Аксиома параллельных определение. Параллельные прямые


Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

1. Если две прямые параллельны третьей прямой, то они являются параллельными:

Если a ||c и b ||c , то a ||b .

2. Если две прямые перпендикулярны третьей прямой, то они параллельны:

Если a c и b c , то a ||b .

Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.

3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:

Если ∠1 + ∠2 = 180°, то a ||b .

4. Если соответственные углы равны, то прямые параллельны:

Если ∠2 = ∠4, то a ||b .

5. Если внутренние накрест лежащие углы равны, то прямые параллельны:

Если ∠1 = ∠3, то a ||b .

Свойства параллельных прямых

Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.

1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:

Если a ||b , то ∠1 + ∠2 = 180°.

2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:

Если a ||b , то ∠2 = ∠4.

3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:

Если a ||b , то ∠1 = ∠3.

Следующее свойство является частным случаем для каждого предыдущего:

4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:

Если a ||b и c a , то c b .

Пятое свойство - это аксиома параллельности прямых:

5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой.

Видеоурок «Аксиома параллельных прямых» предполагает детальное рассмотрение важной аксиомы геометрии - аксиомы параллельных прямых, ее особенностей, следствий из данной аксиомы, широко применяющихся в практике решения геометрических задач. Задача данного видеоурока - облегчить запоминание аксиомы и ее следствий, сформировать представление о ее особенностях, применении при решении задач.

Подача материала в форме видеоурока открывает новые возможности для учителя. Подача ученикам стандартного блока учебного материала автоматизируется. При этом улучшается качество подачи материала, так как он обогащен наглядным представлением, анимационными эффектами, приближающими построения к реальным, проводимым на доске. Исторические сведения подаются с рисунками и фото, вызывая интерес к изучаемой теме. Видео также освобождает учителя для углубления индивидуальной работы во время обучения.

Сначала на данном видео демонстрируется название темы. Рассмотрение аксиомы начинается с построения ее модели. На экране изображены прямая а, лежащая вне ее точка М. Далее описывается доказательство утверждения, что через заданную точку М можно построить прямую, параллельную данной. Проводится перпендикулярно прямой а прямая с, затем перпендикулярно прямой с в точке М проводится прямая b. Основываясь на утверждении, о параллельности двух прямых, перпендикулярных третьей, отмечаем, что прямая b параллельна исходной прямой а. Учитывая это, указываем, что в точке М проведена прямая, параллельная данной. Однако необходимо еще проверить, есть ли возможность провести через М иную параллельную прямую. На экране показано, что любой поворот прямой b в точке М приведет к построению прямой, которая пересечет прямую а. Однако возможно ли доказать невозможность проведения другой прямой?

Вопрос доказательства невозможности проведения иной прямой, параллельной данной, имеет давнюю историю. Ученикам предлагается небольшой экскурс в историю вопроса. Отмечается, что в труде Евклида «Начала» данное утверждение приведено в виде пятого постулата. Попытки ученых доказать утверждение не привели к успеху. На протяжении многих веков математиков интересовала эта задача. Однако только в прошлом веке окончательно было доказано, что данное утверждение недоказуемо в евклидовой геометрии. Оно является аксиомой. Ученикам представляется один из знаменитых математиков, вложивших значительный вклад в математическую науку - Николай Иванович Лобачевский. Именно он сыграл важную роль в окончательном решении вопроса. Поэтому утверждение, рассматриваемое на данном уроке, является аксиомой, лежащей в фундаменте науки наряду с другими аксиомами.

Далее предлагается рассмотреть следствия из данной аксиомы. Для этого необходимо уточнить понятие «следствия». На экране отображается определение следствий как утверждений, выводящихся непосредственно из теорем или аксиом. Данное определение может быть предложено ученикам для записи в тетрадь. Понятие следствий демонстрируется на примере, который уже рассматривался в видеоуроке 18 «Свойства равнобедренного треугольника». На экране выведена теорема о свойствах равнобедренного треугольника. Напоминается, что после доказательства данной теоремы рассматривались не менее важные следствия из нее. Так, если основная теорема утверждала, что биссектриса равнобедренного треугольника является медианой и высотой, то следствия имели близкое содержание, утверждая, что и высота равнобедренного треугольника является биссектрисой и медианой, а также медиана равнобедренного треугольника является одновременно биссектрисой и высотой.

Уточнив понятие следствий, рассматриваются непосредственно следствия, выходящие из данной аксиомы параллельности прямых. На экране отображается текст первого следствия аксиомы, утверждающий, что пересечение прямой одной из параллельных прямых означает пересечение ею и второй параллельной прямой. На рисунке под текстом следствия изображается прямая b и параллельная ей прямая а. Вторая прямая пересекает прямую с в точке М, принадлежащей прямой а. Приводится доказательство утверждения, что прямая с пересечет также прямую b. Доказательство производится от противного, используя аксиому о параллельных прямых. Если предположить, что прямая с не пересекает b, это означает, что через данную точку можно провести еще одну прямую, параллельную указанной. Но это невозможно, учитывая аксиому параллельных прямых. Следовательно, с пересекает также прямую b. Следствие доказано.

