Телеком-СТВ» (г. Зеленоград) производит продукцию в среднем на 30 % дешевле, чем немецкие аналоги: цены начинаются от 5 600 руб. за панели на 100 Вт. Панели данного производителя имеют КПД до 20–21 %. Основной «фишкой» данного предприятия стала запатентованная технология изготовления кремниевых пластин диаметром до 15 мм и солнечных модулей на их основе.


Какую батарею от ЗАО «Телеком-СТВ» можно посмотреть? Наиболее популярная модель носит название ТСМ, далее идет маркировка в зависимости от мощности: от 15 до 230 Вт (цена указана приблизительно).

Модель Мощность, Вт Габариты, мм Вес, кг Цена, руб.
ТСМ-15 18 430 × 232 × 43 1,45 от 3 500
ТСМ-40 44 620 × 540 × 43 4,05 от 6 000
ТСМ-50 48 620 × 540 × 43 4,05 от 6 575
ТСМ-80А 80 773 × 676 × 43 6,7 от 8 500
ТСМ-80B 80 773 × 676 × 43 6,7 от 9 000
ТСМ-95А 98 1 183 × 563 × 43 7,9 от 10 750
ТСМ-95В 98 1 183 × 563 × 43 7,9 от 11 000
ТСМ-110А 115 1 050 × 665 × 43 8,8 от 12 500
ТСМ-110В 115 1 050 × 665 × 43 8,8 от 12 800
..
ТСМ-270А 270 1 633 × 996 × 43 18,5 от 23 370

Основной тип производимых панелей – монокристаллические, хотя каждая модель также может быть представлена в виде мульти (поли-) кристаллической. Каждый вид имеет свои преимущества и недостатки (см. таблицу).

Выбор, конечно, ограничивается возможностями бюджета, поэтому продолжим обзор других недорогих и надежных устройств от российских производителей.

2. Hevel – завод в Чувашии

Одним из крупнейших производителей солнечных панелей в России является компания «Хевел» . В 2017 году компания провела модернизацию производства и перешла с тонкопленочной на новую гетероструктурную технологию изготовления солнечных модулей. Модули нового поколения сочетают в себе преимущества тонкопленочной и кристаллической технологий, обеспечивают эффективную работу модуля при высоких и низких температурах (от -50 °С до +85°С), а также в условиях рассеянного света. Средний КПД солнечного модуля составляет 20%. По этому показателю модули ГК «Хевел» входят в мировую тройку лидеров. Срок службы модуля составляет не менее 25 лет.


Какую батарею от Hevel можно посмотреть для примера? Вот таблица с параметрами наиболее популярного гетероструктурного модуля:

3. Рязанский ЗМКП

Рязанский завод металлокерамических приборов функционирует с 1963 года, однако с 2002 года перешел на систему международного контроля качества ISO 9001 и выпускает панели строго в соответствии с ее требованиями, а также с нормами ГОСТ 12.2.007-75.

В прейскуранте компании можно найти две актуальные модели RZMP мощностью 130 и 220 Вт. Их КПД варьируется от 12 до 17,1 %. Наносятся солнечные элементы на окрашенную алюминиевую основу методом последовательного соединения. Вот их сравнительные характеристики:

RZMP 130-Т подходит для автономного снабжения отдельных помещений, бытовых приборов (например, нагревательный котел). Более мощная модель, от 220 до 240 Вт, покупается чаще для резервного снабжения всего дома. Ее стоимость варьируется от 13 200 до 14 400 руб. за модуль.

4. Краснодарский «Сатурн»

Панели кубанского производства выпускаются с 1971 года, за этот период предприятие выпустило более 20 000 квадратных метров продукции. «Сатурн» использует две собственно освоенных технологии производства – на основе монокристаллического выращенного кремния или арсенид-галлиевые с германиевой подложкой. Последние показывают максимально высокие характеристики и используются для снабжения ответственных объектов (АЗС, предприятия непрерывного цикла и т. д.)


