Почему вольфрам используют в лампах накаливания. История ламп накаливания


Несмотря на целый перечень недостатков, выявленных при сравнении с другими источниками искусственного света, лампы накаливания остаются востребованными и в бытовой сфере, и в промышленных отраслях.

Дешевые и простые в использовании приборы не хотят сдавать свои позиции, хотя на рынке появилось огромное количество более экономичных и «долгоиграющих» заменителей – например, ламп на светодиодах.

Еще до недавнего времени лампы накаливания (ЛН) использовались повсеместно, поэтому с их конструкционными особенностями знакомы многие. Причем иногда приходилось «знакомиться» по причине выхода источника света из строя: перегорала вольфрамовая нить, лопалось стекло или колба вылетала из цоколя.

Некоторые производители использовали более надежные и проверенные материалы и относились к выпуску лампочек накаливания настолько ответственно, что их продукция работает уже на протяжении нескольких десятилетий. Но это скорее исключение, чем правило – сегодня никаких гарантий на продолжительный срок эксплуатации не дается.

Схематическое изображение лампы с указанием основных деталей. Конструкция источника искусственного освещения с момента изобретения почти не изменилась, совершенствовались только материалы и состав газа, наполняющего колбу

Главный действующий элемент – так называемое тело накала, закрепленное на держателях и присоединенное к электродам. В момент подключения электроэнергии через него проходит напряжение, вызывающее одновременно нагрев и свечение. Чтобы излучение стало видимым, температура нагрева должна достигнуть 570°С.

Наиболее устойчивым к высокой температуре металлом признан вольфрам. Он начинает плавиться при нагреве до 3422°С. Чтобы максимально увеличить площадь излучения, но сократить объем тела накала внутри стеклянной колбы, его скручивают в спираль.

Привычный комфортный свет желтого оттенка, который создает уют в доме и по визуальной оценке является «теплым», возникает при нагреве нити до 2830-2850°С

Для защиты вольфрама от процесса окисления, характерного для металлов, из колбы откачивают воздух и заменяют его вакуумом или газом (криптоном, аргоном и пр.). Технология наполнения вакуумом устарела, для бытовых ламп чаще всего применяют смесь азота и аргона или криптон.

В результате тестирования была выявлена минимальная продолжительность горения лампы – 1 тысяча часов. Но, учитывая случайные причины, выводящие приборы из строя раньше времени, допускается, что нормативы распространяются лишь на 50% продукции из каждой партии. Время работы второй половины может быть больше или меньше – в зависимости от условий использования.

Виды и применение ЛН

Качественные характеристики и маркировка вольфрамовых лампочек регламентирована ГОСТ Р 52712-2007. По типу наполнения колбы приборы ЛН делятся на вакуумные и газополные разновидности.

Первые служат меньше из-за неизбежного испарения вольфрамовой нити. Вдобавок вольфрамовые испарения оседают на стеклянной оболочке вакуумного источника, что ощутимо снижает прозрачность и способность стекла пропускать свет. Выпускают их с моноспиралью, в номенклатурном обозначении им присвоена литера В.

В газополных приборах минимизированы недостатки вакуумных лампочек. Газ сокращает процесс испарения и препятствует оседанию вольфрама на стенках колбы. Газополные моноспиральные виды обозначены буквой Г, а лампочки с дважды навитой спиралью, т.е. биспиральные, маркируются буквой Б. Если биспиральная разновидность имеет номенклатуру БК, значит, в ее наполнении был использован криптон.

В галогенных лампочках ГЛН к наполнителю стеклянной колбы добавляют бром или йод, благодаря которым испаряющиеся атомы вольфрама после испарения возвращаются снова на нить накала. Галогенки выпускают в двух форматах: в виде кварцевых трубок с длинной спиралью или в капсульном варианте с компактным рабочим элементом.

В государственных стандартах деление на группы происходит по сфере применения, однако затрагиваются и другие характеристики. Предположим, на одном уровне рассматриваются «ЛН электрические миниатюрные» (ЛН мн) и «ЛН инфракрасные зеркальные» (ЗК — приборы с концентрированным светораспределением, ЗД — со средним) – как видите, для обозначения категорий выбраны разные критерии.

Существуют группы, которые можно отнести к наиболее востребованным:

  • общего назначения;
  • для транспортных средств;
  • прожекторные;
  • миниатюрные и пр.

Рассмотрим сферы применения и особенности различных категорий, которые в некоторых случаях могут между собой пересекаться.

Галерея изображений

Описание технических требований к каждой из перечисленных категорий можно найти в соответствующих разделах ГОСТ. Из-за особенностей конструкции и области применения маркировка устройств из различных групп отличается.

Особенности маркировки по применению

Лампу легче подобрать, если ориентироваться в условных обозначениях. Они отражают важные технические характеристики, возможную область использования, особенности конструкции и технологии изготовления.

Маркировка зарубежных производителей напоминает отечественную, но имеет свои особенности. Обычно она носится методом штамповки на цоколь и служит одним из способов отличия оригинального изделия от подделки

Вначале указаны буквы в количестве от 1 до 4, которые отражают характерные конструктивные особенности. Для более легкой расшифровки за основу взята первая буква основополагающего критерия, например, Г – газополная моноспиральная лампа, В – вакуумная моноспиральная, К – криптоновая и др.

Затем следует указание назначения:

  • Ж – железнодорожная;
  • А – автомобильная;
  • СМ – самолетная;
  • ПЖ – для прожекторов и др.

За буквам расположены цифры, обозначающие технические характеристики – напряжение (В) и мощность (ВТ). Маркировка ламп специального типа отличается: мощность не указана, зато можно определить ток, световой поток или силу света. Если в устройстве две спирали, то мощность для каждой из них указывается отдельно. Последняя цифра может обозначать номер разработки, если конструкция модифицировалась.

Основные технические характеристики

Самым главным параметром источников света с телом накала является мощность, определяемая в ваттах. Назначение ламп разнообразное, поэтому диапазон велик – от 0,1 Вт индикаторных «светлячков» до 23 тыс. Вт прожекторов для маяков. Компании General Electric и Osram выпускают мощные светильники для театральных и кинематографических постановок.

Прожекторные изделия отличаются не только значением мощности (до 24000Вт), но и световым потоком. Светодиодный прожектор способен выдать 400 000 люменов, тогда как специальная лампа накаливания – 800 000 люменов

В быту используют маломощные приборы, в основном, от 15 Вт до 150 Вт, а в промышленной сфере применяют лампы мощностью до 1500 Вт.