Далее рассматривается второе следствие из данной аксиомы. На экране отображается текст следствия, утверждающего, что если две прямые являются параллельными третьей, то можно утверждать о параллельности их между собой. На рисунке, демонстрирующем данное утверждение, построены прямые а, b, с. При этом прямая с как параллельная обеим прямым, выделена синим цветом. Предлагается доказать данное утверждение. В ходе доказательства допускается, что параллельные прямой с прямые а, b не являются параллельными между собой. Это означает, что они имеют точку пересечения. Это означает, что проходящие через точку М, обе прямые параллельны данной, что вступает в противоречие с аксиомой параллельных прямых. Данное следствие верно.

Видеоурок «Аксиома параллельных прямых» может облегчить учителю задачу объяснить ученикам особенности аксиомы, доказательства ее следствий, облегчить запоминание материала школьниками на обычном уроке. Также данный видеоматериал может быть использован при дистанционном обучении, быть рекомендованным для самостоятельного изучения.

Выполнил ученик 7 класса «Г» МБОУ «ОК «Лицей №3» Гаврилов Дмитрий

Аксиома
Происходит от греческого «аксиос», что означает «ценный, достойный».Положение, принимаемое без логического доказательства в силу непосредственной убедительности, истинное исходное положение теории. (Советский энциклопедический словарь)

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Аксиома параллельных прямых Выполнил ученик 7 класса «Г» МБОУ «ОК «Лицей № 3» Гаврилов Дмитрий 2015-2016 уч.г (учитель Конарева Т.Н.)

Известные определения и факты. Закончи предложение. 1. Прямая х называется секущей по отношению к прямым а и b , если… 2. При пересечении двух прямых секущей образуется … неразвернутых углов. 3. Если прямые АВ и С D пересечены прямой В D , то прямая В D называется… 4. Если точки В и D лежат в разных полуплоскостях относительно секущей АС, то углы ВАС и DCA называются… 5. Если точки В и D лежат в одной полуплоскости относительно секущей АС, то углы ВАС и DCA называются… 6. Если внутренние накрест лежащие углы одной пары равны, то внутренние накрест лежащие углы другой пары… D C А С В D A B

Проверка задания. 1 . …если она пересекает их в двух точках 2. 8 3. … секущей 4. … накрест лежащими 5. … односторонними 6. … равны

Найдите соответствие a) a b m 1) a | | b , так как внутренние накрест лежащие углы равны б) 2) a | | b , так как соответственные углы равны в) a b 3) a | | b , так как сумма внутренних односторонних углов равна 180° 50 º 130 º 45 º 45 º m a b m a 150 º 150º

Об аксиомах геометрии

Аксиома Происходит от греческого «аксиос», что означает «ценный, достойный». Положение, принимаемое без логического доказательства в силу непосредственной убедительности, истинное исходное положение теории. Советский энциклопедический словарь

Через любые две точки проходит прямая, и притом только одна Сколько прямых можно провести через любые две точки, лежащие на плоскости?

На любом луче от его начала можно отложить отрезок, равный данному, и притом только один Сколько отрезков данной длины можно отложить от начала луча?

От любого луча в заданную сторону можно отложить угол, равный данному неразвернутому углу, и притом только один Сколько углов равных данному можно отложить от данного луча в заданную полуплоскость?

аксиомы теоремы логические рассуждения знаменитое сочинение «Начала» Евклидова геометрия Логическое построение геометрии

Аксиома параллельных прямых

М а Докажем, что через точку М можно провести прямую, параллельную прямой а с в а ┴ с в ┴ с а ІІ в

Можно ли через точку М провести еще одну прямую, параллельную прямой а? а М в в 1 А можно ли это доказать?

Многие математики, начиная с древних времен, пытались доказать данное утверждение, а в «Началах» Евклида это утверждение называется пятым постулатом. Попытки доказать пятый постулат Евклида не увенчались успехом, и лишь в XIX веке было окончательно выяснено, что утверждение о единственности прямой, проходящей через данную точку параллельно данной прямой, не может быть доказано на основе остальных аксиом Евклида, а само является аксиомой. Огромную роль в решении этого вопроса сыграл русский математик Николай Иванович Лобачевский.

Пятый постулат Евклида 1792-1856 Николай Иванович

«Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной». «Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной». Какое из данных утверждений является аксиомой? Чем отличаются вышеуказанные утверждения?