Оба типа модулей можно выполнить на любом каркасе, от сетки и пленки до металлических (из анодированного алюминия) и струнных типов. Фотоэлектрические преобразователи могут быть:

  • с полированной поверхностью;
  • со встроенными диодами;
  • с алюминиевым зеркалом.

Вот основные энергетические характеристики ФЭП «Сатурн», в зависимости от типа:

Эти характеристики актуальны для носителей любых размеров: на предприятии «Сатурн» можно заказать как сборные модули на крышу коттеджа, так и миниатюрные солнечные панели для датчиков, преобразователей, изделий электротехники, а также аккумуляторные батареи. По прайсам вас сориентируют только в отделе продаж.

5. «Солнечный ветер» (Solar Wind)

Это предприятие расположено в Украине. В России существует аналогичное предприятие, которое выступает скорее в роли инвестора и реализатора. Solar Wind выпускает солнечные модули мощностью от 1 до 15 кВт/ч. В зависимости от назначения и мощности в модуль может входить от пары до нескольких десятков батарей. Так, батарея 1 000 Вт включает 5 модулей, один контроллер заряда на 30 А, аккумулятор 150 А/ч (2 шт. в наборе) и инвертор 1 200 В. Срок службы батареи составляет до 18 лет.


Совет: если вы покупаете оборудование Solar Wind для круглогодичного обеспечения жилого дома энергией, стоит брать не менее 10 кВт/ч.

Чтобы получить представление о возможностях фотоэлектрических систем «Солнечный ветер» (Украина) мощностью от 1 000 до 15 000 Вт, предлагаем сравнительную таблицу из расчета на 1 день потребления.

Мощность модуля, кВт/ч 1 3 5 10 15
Пример снабжения питанием различных систем (суммарно)
Лампочка (энергосберегающая, при работе 4 часа в день) 4 шт. по 11 Вт 10 шт. по 15 Вт 10 шт. по 20 Вт 20 шт. по 20 Вт 40 шт. по 20 Вт
Кондиционер Не хватит Не хватит Не хватит 1 час в день 3 часа в день
Ноутбук питанием 40 Вт/ч 4 часа 4 часа 4 часа 4 часа 4 часа
ТВ 50 Вт/ч, 3 часа в день 50 Вт/ч, 4 часа в день 150 Вт/ч, 4 часа в день 150 Вт/ч, 3 часа в день 150 Вт/ч, 4 часа в день
Антенна спутникового ТВ, 20 Вт/ч 3 часа в день 4 часа в день 4 часа в день 3 часа в день 3 часа в день
Холодильник Не хватит 100 Вт/ч, 24 часа в день 10 Вт/ч, 24 часа в день 150 Вт/ч, 24 часа в день 150 Вт/ч, 24 часа в день
Стиральная машина Не хватит 900 Вт/ч, 40 мин в день 900 Вт/ч, 1 час в день 1 500 Вт/ч, 1 час в день 1 500 Вт/ч, 1 час в день
Пылесос, 900 Вт/ч Не хватит Не хватит 2 раза в неделю по 1 часу 2 раза в неделю по 1 часу 2 раза в неделю по 1 часу

6. Солнечные батареи «Квант»

НПП «Квант» первым предложило производство кремниевых солнечных батарей с 2-сторонней чувствительностью, а также монокристаллы арсенида галлия. Наиболее популярной моделью сегодня выступает «Квант КСМ» и ее модификация КСМ-180П. Стоимость такой батареи не превышает 18 000 руб., срок службы достигает 40 лет.


Однако приведем характеристики всех модулей. Их можно заказать как в моно-, так и в поликристалической вариации. Удельная энергетическая характеристика выше у монокристаллических панелей и достигает 200 Вт/кв.м. По сравнению с зарубежными аналогами «Квант» оптимален за счет низкой цены и относительно небольшого уменьшения КПД на протяжении всего срока службы.