Качество светового потока и степень рассеивания регулируются материалом изготовления колбы. Максимальная светопередача характерна для ламп с прозрачным стеклом, тогда как два других типа поглощают часть света. Например, матовое стекло колбы крадет 3% светового потока, а белое – 20%.

Часто мощность бытовых ламп накаливания ограничена материалом светильников (абажуров, плафонов). Производители люстр и бра обычно указывают рекомендованные параметры – как правило, 40 Вт, реже 60 Вт.

Обычные электролампы сильно нагревают окружающие предметы в отличии, например, от светодиодных или маломощных галогенных, поэтому их нельзя использовать для монтажа в натяжные потолки

В 2011 году лампы накаливания официально признаны низко экономичными и пожароопасными, поэтому был принят закон о прекращении выпуска источников света 100 Вт. На очереди – закон о запрете устройств мощнее 50 Вт. Однако пользователь ничего не теряет, так как на современном рынке огромное количество более производительных и экономичных светодиодных и других аналогов.

Таблица, отражающая эффективность работы различных видов бытовых ламп. По указанным техническим характеристикам хорошо видно, как лампы накаливания проигрывают альтернативным вариантам по всем позициям

Сегодня многие отказываются от устаревшего вида ламп из-за большого потребления электроэнергии и короткого срока службы. Однако существуют категории людей, предпочитающие покупать дешевые и неэффективные источники – благодаря им производство лампочек накаливания продолжается.

Второй важный показатель, который обязательно нужно учитывать при покупке, — вид цоколя лампы накаливания, определяемый размером. У импортных и отечественных светодиодных ламп множество разновидностей цоколей, тогда как простые лампы ограничиваются тремя.

Если необходимо заменить лампочку в люстре или настольном светильнике, то обязательно обратите внимание на диаметр цоколя – Е14 или Е27. Приборы с цоколем Е40 в быту не применяют

Сейчас производителей обязывают упаковывать каждое изделие в отдельную коробочку, так что технические характеристики можно отыскать на ней. Обычно указывают мощность, класс энергоэффективности (низкий – Е), тип цоколя, прозрачность колбы, срок службы в часах.

Преимущества и недостатки ламп накаливания

Потребитель продолжает приобретать неэкономчные лампочки благодаря целому ряду плюсов, хотя некоторые из них весьма условны. По отзывам, их выбирают из-за следующих качеств:

  • невысокая стоимость;
  • отсутствие пускорегулирующего оборудования;
  • моментальное зажигание после включения;
  • привычный «домашний» свет;
  • отсутствие вредных веществ;
  • нет реакции на низкую температуру и электромагнитные импульсы.

Однако мало кто оценивает качество светового потока или пульсацию, все же для большинства решающим оказывается первый фактор.

Но недостатки гораздо весомее, так как среди них сравнительно низкая световая отдача, ограниченный срок службы, небольшой диапазон цветовой температуры (только желтый свет), зависимость от перепадов напряжения в сети, пожароопасность.

Если включить лампу накаливания мощностью 40 Вт, спустя полчаса она нагревается до +145-148°С и начинает нагревать окружающие предметы, что чревато случайным возгоранием

Сейчас существует возможность сравнить на практике работу ламп накаливания, газоразрядных и светодиодных аналогов. Каждый, кто заметил разницу в энергопотреблении, давно перешел на энергосберегающие устройства.

Как правильно выбрать лампочку

При покупке лампочки ориентируются в первую очередь на величину цоколя и мощность. Эти два параметра легко определить по старому, перегоревшему источнику света.

Если вы выберете устройство меньшей мощности, то световой поток будет слабее, если большей, то рискуете целостностью плафонов – они могут деформироваться из-за высокой температуры нагрева.

Специально для любителей традиционных лампочек выпускаются филаментные устройства на светодиодах, похожие по форме, но выгодно отличающиеся своими характеристиками

Кроме технических характеристик стоит обратить внимание на качество изготовления лампы. Предпочтение стоит отдать изделиям с широким контактом цоколя, пропаянным токопроводом, стабильно закрепленной нитью накала.

Выводы и полезное видео по теме

Еще больше познавательной и интересной информации о производстве, использовании и недостатках ламп накаливания – в видеороликах, снятых специалистами и любителями.

Интересные факты о лампах накаливания:

Как происходит производство ЛН:

Сравнительный обзор ламп разных видов:

Популярно о выборе ламп для дома:

Потребитель сам вправе выбрать лампочку для использования в быту. Однако не стоит гнаться за дешевизной и обманчивой выгодой. Учитывая, что освещением мы пользуемся постоянно, а лампочек в доме, как правило, более десятка, следует пересмотреть привычки. Многие пользователи давно уже перешли на более надежные, экономичные, безопасные светодиодные лампы.

После замыкания цепи (например, при нажатии выключателя) электрический ток начинает проходить через тело накала, которое при достижении определенной температуры испускает видимое человеческим глазом излучение. При достижении температуры 570 о С человек способен увидеть в темноте излучаемое телом красное свечение, а стандартная рабочая температура нити в лампе накаливания находится в пределах 2000-2800 °C. Чем меньше температура тела накаливания, тем более «красным» будет выглядеть излучение (подробнее о цветопередаче написано в статье). Чтобы лучше понять принцип работы обычной лампочки, необходимо разобраться в конструкции и обязательных элементах, к которым относится колба, тело накала и токовводы.

Стандартная лампочка имеет грушевидную форму и состоит из следующих частей:

  • Колба . Изготавливается из натриево-кальциевого силикатного стекла, может быть прозрачной, матовой, молочной, опаловой, зеркальной (отражающей). Если лампочка используется без плафона в маленьком помещении, то обратите внимание на лампочки с матированной или молочной колбой, так как их световые потоки на 3% и 20% соответственно меньше чем световой поток прозрачных ламп. Также колбы могут покрываться с наружной стороны декоративными красителями, лаками, керамикой.
  • Буферный газ (полость колбы). Для предотвращения окисления спирали (тела накала) из колбы выкачивают воздух, создавая внутри вакуум. Однако сегодня вакуум используется только в маломощных лампочках, а большинство современных моделей наполнены инертным газом, который увеличивает силу свечения. По составу газовой среды лампы накаливания можно разделить на: вакуумные, газонаполненные (ксенон, криптон, смесь азота с аргоном и т.д.), галогенные.
  • Тело накала . Чаще всего изготавливается из проволоки круглого сечения, реже – из ленточного металла. В первых моделях лампочек применялась угольная нить, в современных – спираль из вольфрама или осмиево-вольфрамового сплава.
  • Токовые вводы (свинцовая проволока).
  • Держатели тела накала (молибденовые держатели).
  • Ножка (штенгель и ножка лампы).
  • Внешнее звено токоввода .
  • Плавкая вставка (предохранитель)
  • Корпус цоколя .
  • Стеклянный изолятор цоколя .
  • Контакт донышка цоколя .