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Утверждения, которые выводятся из аксиом или теорем, называют следствиями Следствие 1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую. a II b , c b ⇒ c a Аксиома параллельности и следствия из неё. а А Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны. a II с, b II с a II b а b с c b

Закрепление знаний. Тест Отметить знаком «+» правильные утверждения и знаком «-» - ошибочные. Вариант 1 1. Аксиомой называется математическое утверждение о свойствах геометрических фигур, требующее доказательства. 2. Через любые две точки проходит прямая. 3. На любом луче от начала можно отложить отрезки, равные данному, причем сколько угодно много. 4.Через точку не лежащую на данной прямой, проходит только одна прямая, параллельная данной. 5. Если две прямые параллельны третьей, то они параллельны между собой. Вариант 2 1. Аксиомой называется математическое утверждение о свойствах геометрических фигур, принимаемое без доказательства. 2. Через любые две точки проходит прямая, и притом только одна. 3. Через точку, не лежащую на данной прямой, проходят только две прямые, параллельные данной. 4. Если прямая пересекает одну из двух параллельных прямых, то она перпендикулярна другой прямой. 5. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Ответы теста Вариант 1 1. «-» 2. «-» 3. «-» 4. «+» 5. «+» Вариант 2 «+» «+» «-» «-» «+»

«Геометрия полна приключений, потому что за каждой задачей скрывается приключение мысли. Решить задачу – это значит пережить приключение». (В. Произволов)












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • дать представление о неизвестных учащимся аксиомах геометрии, повторить уже известные им аксиомы;
  • ввести аксиому параллельных прямых;
  • ввести понятие следствия из аксиом, теорем;
  • показать как используются аксиома параллельных прямых и следствия из неё при решении задач;
  • воспитание патриотизма, гордости за свою родину на примере великого русского математика Н.И.Лобачевского.

Оборудование: компьютер, проектор.

ХОД УРОКА

1. Проверка предыдущего домашнего задания

2. Повторение уже известных учащимся аксиом планиметрии

Учитель: В знаменитом сочинении Евклида «Начала» (III в. до н.э.) были систематизированы основные известные в то время геометрические сведения. Главное же − в «Началах» был развит аксиоматический подход к построению геометрии, который состоит в том, что сначала формулируются основные положения, не требующие доказательства (аксиомы), а затем на их основе посредством рассуждений доказываются другие утверждения (теоремы). Некоторые из аксиом, предложенных Евклидом, и сейчас используются в курсах геометрии.
Само слово «аксиома» происходит от греческого «аксиос», что означает «ценный, достойный». Полный список аксиом планиметрии, принятых в нашем курсе геометрии, приведён в приложениях в конце учебника на страницах 344-348. Эти аксиомы вы рассмотрите дома самостоятельно.
Некоторые из этих аксиом мы уже рассматривали. Вспомните и сформулируйте эти аксиомы.

Учащиеся:

1) Имеются, по крайней мере, три точки, не лежащие на одной прямой.
2) Через любые две точки проходит прямая, и притом только одна.
3) Из трёх точек прямой одна и только одна лежит между двумя другими.
4) Каждая точка О прямой разделяет её на две части (два луча) так, что любые две точки одного и того же луча лежат по одну сторону от точки О, а любые две точки разных лучей лежат по разные стороны от точки О.
5) Каждая прямая а разделяет плоскость на две части (две полуплоскости) так, что любые две точки одной и той же полуплоскости лежат по одну сторону от прямой а, а любые две точки разных полуплоскостей лежат по разные стороны от прямой а.
6) Если при наложении совмещаются концы двух отрезков, то совмещаются и сами отрезки.
7) На любом луче от его начала можно отложить отрезок, равный данному, и притом только один.
8) От любого луча в заданную полуплоскость можно отложить угол, равный данному неразвёрнутому углу, и притом только один.

Учитель: Какие прямые называются параллельными на плоскости?

Учащиеся: Две прямые на плоскости называются параллельными, если они не пересекаются.

Учитель: Сформулируйте признаки параллельности прямых.

Учащиеся:

1) Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
2) Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3) Если при пересечении двух прямых секущей сумма односторонних углов равна 180˚ то прямые параллельны.

3. Новая тема. Аксиома параллельных прямых

Учитель: Решим задачу: «Через точку М, не лежащую на прямой а, проведите прямую, параллельную прямой а».

План решения задачи обсуждается всем классом. Один из учащихся записывает решение на доске (без записи в тетрадях).