Характеристика КСМ-80 КСМ-90 КСМ-100 КСМ-180 КСМ-190 КСМ-205
Мощность номинальная, Вт 80–85 90–95 98–103 180–185 190–195 205–210
Ток короткого замыкания, А 5,4–5,6 5,5–5,7 5,8–5,9 5,4–5,6 5,5–5,9 5,6–6,1
Напряжение холостого хода, В 21,2–21,5 22,2–22,4 22,8–23,0 34,8–36,6 35,1–37,2 35,9–37,8
Количество солнечных элементов 36 36 36 72 72 72
Габариты, мм 1210 × 547 × 35 1210 × 547 × 35 1210 × 547 × 35 1586 × 806 × 35 1586 × 806 × 35 1586 × 806 × 35
Коммутационная коробка, TUV IP66 IP66 IP66 IP66 IP66 IP66
Масса, кг 8,5 8,5 8,5 16 16 16
КПД, % 17,5 18,3 18,7 17,8 18,4 19,0

7. Sun Power – портативные солнечные панели

Компания Sun Power расположена в Украине и большей частью прославилась выпускаемыми перевозными солнечными комплексами. С их помощью можно получить электричество даже в походных условиях. Эти комплексы отличаются своей мобильностью, небольшими размерами и портативностью. Имеют выход USB и обладают мощностью до 500 Вт.


Другие характеристики портативных панелей Sun Power:

  • срок службы – до 30 лет;
  • имеет международную сертификацию CE RoHC;
  • новое поколение панелей может быть также интегрировано в фасад или крышу без потери эстетики.

Удобно использовать подобные решения в автономном освещении билбордов, дорог и участков, питании кемпингов и трейлеров, яхт и катеров.

8. «Квазар» – еще один украинский производитель

Компания «Квазар» выпускает широкий ассортимент фотовольтаического оборудования, в том числе солнечные панели и зарядные устройства. Солнечные батареи Kvazar изготавливаются из кремниевых кристаллов, выращенных на предприятии, и имеют усиленную алюминиевую базу. Гарантия качества, которая выдается производителем, немного настораживает – всего 10 лет. Однако электролюминесцентные и другие лабораторные тестирования подтверждают более длительный срок службы – до 25 лет.

Наш выбор: панели — KV175-200/24 M (монокристаллические), KV220-255M (также моно), KV210-240Р (вариант поли), в маркировке цифры указывают на мощность устройства.

Цена батарей – от 13 000 руб. (приблизительно) за 150 Вт. Кроме гелиопанелей «Квазар» выпускает фотоэлектрические преобразователи ячейками от 4 × 4 до 6 × 6 дюймов с КПД до 18,7 %.

9. ООО «Витасвет»

Московское предприятие ООО «Витасвет» выпускает одну базовую модель SSI-LS200 P3 в четырех вариациях мощности: от 225 до 240 Вт. Каждый модуль состоит из 60 кремниевых пластин типа мультикристалл и крепится на алюминиевый профиль.

Вот их основные параметры, полученные при испытаниях в нормальных условиях 800 Вт/кв.м:

Мощность батареи, Вт 225 230 235 240
Макс. напряжение, В 29,6 29,7 29,8 30,2
Ток короткого замыкания, А 8,1 8,34 8,41 8,44
КПД, % 13,5 13,8 14,1 14,5

Стоимость – 12 800 руб. за панель мощностью 240 Вт.

10. Завод «Термотрон» (г. Брянск)

Предприятие «Термотрон» производит автономные системы уличного освещения на солнечных батареях и мини-автономные солнечные станции. Первые поставляются на базе серийных модулей с высокой столбовой опорой.


Особенности автономных систем уличного освещения от «Термотрона»:

  • температурный диапазон эксплуатации – -40…+50 °C;
  • угол раскрытия луча – 135 на 90 градусов;
  • гарантированный срок работы – 12 лет в городских условиях;
  • высота опоры – от 6 до 11 м;
  • мощность – от 30 до 160 Вт.

Автономная станция «Экотерм», выпускаемая заводом, будет интересна владельцам загородных домов и участков. Ее применяют также на фермах, телефонных станциях, для оснащения сельских школ, больниц, магазинов. Станция работает от дизель-генератора 14,5 кВт. Цена вырабатываемой энергии при количестве 18 фотоперерабатывающих элементов – 5,12 руб./кВт, срок окупаемости – до 5 лет (цену станции уточнять у производителя).