Какие бывают виды/типы ламп накаливания?

Классификация ламп накаливания довольно разветвленная, так как учитывает множество характеристик.

По виду цоколя самыми распространенными являются резьбовые и штырьковые. В быту чаще всего можно встретить резьбовой цоколь Эдисона, обозначающийся буквой Е, возле которой пишется его диаметр в миллиметрах, например, Е10, Е14, Е27 и Е40.

По форме колбы лампочки накаливания бывают разнообразными, начиная со стандартных грушевидных, заканчивая фигурными, витыми и др. В некоторых случаях размер и форма колбы (а также наличие светоотражающих участков) связаны с тем, где применяется лампа накаливания, в других же случаях это связано с декоративной функцией.

Лампы накаливания: характеристики и маркировка

Чтобы знать, как выбрать лампу накаливания, необходимо научиться читать ее маркировку, которая представляет собой сочетание букв и цифр. Буквенная часть маркировки указывает на свойства и конструкцию изделия, к примеру:

Б – биспиральная

БО – биспиральная с опаловой колбой, которая наполнена аргоном

БК – биспиральная, колба наполнена криптоном

ДБ – диффузная с матированием внутри колбы

В – вакуумная

Г — газонаполненная

О – с опаловой колбой

М – с молочной колбой

Ш – шаровидная

З – зеркальная (ЗК – концентрированная кривая света, ЗШ – расширенная кривая)

МО – применяемая для местного освещения

Цифрами указывается диапазон напряжения и мощность. Так, маркировку Б 220..230 60 можно расшифровать так: биспиральная лампа накаливания мощностью 60Вт, рассчитана на диапазон напряжений от 220 до 230 В.

Какие недостатки/преимущества у лампы накаливания?

К достоинствам лампочек накаливания можно отнести:

  • невысокую стоимость;
  • широкий диапазон мощностей;
  • бесперебойную работу при низком напряжении (со снижением интенсивности освещения);
  • устойчивость к незначительным перепадам напряжения (с возможным сокращением срока службы);
  • комфортную цветовую температуру (теплую);
  • возможность использовать во влажных помещениях;
  • простоту эксплуатации.

К недостаткам относится:

  • сильный нагрев (создание пожароопасной ситуации);
  • небольшой срок эксплуатации;
  • низкая светоотдача (КПД <4%)
  • зависимость светоотдачи от напряжения;
  • риск разрыва колбы;
  • хрупкость.

Как увеличить срок службы лампы накаливания?

Как уже было сказано ранее, предполагаемый производителем срок службы лампочек накаливания достигает в среднем 750-1000 часов, однако на практике перегорают они гораздо чаще. Это происходит из-за возникновения трещин и разрушения вольфрамовой нити (вследствие перегрева и испарения). Чтобы продлить срок эксплуатации лампы, следует для начала устранить возможные причины перегорания.

  1. Диапазон напряжений. Для разных ламп накаливания производители указывают не одно значение напряжения, а диапазон: 125..135, 220..230, 230..240В и т.д. Если напряжение в вашей квартирной цепи превышает указанные значение, то лампа будет перегорать быстрее, поэтому при напряжении 230В нельзя выбирать лампочку с параметрами 215..220В. Так, если напряжение выше всего на 6%, срок службы уменьшится вдвое.
  2. Вибрации. В условиях вибраций нить накала быстрее растрачивает свой ресурс, поэтому при пользовании переносными устройствами лучше осуществлять перемещения с выключенной лампочкой.
  3. Патрон. Если вы заметили, что лампочки чаще всего перегорают в одном и том же патроне, тогда следует заменить его или же проверить контакты. Также следует ставить в люстру с несколькими патронами лампы одинаковые по мощности.
  4. Понижение напряжения. Если понизить напряжение в сети всего на 8%, лампочка будет служить в 3,5 раза дольше. Для понижения можно подключить последовательно с лампой полупроводниковый диод.

Самая долгогорящая лампочка накаливания имеет название «Столетняя лампа», находится она в пожарной части в Ливерморе (Калифорния). За счет работы на очень низкой мощности (4 ватта), толстой нити накала из углерода (в 8 раз толще, чем в обычных лампочках нашего времени), а также бесперебойному использованию без выключений и включений она работает там с 1901 года.

Как подключить лампу накаливания через диод

Чтобы продлить срок службы лампочки (а заодно и сэкономить на электричестве) можно подключить ее через диод. При выборе диода необходимо обратить внимание на такие его параметры, как максимальный прямой ток (+ в импульсе) и максимальное обратное напряжение. Чтобы облегчить задачу и не просчитывать все параметры, приведем табличку:

Для сборки конструкции понадобится:

  • 1 работающая лампочка Е27
  • 1 неработающая лампочка Е27 (или цоколь от нее);
  • диод;
  • паяльник.

Процесс сборки . Припаиваем диод к пятачку на цоколе рабочей лампочки. Аккуратно отделяем цоколь от сгоревшей лампочки, делаем в нем отверстие и продеваем сквозь него вторую «ножку» диода. Выведенный конец припаиваем к месту выведения, затем спаиваем между собой оба цоколя.

Более простой способ: подсоединить диод одним концом к клемме выключателя, а другим – к проводу, который ведет к лампочке.

Как диод продлевает срок службы лампочки накаливания?

В большинстве случаев нить накала перегорает в момент подачи питания (включения тумблера) из-за слишком быстрого нагревания холодной спирали. Полупроводниковый диод уменьшает ток и позволяет вольфраму нагреваться постепенно, с меньшей скоростью. Лампочка начинает заметно мерцать, так как ток проходит полуволнами.

Лампа накаливания – простой и дешевый источник света с приятным для человеческого глаза цветовым оттенком

Лампа накаливания применяется как источник освещения уже более сотни лет. Это – патриарх среди других ламп, освещающих жилища человека по всему свету. И несмотря на все разговоры о неактуальности применения лампы накаливания в современном мире, ее судьба еще далека от выхода в тираж. Так что же она из себя представляет?