Учитель: Возникает вопрос: можно ли через точку М провести ещё одну прямую, параллельную прямой а?
Этот вопрос имеет большую историю. В «Началах» Евклида содержится пятый постулат: «И если прямая, падающая на две прямые, образуют внутренние и по одну сторону углы, меньше двух прямых, то продолженные эти прямые неограниченно встретятся с той стороны, где углы меньше двух прямых». Прокл в V в.н.э. переформулировал постулат Евклида проще и понятнее: «Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной». Это и есть аксиома параллельных прямых. Отсюда видно, что рассмотренная выше задача имеет единственное решение.
Многие математики предпринимали попытки доказать пятый постулат, так как его формулировка слишком напоминала теорему. Все эти попытки каждый раз оказывались неудачными. И лишь в XIX в. было окончательно выяснено, что пятый постулат Евклида нельзя доказать, он сам является аксиомой.
Огромную роль в решении этого вопроса сыграл великий русский математик Николай Иванович Лобачевский (1792-1856).

4. Смотрим презентацию о Н.И.Лобачевском

5. Закрепление изученного. Решение задач

Дан ∆АВС. Сколько прямых, параллельных стороне АВ, можно провести через вершину С?

Решение.

Согласно аксиоме параллельных прямых, можно провести единственную прямую.

Через точку, не лежащую на прямой р, проведены четыре прямые. Сколько из этих прямых пересекают прямую р? Рассмотрите все возможные случаи.

Решение.

3 прямые 4 прямые

Ответ: 3 или 4 прямые.

Следствия из аксиомы параллельных прямых.

Утверждения, которые выводятся непосредственно из аксиом или теорем, называются следствиями. Рассмотрим следствия из аксиомы параллельных прямых.

Следствие 1˚. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

Следствие 2˚. Если две прямые параллельны третьей прямой, то они параллельны. (Предлагается доказать учащимся самостоятельно).

Чертёж тот же.

Дано: а || b, с || b
Доказать: а || с
Доказательств о (метод «от противного»):

Пусть прямые а и с не параллельны. Тогда они пересекаются в некоторой точке М. Через точку М проходят две различные прямые (а и с), параллельные прямой b. Это противоречит аксиоме параллельных. Значит наше предположение не верно. А верно то, что а || с. Ч.т.д.
Второе следствие из аксиомы параллельных прямых является по сути дела ещё одним признаком параллельности прямых на плоскости.

Решение задач: №№ 217 (устно), 218 (устно), 198, 200, 213.

№ 217 (устно)

Прямые а и b параллельны прямой с. Докажите, что любая прямая, пересекающая прямую а, пересекает также и прямую b.

Решение.

Если а || b и b || с, то а || с (следствие 2˚).
Если произвольная прямая d ∩ а, то d ∩ b (следствие 1˚).

№ 218 (устно)

Прямые а и b пересекаются. Можно ли провести такую прямую, которая пересекает прямую а и параллельна прямой b? Ответ обоснуйте.

Решение .

Возьмём на прямой а точку А b. Через точку А можно провести единственную прямую, параллельную прямой b (аксиома параллельных). Построенная прямая будет пересекать прямую а, так как имеет с ней общую точку А.

Прямые а и bперпендикулярны к прямой р, прямая с пересекает прямую а. Пересекает ли прямая с прямую b?

Дано: ар, bр, с ∩ а
Найти: пересекает ли с прямую b?
Решение: если ар и bр, то а || b (теорема).
Если с ∩ а и а || b, то с ∩ b (следствие 1˚).
Ответ: с ∩ b.

На рисунке учебника АD || р и PQ || BC. Докажите, что прямая р пересекает прямые АВ, АЕ, АС, ВС, РQ.

На рисунке учебника СЕ = ED, ВЕ = EF и КЕ = AD. Докажите, что КЕ || ВС.

6. Подведение итогов

1) В чём заключается главная заслуга Евклида?
2) Что называется аксиомой?
3) Какие аксиомы мы знаем?
4) Кто из русских учёных построил стройную теорию неевклидовой геометрии?
5) Что называется следствием в математическом смысле слова?
6) Какие следствия мы сегодня узнали?

7. Задание на дом:

§2, п.27, 28, приложение об аксиомах геометрии стр. 344-348, вопросы 7-11 стр. 68, №199, 214.
№199: Прямая р параллельна стороне АВ треугольника АВС. Докажите, что прямые ВС и АС пересекают прямую р.
№214: Прямая, проходящая через середину биссектрисы AD треугольника АВС и перпендикулярная к AD, пересекает сторону АС в точке М. Докажите, что MD¦AB.

Литература:

  1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия, 7-9: Учебник для общеобразовательных учреждений. − М.: Просвещение, 2003.
  2. Атанасян Л.С., Бутузов В.Ф., Глазков Ю.А., Некрасов В.Б., Юдина И.И. Изучение геометрии в 7, 8, 9 классах: Методические рекомендации к учебнику. Книга для учителя. − М.: Просвещение, 2003.
  3. Дорофеева А.В. Страницы истории на уроках математики: Книга для учителя. − М.: Просвещение, 2007.
  4. Википедия.