Заключение


Мы провели обзор нескольких ведущих предприятий так называемой фотоэнергетики России и Украины, который, надеемся, даст первичное представление о целесообразности применения солнечных батарей и позволит принять верное решение. Это не все бренды, однако наиболее популярные и доступные в продаже таковы.

(Пока оценок нет)

Человечество стремится перейти на альтернативные источники электрического снабжения, которые помогут сохранить чистоту окружающей среды и сократить затраты на выработку энергии. Производство является современным индустриальным методом. включает в себя приемники солнечного света, аккумуляторы, контролирующие устройства, инверторы и другие приборы, предназначенные для определенных функций.

Солнечная батарея является главным элементом, с которого начинается накопление и лучей. В современном мире для потребителя при выборе панели существует много подводных камней, так как промышленность предлагает большое число изделий, объединенных под одним названием.

Кремниевые солнечные батареи

Эти изделия популярны у современных потребителей. В основу их изготовления положен кремний. Запасы его в недрах широко распространены, добыча сравнительно недорогая. Кремниевые элементы выгодно отличаются уровнем производительности от других батарей солнечного света.

Виды элементов

Производство из кремния ведется следующих типов:

  • монокристаллический;
  • поликристаллический;
  • аморфный.

Различаются вышеназванные формы устройств тем, как компонуются кремниевые атомы в кристалле. Основным отличием элементов становится различный показатель преобразования световой энергии, который у двух первых видов находится приблизительно на одном уровне и превышает значения у приборов из аморфного кремния.

Промышленность сегодняшнего дня предлагает несколько моделей солнечных уловителей света. Отличие их состоит в том, какое применяется оборудование для производства солнечных батарей. Играет роль технология изготовления и разновидность начального материала.

Монокристаллический тип

Эти элементы состоят из силиконовых ячеек, скрепленных между собой. По способу ученого Чохральского производится абсолютно чистый кремний, из которого изготавливают монокристаллы. Следующим процессом является разрезание застывшего и затвердевшего полуфабриката на пластины толщиной от 250 до 300 мкм. Тонкие слои насыщают металлической сеткой электродов. Несмотря на дороговизну производства, такие элементы применяют достаточно широко из-за высокого показателя преобразования (17-22%).

Изготовление поликристаллических элементов

Солнечных батарей из поликристаллов состоит в том, что расплавленная кремниевая масса постепенно охлаждается. Производство не требует дорогого оборудования, следовательно, затраты на получение кремния снижены. Поликристаллические солнечные накопители имеют меньший коэффициент эффективности (11-18%), в отличие от монокристаллических. Это объясняется тем, что в процессе остывания масса кремния насыщается мельчайшими зернистыми пузырьками, что приводит к дополнительному преломлению лучей.

Элементы из аморфного кремния

Изделия относят к особому типу, так как их принадлежность к кремниевому виду исходит от наименования используемого материала, а производство солнечных батарей выполняется по технологии пленочных приборов. Кристалл в процессе изготовления уступает место кремниевому водороду или силону, тонкий слой которых покрывает подложку. Батареи имеют самое низкое значение эффективности, всего до 6%. Элементы, несмотря на существенный недостаток, имеют ряд неоспоримых преимуществ, дающих им право стоять в ряду с вышеназванными типами:

  • значение поглощения оптики выше в два десятка раз, чем у монокристаллических и поликристаллических накопителей;
  • имеет минимальную толщину слоя, всего 1 мкм;
  • пасмурная погода не влияет на работу по преобразованию света, в отличие от других видов;
  • из-за высокого показателя прочности на изгиб без проблем применяется в трудных местах.

Три вышеописанных вида солнечных преобразователей дополняются гибридными изделиями из материалов с двойственными свойствами. Такие характеристики достигаются, если в аморфный кремний включаются микроэлементы или наночастицы. Полученный материал схож с поликристаллическим кремнием, но выгодно отличается от него новыми техническими показателями.