Лампа накаливания – принцип работы

Лампа накаливания представляет соединенные между собой стеклянную колбу, откуда собственно и исходит свет, и металлический цоколь, предназначенный для контакта с питающей электросетью. В стеклянной колбе расположена спираль – нить накала. Во время работы лампы нить накала при прохождения через нее электрического тока разогревается до большой температуры, могущей достигать 3000°С. Поэтому спираль изготавливается из тугоплавкого металла, обычно вольфрама. Температура плавления вольфрама 3422°С, что вполне достаточно для работы лампы накаливания.

Лампа накаливания – устройство (Нажмите для увеличения)

Нить накала внутри колбы обычно закреплена на двух никелевых контактах – электродах и поддерживается молибденовыми крючками – держателями, расположенными на стеклянном стержне.

Электроды, контактирующие с нитью накала, соединяются с двумя контактами на цоколе лампы. Расположение и вид контактов на цоколе лампы зависит от вида применяемого цоколя.

Иногда на одном из электродов делается специальное утоньшение, заключенное в стеклянную полость. Это утоньшение служит предохранителем, который в аварийной ситуации перегорает первым, что позволяет избежать взрыва стеклянной колбы лампы.

Из самой же колбы через стеклянную трубочку – штенгель откачивается воздух, после чего конец штенгеля запаивается. Воздух содержит кислород, поддерживающий горение, поэтому вольфрамовая спираль при работе в воздухе сгорела бы, не прослужив и секунды. Создание вакуума внутри колбы значительно продлевает срок службы лампы накаливания.

Но это справедливо лишь для маломощных ламп до 25ватт. Для более мощных ламп в колбу, дополнительно с откачкой воздуха, закачивается какой-нибудь инертный газ – ксенон, аргон или криптон. В основном применяется более дешевый, чем ксенон, криптон. Или еще более дешевый аргон, для большей экономии смешанный с азотом. Инертный газ позволяет нити накаливания прослужить более длительное время.

Это общее устройство ламп накаливания немного различно для разных типов ламп.

Виды ламп накаливания

Лампы накаливания подразделяются на лампы общего назначения, железнодорожные, автомобильные, судовые, для киноаппаратов, рудничные, маячные и на еще множество разных типов.

В зависимости от назначения у ламп накаливания может быть различного вида форма колба – конусная, цилиндрическая, шарообразная. Все зависит от того в каком типе светильников будет применяться лампа. Есть множество декоративных ламп накаливания, фантастичность форм которых зависит только от пределов фантазии дизайнера.

Колба лампы накаливания может быть не только прозрачной, но и матовой, зеркальной или цветной.

Различаются лампы накаливания и нитью накала, в том числе и толщиной нити. Нить накала может быть простой спиралью и спиралью, свернутой в спираль вторично, так называемые биспиральные лампы. Двойная спираль позволяет повысить мощность и яркость лампы без увеличения толщины нити накала, что привело бы к перегреву и более быстрому перегоранию нити. Биспиральные лампы также дают увеличение яркости без увеличения длины спирали, что привело бы к усложнению и удорожания конструкции лампы, хотя в некоторых случаях нить накала в колбе лампы может представлять собой ажурно-скрученную, паутинообразную конструкцию. Такое устройство спирали может использоваться в декоративных целях, например в . Существуют особо мощные лампы накаливания в несколько тысяч ватт, применяемые в прожекторах. Такие лампы имеют тройную спираль.

Лампы накаливания могут иметь также различные виды цоколя. Самые распространенные – резьбовые цоколи – обозначаются латинской буквой E (цоколь Эдисона) и цоколи байонетного типа – обозначаются латинской буквой B. Цоколи байонетного типа (штифтовой цоколь) с двумя боковыми штырьками – контактами, и с одним или двумя дополнительными нижними контактами, обычно применяются в автомобилях. Для ламп накаливания, применяющихся для освещения дома, – это резьбовой цоколь E двух типов размеров: Е14 (миньон) и обычный средний цоколь – Е27 (число указывает внешний диаметр цоколя в миллиметрах), наиболее узнаваемый каждым человеком, знакомым с определением «лампочка Ильича». Большой цоколь E40 применяется обычно в производстве, а в быту, пожалуй, только в прожекторах.

Характеристики ламп накаливания

Характеристики ламп накаливания находятся в зависимости от толщины и вида нити накала, колбы лампы, применяемого цоколя, отсутствия или наличия в колбе инертного газа.

Чем больше толщина нити накала, тем более мощной, а соответственно и яркой будет лампа накаливания. Чем мощнее будет лампа, тем больше будет размер ее колбы и при превышении границы мощности в 25 ватт понадобится добавление в колбу лампы инертного газа.

От того, какой инертный газ будет добавлен в колбу, зависит яркость лампы накаливания. Наименьшую яркость имеют лампы накаливания наполненные аргон-азотной смесью. Закачка в колбу лампы криптона немного повышает яркость свечения лампы. А добавление ксенона повышает яркость, по сравнению с аргоновыми лампами в два раза.

Устройство ламп накаливания для применения в сетях переменного и постоянного тока практически не отличается друг от друга. То есть лампы для переменного тока будут работать и при постоянном токе. И соответственно наоборот. Все различие между ними в величине напряжения на которое они рассчитаны. Если лампу накаливания, изготовленную для работы при определенном напряжении, включить в сеть с напряжением выше номинала данной лампы, то лампа естественно перегорит. Насколько быстро это произойдет, зависит от того, на сколько больше напряжение сети номинала лампы. Если напряжение сети больше номинала хотя бы раза в два, то лампа накаливания при включении мгновенно буквально взорвется осколками стекла. При включении лампы накаливания в сеть с пониженным напряжением лампа будет светить слабее, чем ей предназначено, или не будет работать вовсе, если напряжение слишком мало.

Обычно лампы накаливания на напряжение ниже 220 вольт применяют в сетях постоянного тока. За некоторым исключением для специальных ламп, применяемым, например, на судах или на железной дороге.

Лампы накаливания, на которых нанесено обозначение ровно 220 вольт, стоит применять только в сети со стабильным напряжением, например, при использовании хорошего стабилизатора напряжения. При использовании таких ламп накаливания в сети с постоянными перепадами напряжения, лампы весьма быстро выйдут из строя. При перепадах напряжения в сети применяют лампы накаливания с обозначением 230-240 вольт или еще лучше 235-245 вольт. Такие лампы в условиях нестабильного напряжения прослужат значительно дольше, но с другой стороны при наличии стабилизатора регулирующего постоянное напряжение 220 вольт они будут светить слабее, чем рассчитаны.

Удачи Вам в устройстве Удобного Дома! С уважением

Лампа накаливания

Ла́мпа нака́ливания - электрический источник света , в котором тело накала (тугоплавкий проводник), помещённое в прозрачный вакуумированный или заполненный инертным газом сосуд, нагревается до высокой температуры за счёт протекания через него электрического тока, в результате чего излучает в широком спектральном диапазоне, в том числе видимый свет. В качестве тела накала в настоящее время используется в основном спираль из сплавов на основе вольфрама .

Принцип действия

В лампе используется эффект нагревания проводника (тела накаливания) при протекании через него электрического тока (тепловое действие тока ). Температура тела накала резко возрастает после включения тока. Тело накала излучает электромагнитное тепловое излучение в соответствии с законом Планка . Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов. При температуре 5770 (температура поверхности Солнца) свет соответствует спектру Солнца. Чем меньше температура, тем меньше доля видимого света, и тем более «красным» кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводимости и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение . Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити - температурой плавления . Температура в 5771 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток. В современных лампах накаливания применяют материалы с максимальными температурами плавления - вольфрам (3410 °C) и, очень редко, осмий (3045 °C).

Для оценки данного качества света используется цветовая температура . При типичных для ламп накаливания температурах 2200-3000 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен и меньше подавляет естественную выработку мелатонина , важного для регуляции суточных циклов организма и нарушение его синтеза негативно сказывается на здоровье.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид . По этой причине тело накала помещено в колбу, из которой в процессе изготовления лампы откачивается воздух. Первые изготавливали вакуумными; в настоящее время только лампы малой мощности (для ламп общего назначения - до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом , аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп резко уменьшает скорость испарения вольфрама, благодаря чему не только увеличивается срок службы лампы, но и есть возможность повысить температуру тела накаливания, что позволяет повысить КПД и приблизить спектр излучения к белому. Колба газонаполненной лампы не так быстро темнеет за счёт осаждения материала тела накала, как у вакуумной лампы.

Конструкция

Конструкция современной лампы. На схеме: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.

Конструкции ламп накаливания весьма разнообразны и зависят от назначения. Однако общими являются тело накала, колба и токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

В конструкции ламп общего назначения предусматривается предохранитель - звено из ферроникелевого сплава, вваренное в разрыв одного из токовводов и расположенное вне колбы лампы - как правило, в ножке. Назначение предохранителя - предотвратить разрушение колбы при обрыве нити накала в процессе работы. Дело в том, что при этом в зоне разрыва возникает электрическая дуга , которая расплавляет остатки нити, капли расплавленного металла могут разрушить стекло колбы и послужить причиной пожара. Предохранитель рассчитан таким образом, чтобы при зажигании дуги он разрушался под воздействием тока дуги, существенно превышающего номинальный ток лампы. Ферроникелевое звено находится в полости, где давление равно атмосферному, а потому дуга легко гаснет. Из-за малой эффективности в настоящее время отказались от их применения.

Колба

Колба защищает тело накала от воздействия атмосферных газов. Размеры колбы определяются скоростью осаждения материала тела накала.

Газовая среда

Колбы первых ламп были вакуумированы. Большинство современных ламп наполняются химически инертными газами (кроме ламп малой мощности, которые по-прежнему делают вакуумными). Потери тепла, возникающие при этом за счёт теплопроводности, уменьшают путём выбора газа с большой молярной массой. Смеси азота N 2 с аргоном Ar являются наиболее распространёнными в силу малой себестоимости, также применяют чистый осушенный аргон, реже - криптон Kr или ксенон Xe (молярные массы : N 2 - 28,0134 /моль ; Ar: 39,948 г/моль; Kr - 83,798 г/моль; Xe - 131,293 г/моль).

Галогенная лампа

Тело накала первых ламп изготавливалось из угля (температура возгонки 3559 °C). В современных лампах применяются почти исключительно спирали из вольфрама , иногда осмиево -вольфрамового сплава . Для уменьшения размеров тела накала ему обычно придаётся форма спирали, иногда спираль подвергают повторной или даже третичной спирализации, получая соответственно биспираль или триспираль. КПД таких ламп выше за счёт уменьшения теплопотерь из-за конвекции (уменьшается толщина ленгмюровского слоя).

Электротехнические параметры

Лампы изготавливают для различных рабочих напряжений . Сила тока определяется по закону Ома (I=U/R ) и мощность по формуле P=U·I , или P=U²/R . Т. к. металлы имеют малое удельное сопротивление , для достижения такого сопротивления необходим длинный и тонкий провод. Толщина провода в обычных лампах составляет 40-50 микрон .

Так как при включении нить накала находится при комнатной температуре, её сопротивление на порядок меньше рабочего сопротивления. Поэтому при включении протекает очень большой ток (в десять - четырнадцать раз больше рабочего тока). По мере нагревания нити её сопротивление увеличивается и ток уменьшается. В отличие от современных ламп, ранние лампы накаливания с угольными нитями при включении работали по обратному принципу - при нагревании их сопротивление уменьшалось, и свечение медленно нарастало. Возрастающая характеристика сопротивления нити накала (при увеличении тока сопротивление растет) позволяет использовать лампу накаливания в качестве примитивного стабилизатора тока . При этом лампа включается в стабилизируемую цепь последовательно, а среднее значение тока выбирается таким, чтобы лампа работала вполнакала.

В мигающих лампах последовательно с нитью накала встраивается биметаллический переключатель. За счёт этого такие лампы самостоятельно работают в мерцающем режиме.

Цоколь

В США и Канаде используются иные цоколи (это частично обусловлено иным напряжением в сетях - 110 В, поэтому иные размеры цоколей предотвращают случайное ввинчивание европейских ламп, рассчитанных на иное напряжение): Е12 (candelabra), Е17 (intermediate), Е26 (standard или medium), Е39 (mogul) . Также, аналогично Европе, встречаются цоколи без резьбы.

Номенклатура

По функциональному назначению и особенностям конструкции лампы накаливания подразделяют на:

  • лампы общего назначения (до середины 1970-х годов применялся термин «нормально-осветительные лампы»). Самая массовая группа ламп накаливания, предназначенных для целей общего, местного и декоративного освещения. Начиная с 2008 года за счёт принятия рядом государств законодательных мер, направленных на сокращение производства и ограничение применения ламп накаливания с целью энергосбережения, их выпуск стал сокращаться;
  • декоративные лампы , выпускаемые в фигурных колбах. Наиболее массовыми являются свечеобразные колбы диаметром ок. 35 мм и сферические диаметром около 45 мм;
  • лампы местного освещения , конструктивно аналогичные лампам общего назначения, но рассчитанные на низкое (безопасное) рабочее напряжение - 12, 24 или 36 (42) В. Область применения - ручные (переносные) светильники, а также светильники местного освещения в производственных помещениях (на станках, верстаках и т. п., где возможен случайный бой лампы);
  • иллюминационные лампы , выпускаемые в окрашенных колбах. Назначение - иллюминационные установки различных типов. Как правило, лампы этого вида имеют малую мощность (10-25 Вт). Окрашивание колб обычно производится за счёт нанесения на их внутреннюю поверхность слоя неорганического пигмента. Реже используются лампы с колбами, окрашенными снаружи цветными лаками (цветным цапонлаком), их недостаток - быстрое выцветание пигмента и осыпание лаковой плёнки из-за механических воздействий;
  • зеркальные лампы накаливания имеют колбу специальной формы, часть которой покрыта отражающим слоем (тонкая плёнка термически распылённого алюминия). Назначение зеркализации - пространственное перераспределение светового потока лампы с целью наиболее эффективного его использования в пределах заданного телесного угла. Основное назначение зеркальных ЛН - локализованное местное освещение;
  • сигнальные лампы используются в различных светосигнальных приборах (средствах визуального отображения информации). Это лампы малой мощности, рассчитанные на длительный срок службы. Сегодня вытесняются светодиодами;
  • транспортные лампы - чрезвычайно широкая группа ламп, предназначенных для работы на различных транспортных средствах (автомобилях, мотоциклах и тракторах, самолётах и вертолётах, локомотивах и вагонах железных дорог и метрополитенов, речных и морских судах). Характерные особенности: высокая механическая прочность, вибростойкость, использование специальных цоколей, позволяющих быстро заменять лампы в стеснённых условия и, в то же время, предотвращающих самопроизвольное выпадение ламп из патронов. Рассчитаны на питание от бортовой электрической сети транспортных средств (6-220 В);
  • прожекторные лампы обычно имеют большую мощность (до 10 кВт, ранее выпускались лампы до 50 кВт) и высокую световую отдачу. Используются в световых приборах различного назначения (осветительных и светосигнальных). Спираль накала такой лампы обычно уложена за счет особой конструкции и подвески в колбе более компактно для лучшей фокусировки;
  • лампы для оптических приборов , к числу которых относятся и выпускавшиеся массово до конца XX в. лампы для кинопроекционной техники, имеют компактно уложенные спирали, многие помещаются в колбы специальной формы. Используются в различных приборах (измерительные приборы, медицинская техника и т. п.);

Специальные лампы

Коммутаторная лампа накаливания (24В 35мА)

История изобретения

Лампа Лодыгина

Лампа Томаса Эдисона с нитью накала из угольного волокна.

  • В 1809 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью) .
  • В 1838 году бельгиец Жобар изобретает угольную лампу накаливания.
  • В 1854 году немец Генрих Гёбель разработал первую «современную» лампу: обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой.
  • В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.
  • 11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.
  • В 1875 году В. Ф. Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них, следующий включался автоматически).
  • Английский изобретатель Джозеф Уилсон Суон получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.
  • Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл бытовой поворотный выключатель . Несмотря на столь непродолжительное время жизни его лампы вытесняют использовавшееся до тех пор газовое освещение.
  • В 1890-х годах А. Н. Лодыгин изобретает несколько типов ламп с нитями накала из тугоплавких металлов . Лодыгин предложил применять в лампах нити из вольфрама (именно такие применяются во всех современных лампах) и молибдена и закручивать нить накаливания в форме спирали. Он предпринял первые попытки откачивать из ламп воздух, что сохраняло нить от окисления и увеличивало их срок службы во много раз . Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены и газонаполненные лампы (с угольной нитью и заполнением азотом) .
  • С конца 1890-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна)
  • В 1904 году венгры Д-р Шандор Юст и Франьо Ханаман получили патент за № 34541 на использование в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году .
  • В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric . В том же 1906 году в США он построил и пустил в ход завод по электрохимическому получению вольфрама, хрома, титана. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.
  • В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.
  • Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным, известным специалистом в области вакуумной техники Ирвингом Ленгмюром , который, работая с 1909 года в фирме «General Electric», ввёл в производство наполнение колбы ламп инертными , точнее - тяжёлыми благородными газами (в частности - аргоном), что существенно увеличило время их работы и повысило светоотдачу.

КПД и долговечность

Долговечность и яркость в зависимости от рабочего напряжения

Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 своего максимального значения 15 %. При практически достижимых температурах в 2700 (обычная лампа на 60 Вт) КПД составляет 5 %.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 время жизни лампы составляет примерно 1000 часов, при 3400 всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %.

Уменьшение напряжения питания хотя и понижает КПД , но зато увеличивает долговечность. Так понижение напряжения в два раза (напр. при последовательном включении) уменьшает КПД примерно в 4-5 раз, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда необходимо обеспечить надёжное дежурное освещение без особых требований к яркости, например, на лестничных площадках. Часто для этого при питании переменным током лампу подключают последовательно с диодом , благодаря чему ток в лампу идет только в течение половины периода.

Так как стоимость потребленной за время службы лампой накаливания электроэнергии в десятки раз превышает стоимость самой лампы, существует оптимальное напряжение, при котором стоимость светового потока минимальна. Оптимальное напряжение несколько выше номинального, поэтому способы повышения долговечности путем понижения напряжения питания с экономической точки зрения абсолютно убыточны.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается, и лампа выходит из строя.

Наибольший износ нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода устройства плавного запуска.

Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт , а 100-ваттная - более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной.

Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности, диммеры (автоматические или ручные). Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.

Низковольтные лампы накаливания при той же мощности имеют больший ресурс и светоотдачу благодаря большему сечению тела накаливания. Поэтому в многоламповых светильниках (люстрах) целесообразно применение последовательного включения ламп на меньшее напряжение вместо параллельного включения ламп на напряжение сети. Например, вместо параллельно включенных шести ламп 220В 60Вт применить шесть последовательно включенных ламп 36 В 60Вт, то есть заменить шесть тонких спиралей одной толстой.

Тип Относительная световая отдача Световая отдача (Люмен /Ватт)
Лампа накаливания 40 Вт 1,9 % 12,6
Лампа накаливания 60 Вт 2,1 % 14,5
Лампа накаливания 100 Вт 2,6 % 17,5
Галогенные лампы 2,3 % 16
Галогенные лампы (с кварцевым стеклом) 3,5 % 24
Высокотемпературная лампа накаливания 5,1 % 35
Абсолютно чёрное тело при 4000 K 7,0 % 47,5
Абсолютно чёрное тело при 7000 K 14 % 95
Идеально белый источник света 35,5 % 242,5
Идеальный монохроматический 555 nm (зелёный) источник 100 % 683

Ниже представлено приблизительное соотношение мощности и светового потока для обычных прозрачных ламп накаливания в форме "груши", популярных в России, цоколь E27, 220В.

Разновидности ламп накаливания

Лампы накаливания делятся на (расположены по порядку возрастания эффективности):

  • Вакуумные (самые простые)
  • Аргоновые (азот-аргоновые)
  • Криптоновые (примерно +10% яркости от аргоновых)
  • Ксеноновые (в 2 раза ярче аргоновых)
  • Галогенные (наполнитель I или Br, в 2,5 раза ярче аргоновых, большой срок службы, не любят недокала, так как не работает галогенный цикл)
  • Галогенные с двумя колбами (более эффективный галогенный цикл за счёт лучшего нагрева внутренней колбы)
  • Ксенон-галогенные (наполнитель Xe + I или Br, наиболее эффективный наполнитель, до 3х раз ярче аргоновых)
  • Ксенон-галогенные с отражателем ИК излучения (так как большая часть излучения лампы приходится на ИК диапазон, то отражение ИК излучения внутрь лампы заметно повышает КПД, производятся для охотничьих фонарей)
  • Накаливания с покрытием преобразующим ИК излучение в видимый диапазон. Ведутся разработки ламп с высокотемпературным люминофором, который при нагреве излучает видимый спектр.

Преимущества и недостатки ламп накаливания

Преимущества:

  • налаженность в массовом производстве
  • малая стоимость
  • небольшие размеры
  • отсутствие пускорегулирующей аппаратуры
  • нечувствительность к ионизирующей радиации
  • чисто активное электрическое сопротивление (единичный коэффициент мощности)
  • быстрый выход на рабочий режим
  • невысокая чувствительность к сбоям в питании и скачкам напряжения
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации
  • возможность работы на любом роде тока
  • нечувствительность к полярности напряжения
  • возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)
  • отсутствие мерцания при работе на переменном токе (важно на предприятиях).
  • отсутствие гудения при работе на переменном токе
  • непрерывный спектр излучения
  • приятный и привычный в быту спектр
  • устойчивость к электромагнитному импульсу
  • возможность использования регуляторов яркости
  • не боятся низкой и повышенной температуры окружающей среды, устойчивы к конденсату

Недостатки:

Ограничения импорта, закупок и производства

В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу во многих странах введён или планируется к вводу запрет на производство, закупку и импорт ламп накаливания с целью вынуждения замены их на энергосберегающие (компактные люминесцентные , светодиодные , индукционные и др.) лампы.

В России

По некоторым источникам в 1924 году между участниками картеля была достигнута договорённость об ограничении времени жизни ламп накаливания в 1000 часов. При этом все производители ламп, состоящие в картеле, были обязаны вести строгую техническую документацию по соблюдению мер, предотвращающих 1000-часовое превышение цикла жизни ламп.

Кроме того картелем были разработаны ныне действующие стандарты цоколя Эдисона .

См. также

Примечания

  1. Лампы с белыми LED подавляют выработку мелатонина - Газета.Ru | Наука
  2. Buy Tools, Lighting, Electrical and DataComm Supplies at GoodMart.com
  3. Фотолампа // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. - М .: Советская энциклопедия , 1981.
  4. Е. М. Голдовский. Советская кинотехника. Издательство Академии Наук СССР, Москва-Ленинград. 1950, C. 61
  5. История изобретения и развития электрического освещения
  6. Давид Шарле. Король изобретательства Томас Альва Эдисон
  7. Электротехническая энциклопедия. История изобретения и развития электрического освещения
  8. A. de Lodyguine, U.S. Patent 575,002 «Illuminant for Incandescent Lamps». Application on January 4, 1893 .
  9. Г.С.Ландсберг. Элементарный учебник физики (рус.) . Архивировано из первоисточника 1 июня 2012. Проверено 15 апреля 2011.
  10. en:Incandescent light bulb
  11. [ Лампа накаливания] - статья из Малого энциклопедического словаря Брокгауза и Ефрона
  12. The History of Tungsram (PDF). Архивировано (англ.)
  13. Ganz and Tungsram - the 20th century (англ.) .(недоступная ссылка - история ) Проверено 4 октября 2009.
  14. А. Д. Смирнов, К. М. Антипов. Справочная книга энергетика. Москва, "Энергоатомиздат", 1987.
  15. Keefe, T.J. The Nature of Light (2007). Архивировано из первоисточника 1 июня 2012. Проверено 5 ноября 2007.
  16. Klipstein, Donald L. The Great Internet Light Bulb Book, Part I (1996). Архивировано из первоисточника 1 июня 2012. Проверено 16 апреля 2006.
  17. Black body visible spectrum
  18. See luminosity function.
  19. Лампы накаливания, характеристики . Архивировано из первоисточника 1 июня 2012.
  20. Таубкин С. И. Пожар и взрыв, особенности их экспертизы - М., 1999 с. 104
  21. 1 сентября в ЕС прекратится продажа 75-ваттных ламп накаливания.
  22. ЕС ограничивает продажу ламп накаливания с 1 сентября, европейцы недовольны. «Интерфакс-Украина».
  23. Медведев предложил запретить «лампочки Ильича» , Lenta.ru, 02.07.2009.
  24. Федеральный закон Российской Федерации от 23 ноября 2009 года № 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации».
  25. Саботируй вето, Lenta.ru, 28.01.2011.
  26. «Лисма» приступила к выпуску новой серии ламп накаливания, ГУП РМ «ЛИСМА».
  27. Голь на выдумки хитра: в продаже появились лампы накаливания мощностью 95Вт, ЭнергоВОПРОС.ру.
  28. http://russeca.kent.edu/InternationalBusiness/Chapter09/t09p23.html Ограничительная деловая практика в области передачи технологии (ОДП)

Сегодня сложно представить жизнь людей без электрической лампы. Этот довольно простой прибор используется для освещения различных помещений и улиц. Существует большое количество видов лампочек, отличающихся мощностью свечения и принципом работы. В последнее время все чаще пользователи обращают внимание на энергосберегающие устройства, но и обычная лампа накаливания не спешит сдавать позиции.

Принцип действия

Принцип работы лампы накаливания довольно прост , как и конструкция этого устройства. Электроток проходит через тугоплавкий проводник и разогревает его до высокой температуры. Следует заметить, что температура нагрева зависит от подведенного к устройству напряжения. В соответствии с законом Планка, разогретый проводник способен генерировать электромагнитные волны.

Чем выше температура, тем короче длина волны испускаемого излучения. Волны видимого спектра появляются при нагреве проводника до нескольких тысяч градусов по шкале Кельвина. Если спираль электрической лампочки нагреть до 5000 К, то она будет светиться нейтральным светом (аналогично тому, что излучает Солнце). По мере снижения температуры цвет свечения начнет меняться сначала на желтый, а затем на красный.

В лампах преобладающая часть энергии трансформируется в тепловую и лишь незначительное ее количество преобразуется в световой поток. Также следует помнить, что органы зрения человека способны воспринимать только определенный диапазон световых волн. Чтобы увеличить освещенность помещения, приходится повышать температуру спирали. Однако это возможно лишь до определенного показателя, который ограничен свойствами материала проводника.

Таким образом, максимальная температура лампочки составляет 3410 градусов по шкале Цельсия. Дальнейший нагрев вольфрама приведет к деформации и расплавлению материала. Однако даже такая температура может быть достигнута только при определенных условиях окружающей среды. Если вольфрам контактирует с кислородом, то он превращается в оксид. Когда из колбы выкачивается воздух, появится возможность создать лампу мощностью максимум в 25 Вт. Более мощные устройства содержат в колбе инертные газы.

Особенности конструкции

Хотя лампы и отличаются конструкцией, они имеют три общих элемента - выводы, проводник и стеклянную колбу. У некоторых устройств специального назначения может отсутствовать цоколь, так как используются держатели другого типа. Также иногда в лампочки встраивается ферроникелевый предохранитель. Чаще всего он монтируется в ножке, поэтому после выхода из строя проводника колба не разрушается.

Когда нить накала обрывается, появляется электродуга, которая расплавляет остатки материала. Вещество в расплавленном состоянии падает на стеклянную емкость и может нарушить ее целостность. Предохранитель способен предотвратить процесс плавления спирали. Однако такая технология не получила широкого распространения по причине малой эффективности.

Если говорить о том, из чего состоит лампочка, то необходимо отметить основные элементы конструкции. К ним относятся:

  • колба, изготовленная из стекла;
  • излучающий проводник;
  • электроды;
  • цоколь;
  • газовая среда;
  • держатели излучающего проводника.

Колба и газовая среда

Благодаря стеклянной емкости нить накаливания защищена от процесса окисления, возникающего при взаимодействии материала излучающего проводника с кислородом. Первые электрические лампы накаливания производились с вакуумной колбой. Сейчас по такой технологии выпускаются только устройства малой мощности. Для производства более мощных устройств чаще всего используется азотно-аргонная смесь или один аргон. Также в колбах некоторых ламп может содержаться ксенон либо криптон. Показатель теплового излучения материала нити накаливания зависит от молярной массы газа.

Отдельной группой являются галогенные лампочки, в стеклянную емкость которых закачан газ группы галогенов. При нагреве материал излучающего проводника испаряется и вступает в реакцию с этими газами. Получившееся во время химического процесса вещество быстро расщепляется под воздействием высокой температуры и возвращается на нить накала. В результате не только повышается КПД устройства, но и увеличивается срок его эксплуатации.

Излучающий проводник

Форма нити накала может быть любой и зависит от специфики устройства. Чаще всего в обычной лампочке проводник имеет круглое сечение, но можно встретить и ленточное. Следует заметить, что в первых лампах использовался даже уголь , способный нагреться до температуры 3559 градусов по шкале Цельсия. Однако в современных приборах основным материалом нити накаливания является вольфрам.

Также этот элемент может быть изготовлен из сплава осмия с вольфрамом. Выбор вида спирали не является случайным, так как от этого зависят ее габариты. В современных лампах могут использоваться биспирали и даже триспирали. Они получаются благодаря повторному закручиванию. Это позволяет увеличить КПД устройства благодаря снижению показателя тепловыделения.

Цоколь лампы

Этот элемент стандартизован и имеет определенную форму и габариты. В результате можно легко заменить лампочку после ее выхода из строя. Сегодня чаще всего используются устройства с цоколем Е14 , Е27, а также Е40. Расшифровка этой маркировки крайне проста - цифры после литеры Е указывают на наружный диаметр элемента.

Так как сейчас существует большое количество видов ламп, то некоторые из них отличаются конструкцией цоколя. Например, есть приборы, которые удерживаются в патроне благодаря силе трения. Также следует заметить, что цоколь в устройстве лампы накаливания выполняет следующие функции:

  • соединяет несколько элементов;
  • представляет собой один из контактов;
  • позволяет надежно крепить прибор в патроне.

Преимущества и недостатки

Все технические устройства имеют не только преимущества, но и недостатки. Лампочки накаливания не стали исключением.

Положительные качества

Одним из главных плюсов этих устройств является простота конструкции, что делает стоимость изделия невысокой. Сейчас без труда можно приобрести прибор желаемой мощности и габаритов. Не менее важным преимуществом классических электролампочек является спектр свечения их излучающего элемента. Так как он максимально близок к солнечному свету, то не может негативно влиять на органы зрения.

Разогретая нить накала обладает тепловой инерцией, поэтому испускаемый ею свет практически лишен пульсации. Это выгодно отличает обычные лампочки накаливания от изделий другого типа (например, люминесцентных ламп). При производстве этих устройств не используются вредные вещества, благодаря чему для их утилизации не требуются специальные технологии.

Негативные свойства

Одним из основных недостатков устройств можно считать зависимость от показателя питающего напряжения. Если он увеличивается и превышает допустимые пределы, то спираль быстро изнашивается. Когда напряжение падает, то уменьшается и световой поток, излучаемый устройством.

Кроме этого, следует помнить, что излучающий элемент предназначен для работы на протяжении продолжительного временного отрезка. Показатель сопротивления холодной спирали значительно ниже в сравнении с рабочим режимом.

Из-за этого в момент включения возникает сильный скачок силы тока, что приводит к испарению материала нити накала. Таким образом, срок службы устройства зависит от количества включений.

Однако с этим недостатком можно бороться, используя специальные устройства плавного пуска - диммеры. Также с их помощью можно регулировать и показатель светового потока в довольно широком диапазоне.

Наиболее серьезным недостатком ламп накаливания является низкий КПД. Основная часть электроэнергии преобразуется в тепло, которое рассеивается в окружающей среде. Сейчас все чаще используются светодиодные лампы, позволяющие экономить на электричестве.