Сырье для производства солнечных батарей пленочного типа из CdTe

Выбор материала диктуется потребностью в уменьшении стоимости изготовления и повышении технических характеристик в работе. Наиболее часто применяется светопоглощающий теллурид кадмия. В 70-е годы прошлого столетия CdTe считался основным претендентом на космическое использование, в современной промышленности он нашел широкое применение в энергетике солнечного света.

Этот материал относят к категории кумулятивных ядов, поэтому не стихают прения по вопросу его вредности. Исследования ученых установили тот факт, что уровень вредного вещества, поступающего в атмосферу, является допустимым и не наносит вреда экологии. Уровень КПД составляет всего 11%, но стоимость преобразуемой электроэнергии от таких элементов ниже на 20-30%, чем от приборов кремниевого вида.

Накопители лучей из селена, меди и индия

Полупроводниками в приборе служат медь, селен и индий, иногда допускается замещение последнего на галлий. Это объясняется высокой востребованностью индия для производства мониторов плоского типа. Поэтому выбран этот вариант замещения, так как материалы имеют похожие свойства. Но для показателя КПД замена играет существенную роль, производство солнечной батареи без галлия повышает эффективность работы устройства на 14%.

Солнечные уловители на полимерной основе

Эти элементы относят к молодым технологиям, так как они недавно появились на рынке. Полупроводники из органики поглощают свет для преобразования его в электрическую энергию. Для производства применяют фуллерены углеродной группы, полифенилен, меди фталоцианин и др. В результате получают тонкие (100 нм) и гибкие пленки, которые в работе выдают коэффициент эффективности 5-7%. Величина небольшая, но производство гибких солнечных батарей имеет несколько положительных моментов:

  • для изготовления не затрачиваются большие средства;
  • возможность установки гибких батарей в местах изгибов, где эластичность имеет первоочередное значение;
  • сравнительная легкость и доступность установки;
  • гибкие батареи не оказывают вредного воздействия на окружающую среду.

Химическое травление в процессе производства

Самой дорогой в солнечной батарее является мультикристаллическая или монокристаллическая пластина из кремния. Для максимально рационального режут псевдоквадратные фигуры, эта же форма позволяет плотно уложить пластины в будущем модуле. После процесса резки на поверхности остаются микроскопические слои нарушенной поверхности, которые убираются при помощи травления и текстурирования, чтобы улучшить прием падающих лучей.

Обработанная подобным способом поверхность представляет собой хаотично расположенные микропирамиды, отражаясь от грани которых, свет попадает на боковые поверхности других выступов. Процедура рыхления текстуры понижает отражающую способность материала приблизительно на 25%. В процессе травления применяют серию кислотных и щелочных обработок, но недопустимо сильно уменьшать толщину слоя, так как пластина не выдерживает следующие обработки.

Полупроводники в солнечных батареях

Технология производства солнечных батарей предполагает, что основным понятием твердой электроники является p-n-переход. Если в одной пластине совместить электронную проводимость n-типа и дырочную проводимость p-типа, то в месте соприкосновения их возникает p-n-переход. Основным физическим свойством указанного определения становится возможность служить барьером и пропускать электричество в одном направлении. Именно такой эффект позволяет наладить полноценную работу солнечных элементов.

В результате проведения фосфорной диффузии на торцах пластины складывается слой n-типа, который базируется у поверхности элемента на глубине всего 0,5 мкм. Производство солнечной батареи предусматривает неглубокое проникновение носителей противоположных знаков, которые возникают под действием света. Их путь в зону влияния p-n-перехода должен быть коротким, иначе они могут при встрече погасить один другого, при этом не сгенерировав никакого количества электричества.

Использование плазмохимического травления

В конструкции солнечной батареи предусмотрены лицевая поверхность с установленной решеткой для съемки тока и тыльная сторона, представляющая собой сплошной контакт. Во время явления диффузии возникает электрическое замыкание между двумя плоскостями и передается на торец.

Чтобы удалить замыкание, применяется оборудование для солнечных батарей, позволяющее сделать это с помощью плазмохимического, химического травления или механическим, лазерным путем. Часто используется метод плазмохимического воздействия. Травление выполняется одновременно для стопки сложенных вместе пластин кремния. Исход процесса зависит от длительности обработки, состава средства, размера квадратов материала, направления струй ионного потока и других факторов.

Нанесение антиотражающего покрытия

При помощи нанесения текстуры на поверхности элемента снижается отражение до 11%. Это обозначает, что десятая часть лучей попросту отражается от поверхности и не принимает участия в образовании электричества. С целью уменьшения таких потерь на лицевую сторону элемента наносят покрытие с глубоким проникновением световых импульсов, не отражающее их обратно. Ученые, принимая во внимание законы оптики, определяют состав и толщину слоя, поэтому производство и установка солнечных батарей с таким покрытием уменьшают отражение до 2%.

Контактная металлизация с лицевой стороны

Поверхность элемента предназначена для поглощения наибольшего количества излучения, именно этим требованием определяются размерные и технические характеристики наносимой металлической сетки. Выбирая дизайн лицевой стороны, инженеры решают две противоположные проблемы. Снижение оптических потерь происходит при более тонких линиях и расположении их на большом расстоянии одна от другой. Производство солнечной батареи с увеличенными размерами сетки приводит к тому, что часть зарядов не успевает достичь контакта и теряется.

Поэтому учеными стандартизировано значение расстояния и толщины линии для каждого металла. Слишком тонкие полоски открывают пространство на поверхности элемента для поглощения лучей, но не проводят сильный ток. Современные методы нанесения металлизации состоят в трафаретном печатании. В качестве материала наиболее оправдывает себя серебросодержащая паста. За счет ее применения КПД элемента поднимается на 15-17%.

Металлизация на тыльной стороне прибора

Нанесение металла на тыльную сторону устройства происходит по двум схемам, каждая из которых выполняет собственную работу. Сплошным тонким слоем по всей поверхности, кроме отдельных отверстий, напыляют алюминий, а отверстия заполняют серебросодержащей пастой, играющей контактную роль. Сплошной алюминиевый слой служит своеобразным зеркальным устройством с тыльной стороны для свободных зарядов, которые могут потеряться в оборванных кристаллических связях решетки. С таким покрытием на 2% больше по мощности работают солнечные батареи. Отзывы потребителей говорят, что такие элементы более долговечны и не так сильно зависят от пасмурной погоды.

Изготовление солнечных батарей своими руками

Источники питания от солнца не каждый может заказать и установить у себя дома, так как их стоимость на сегодняшний день достаточно велика. Поэтому многие мастера и умельцы осваивают производство солнечных батарей дома.

Приобрести комплекты фотоэлементов для самостоятельной сборки можно в интернете на различных сайтах. Стоимость их зависит от количества применяемых пластин и мощности. Например, небольшой мощности комплекты, от 63 до 76 Вт с 36 пластинами, стоят 2350-2560 руб. соответственно. Здесь же приобретают рабочие элементы, отбракованные с производственных линий по каким-либо причинам.

При выборе типа фотоэлектрического преобразователя принимают во внимание тот факт, что поликристаллические элементы более устойчивы к пасмурной погоде и работают при ней эффективнее монокристаллических, но имеют меньший срок службы. Монокристаллические обладают более высоким КПД в солнечную погоду, и прослужат они гораздо дольше.

Чтобы организовать производство солнечных батарей в домашних условиях, нужно подсчитать общую нагрузку всех приборов, которые будут питаться от будущего преобразователя, и определиться с мощностью устройства. Отсюда вытекает количество фотоэлементов, при этом учитывают угол наклона панели. Некоторые мастера предусматривают возможность изменения положения накопительной плоскости в зависимости от высоты солнцестояния, а зимой - от толщины выпавшего снега.

Для изготовления корпуса применяют различные материалы. Чаще всего ставят алюминиевые или нержавеющие уголки, используют фанеру, ДСП и др. Прозрачная часть выполняется из органического или обыкновенного стекла. В продаже есть фотоэлементы с уже припаянными проводниками, такие покупать предпочтительнее, так как упрощается задача сборки. Пластины не складывают одну на другую - нижние могут дать микротрещины. Припой и флюс наносятся предварительно. Паять элементы удобнее, расположив их сразу на рабочей стороне. В конце крайние пластины приваривают к шинам (более широким проводникам), после этого выводят "минус" и "плюс".

После проделанной работы тестируют панель и герметизируют. Зарубежные мастера для этого используют компаунды, но для наших умельцев они стоят довольно дорого. Самодельные преобразователи герметизируют силиконом, а тыльную сторону покрывают лаком на основе акрила.

В заключение следует сказать, что отзывы мастеров, которые сделали всегда положительные. Однажды затратив средства на изготовление и установку преобразователя, семья очень быстро их окупает и начинает экономить, используя бесплатную энергию.

Неизменный рост потребления энергии солнечного света способствует увеличению спроса на оборудование, с помощью которого эту энергию можно накапливать и использовать для дальнейших нужд. Наиболее популярным способом получения электроэнергии является солнечная фотовольтаика. В первую очередь объясняется это тем, что производство солнечных батарей основано на использовании кремния – химического элемента, занимающего второе место по содержанию в земной коре.

Рынок солнечных батарей на сегодняшний день представляют крупнейшие мировые компании с многомиллионными оборотами и многолетним опытом. В основе производства солнечных панелей лежат различные технологии, которые постоянно совершенствуются. В зависимости от ваших нужд вы можете найти солнечные батареи, размеры которых позволяют встроить их в микрокалькулятор, или панели, которые без проблем разместятся на крыше здания или автомобиля. Как правило, одиночные фотоэлементы вырабатывают очень небольшое количество мощности, поэтому используются технологии, позволяющие соединять их в так называемые солнечные модули. О том, кто и как это делает и пойдет речь дальше.

Технологический процесс изготовления солнечных панелей

1 этап

Первое с чего начинается любое производство, в том числе и производство солнечных батарей – это подготовка сырья. Как мы уже упоминали выше, основным сырьем в данном случае служит кремний, а точнее кварцевый песок определенных пород. Технология подготовки сырья состоит из 2 процессов:

  1. Этап высокотемпературного плавления.
  2. Этап синтеза, сопровождающийся добавлением различных химических веществ.

Путем этих процессов достигают максимальной степени очистки кремния до 99,99%. Для изготовления солнечных батарей чаще всего используют монокристаллический и поликристаллический кремний. Технологии их производства различны, но процесс получения поликристаллического кремния менее затратный. Поэтому солнечные батареи, изготовленные из этого вида кремния, обходятся потребителям дешевле.

После того, как кремний прошел очистку, его разрезают на тонкие пластины, которые, в свою очередь, тщательно тестируют, производя замер электрических параметров посредством световых вспышек ксеноновых ламп высокой мощности. После проведенных испытаний пластины сортируют и отправляют на следующий этап производства.

2 этап

Второй этап технологии представляет собой процесс пайки пластин в секции, с последующим формированием из этих секций блоков на стекле. Для переноса готовых секций на поверхность стекла используют вакуумные держатели. Это необходимо для того, чтобы исключить возможность механического воздействия на готовые солнечные элементы. Секции, как правило, формируют из 9 или 10 солнечных элементов, а блоки – из 4 или 6 секций.

3 этап

3 этап – это этап ламинирования. Спаянные блоки фотоэлектрических пластин ламинируют этиленвинилацетатной пленкой и специальным защитным покрытием. Использование компьютерного управления позволяет следить за уровнем температуры, вакуума и давления. А также программировать требуемые условия ламинирования в случае использования разных материалов.

4 этап

На последнем этапе изготовления блоков солнечных батарей монтируется алюминиевая рама и соединительная коробка. Для надежного соединения коробки и модуля используется специальный герметик-клей. После чего солнечные батареи проходят тестирование, где измеряют показатели тока короткого замыкания, тока и напряжения точки максимальной мощности и напряжения холостого хода. Для получения необходимых значений силы тока и напряжения возможно объединение не только солнечных элементов, но и готовых солнечных блоков между собой.

Какое оборудование необходимо?

При производстве солнечных панелей необходимо использовать только качественное оборудование. Это обеспечивает минимальные погрешности при измерении различных показателей в процессе тестирования солнечных элементов и состоящих из них блоков. Надежность оборудования предполагает более долгий срок эксплуатации, следовательно, минимизируются расходы на замену вышедшего из строя оборудования. При низком качестве возможны нарушения технологии изготовления.

Основное оборудование, используемое в процессе производства солнечных панелей:

Кто поставляет нам солнечные батареи?

Солнечные панели – дело очень перспективное, а главное прибыльное. Количество покупаемых солнечных батарей увеличивается с каждым годом. Что обеспечивает постоянный рост объемов продаж, в котором заинтересован любой завод по производству солнечных батарей, а их по всему миру немало.

На первом месте стоят, конечно, китайские компании. Низкая стоимость солнечных батарей, которые китайцы экспортируют по всему миру, привела к появлению множества проблем у других крупнейших компаний. За последние 2-3 года о закрытии производства солнечных панелей объявили, по меньшей мере, 4 немецких бренда. Началось все с банкротства компании Solon, после которой закрылись Solarhybrid, Q-Cells и Solar Millennium. Американская компания First Solar также заявила о закрытии своего завода во Франкфурте-на-Одере. Свое производство панелей свернули и такие гиганты как Siemens и Bosch. Хотя, учитывая, что китайские солнечные батареи стоят, к примеру, почти в 2 раза дешевле немецких аналогов, удивляться здесь нечему.

Первые места в топе компаний, производящих солнечные панели, занимают:

  • Yingli Green Energy (YGE) является ведущим производителем солнечных батарей. За 2012 год ее прибыль составила более 120 млн. $. Всего она установила солнечных модулей более чем на 2 ГВт. Среди ее продукции панели из монокристаллического кремния мощностью 245-265 Вт и поликристаллические кремниевые батареи мощностью 175-290 Вт.
  • First Solar. Хоть эта компания и закрыла свой завод в Германии, в числе крупнейших она все-таки осталась. Ее профиль – это тонкопленочные панели, мощность которых за 2012 год составила около 3,8 ГВт.
  • Suntech Power Ко. Производственные мощности этого китайского гиганта составляют примерно 1800 МВт в год. Около 13 млн солнечных батарей в 80 странах мира – это результат труда этой компании.

Среди российских заводов следует выделить:

  • «Солнечный ветер»
  • ООО «Хевел» в Новочебоксарске
  • «Телеком-СТВ» в Зеленограде
  • ОАО «Рязанский завод металлокерамических приборов»
  • ЗАО «Термотрон-завод» и другие.

Более полный перечень фирм, изготавливающих и поставляющих оборудование и изделия для солнечной энергетики, вы найдете в нашем .

Не отстают и страны СНГ. Так, например, завод по производству солнечных батарей еще в прошлом году был запущен в Астане. Это первое предприятия подобного рода в Казахстане. В качестве сырья планируется использовать 100% казахского кремния, а оборудование, установленное на заводе, отвечает всем последним требованиям и полностью автоматизировано. Запуск аналогичного завода есть и в планах у Узбекистана. Инициатором строительства выступила крупнейшая китайская компания Suntech Power Holdings Co, такое же предложение поступило и от российского нефтяного гиганта «ЛУКОЙЛ».

При таких темпах строительства, следует ожидать повсеместного использования солнечных модулей. Но это и неплохо. Экологичный энергетический источник, дающий бесплатную энергию, сможет решить множество проблем, связанных с загрязнением окружающей среды и истощением запасов природного топлива.

Статью подготовила Абдуллина Регина

Видео о процессе изготовления солнечных панелей: