Нефтяные насосы: особенности, виды. Большая энциклопедия нефти и газа


Прекращение или отсутствие фонтанирования обусловило использование других способов подъема нефти на поверхность, например, посредством штанговых скважинных насосов. Этими насосами в настоящее время оборудовано большинство скважин. Дебит скважин - от десятков кг в сутки до нескольких тонн. Насосы опускают на глубину от нескольких десятков метров до 3000 м иногда до 3200‑3400 м). ШСНУ включает:

а) наземное оборудование - станок-качалка (СК), оборудование устья, блок управления;

б) подземное оборудование - насосно-компрессорные трубы (НКТ), штанги насосные (ШН), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Рис. 1. Схема штанговой насосной установки


Штанговая глубинная насосная установка (рис. 1) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4, насосно-компрессорных труб 3, подвешенных на планшайбе или в трубной подвеске 8 устьевой арматуры, сальникового уплотнения 6, сальникового штока 7, станка качалки 9, фундамента 10 и тройника 5. На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1.

1.1 Станки-качалки

Станок-качалка (рис.2), является индивидуальным приводом скважинного насоса. Основные узлы станка-качалки - рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирно-подвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т. е. регулирование дискретное. Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной салазке. Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17 (рис. 2). Она позволяет регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.


Рис. 2. Станок-качалка типа СКД:

1 – подвеска устьевого штока; 2 ‑ балансир с опорой; 3 ‑ стойка; 4 ‑ шатун; 5 ‑ кривошип; 6 ‑ редуктор; 7 ‑ ведомый шкив; 8 ‑ ремень; 9 ‑ электродвигатель; 10 – ведущий шкив; 11 ‑ ограждение; 12 – поворотная плита; 13 – рама; 14 – противовес; 15 – траверса; 16 – тормоз; 17 ‑ канатная подвеска

Амплитуду движения головки балансира (длина хода устьевого штока-7 на рис. 1) регулируют путем изменения места сочленения кривошипа шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие). За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т. д.), а также самозапуск СК после перерыва в подаче электроэнергии.



Станки-качалки для временной добычи могут быть передвижными на пневматическом (или гусеничном) ходу. Пример - передвижной станок-качалка "РОУДРАНЕР" фирмы "ЛАФКИН".

1.2 Производительность насоса

Теоретическая производительность ШСН равна

, м 3 /сут.,

Где 1440 - число минут в сутках;

D - диаметр плунжера наружный;

L - длина хода плунжера;

n - число двойных качаний в минуту.

Фактическая подача Q всегда < Qt.

Отношение

, называется коэффициентом подачи, тогда Q = Q t a n , где a n изменяется от 0 до 1.

В скважинах, в которых проявляется так называемый фонтанный эффект, т.е. в частично фонтанирующих через насос скважинах может быть a n >1. Работа насоса считается нормальной, если a n =0,6¸0,8.

Коэффициент подачи зависит от ряда факторов, которые учитываются коэффициентами

a n =a g ×a ус ×a н ×a уm ,

где коэффициенты:

a g - деформации штанг и труб;

a ус - усадки жидкости;

a н - степени наполнения насоса жидкостью;

a уm - утечки жидкости.

где a g =S пл /S , S пл - длина хода плунжера (определяется из условий учета упругих деформаций штанг и труб); S - длина хода устьевого штока (задается при проектировании).

DS=DS ш +DS т,

Где DS - деформация общая; S - деформация штанг; DS т - деформация труб.

где b - объемный коэффициент жидкости, равный отношению объемов (расходов) жидкости при условиях всасывания и поверхностных условиях.

Насос наполняется жидкостью и свободным газом. Влияние газа на наполнение и подачу насоса учитывают коэффициентом наполнения цилиндра насоса


- газовое число (отношение расхода свободного газа к расходу жидкости при условиях всасывания).

Коэффициент, характеризующий долго пространства, т.е. объема цилиндра под плунжером при его крайнем нижнем положении от объема цилиндра, описываемого плунжером. Увеличив длину хода плунжера, можно увеличить a н. Коэффициент утечек

где g yт - расход утечек жидкости (в плунжерной паре, клапанах, муфтах НКТ); a yт - величина переменная (в отличие других факторов), возрастающая с течением времени, что приводит к изменению коэффициента подачи.

Оптимальный коэффициент подачи определяется из условия минимальной себестоимости добычи и ремонта скважин.

Уменьшение текущего коэффициента подачи насоса во времени можно описать уравнением параболы

, (1.1.)

T - полный период работы насоса до прекращения подачи (если причина - износ плунжерной пары, то Т означает полный, возможный срок службы насоса); m - показатель степени параболы, обычно равный двум; t - фактическое время работы насоса после очередного ремонта насоса.

Исходя из критерия минимальной себестоимости добываемой нефти с учетом затрат на скважино-сутки эксплуатации скважины и стоимости ремонта, А. Н. Адонин определил оптимальную продолжительность межремонтного периода

, (1.2.)

где t p - продолжительность ремонта скважины; B p ‑ стоимость предупредительного ремонта; B э - затраты на скважино-сутки эксплуатации скважины, исключая B p .

Подставив t мопт вместо t в формулу (1.1.), определим оптимальный конечный коэффициент подачи перед предупредительным подземным ремонтом a nопт.

Если текущий коэффициент подачи a nопт станет равным оптимальному a nопт (с точки зрения ремонта и снижения себестоимости добычи), то необходимо остановить скважину и приступить к ремонту (замене) насоса.

Средний коэффициент подачи за межремонтный период составит

.

Анализ показывает, что при B p /(B э ×T)<0,12 допустимая степень уменьшения подачи за межремонтный период составляет 15¸20%, а при очень больших значениях B p /(B э ×T) она приближается к 50%.

Увеличение экономической эффективности эксплуатации ШСН можно достичь повышением качества ремонта насосов, сокращением затрат на текущую эксплуатацию скважины и ремонт, а также своевременным установлением момента ремонта скважины.

1.3 Правила безопасности при эксплуатации скважин штанговыми насосами

Устье скважины должно быть оборудовано арматурой и устройством для герметизации штока. Обвязка устья периодически фонтанирующей скважины должна позволять выпуск газа из затрубного пространства в выкидную линию через обратный клапан и смену набивки сальника штока при наличии давления в скважине. До начала ремонтных работ или перед осмотром оборудования периодически работающей скважины с автоматическим, дистанционным или ручным пуском электродвигатель должен отключаться, а на пусковом устройстве вывешивается плакат: "Не включать, работают люди". На скважинах с автоматическим и дистанционным управлением станков-качалок вблизи пускового устройства на видном месте должны быть укреплены плакаты с надписью "Внимание! Пуск автоматический". Такая надпись должна быть и на пусковом устройстве. Система замера дебита скважин, пуска, остановки и нагрузок на полированный шток (головку балансира) должны иметь выход на диспетчерский пункт. Управление скважиной, оборудованной ШСН, осуществляется станцией управления скважиной типа СУС - 01 (и их модификации), имеющий ручной, автоматический, дистанционный и программный режим управления. Виды защитных отключений ШСН: перегрузка электродвигателя (>70% потребляемой мощности); короткое замыкание; снижение напряжения в сети (<70% номинального); обрыв фазы; обрыв текстропных ремней; обрыв штанг; неисправность насоса; повышение (понижение) давления на устье. Для облегчения обслуживания и ремонта станков-качалок используются специальные технические средства такие, как агрегат 2АРОК, маслозаправщик МЗ - 4310СК.

2. БЕСШТАНГОВЫЕ СКВАЖИННЫЕ НАСОСНЫЕ УСТАНОВКИ

В УШСН наиболее ответственное и слабое звено-колонна насосных штанг - проводник энергии от привода, расположенного на поверхности.

В связи с этим разработаны насосные установки с переносом привода (первичного двигателя) в скважину к насосу. К ним относятся установки погружных центробежных, винтовых и диафрагменных электронасосов. Электроэнергия в этом случае подается по кабелю, закрепленному на НКТ. Имеются глубинные насосы, например, гидропоршневые, струйные, которые используют энергию потока рабочей жидкости, подготовленной на поверхности и подаваемой в скважину по трубопроводу (НКТ).

2.1 Установки погружных электроцентробежных насосов (УЭЦН)

Область применения УЭЦН - это высокодебитные обводненные, глубокие и наклонные скважины с дебитом 10 ¸ 1300 м 3 /сут и высотой подъема 500¸2000м. Межремонтный период УЭЦН составляет до 320 суток и более.

Установки погружных центробежных насосов в модульном исполнении типов УЭЦНМ и УЭЦНМК предназначены для откачки продукции нефтяных скважин, содержащих нефть, воду, газ и механические примеси. Установки типа УЭЦНМ имеют обычное исполнение, а типа УЭЦНМК - коррозионностойкое.

Установка (рис. 3) состоит из погружного насосного агрегата, кабельной линии, спускаемых в скважину на насосно-компрессорных трубах, и наземного электрооборудования (трансформаторной подстанции).

Погружной насосный агрегат включает в себя двигатель (электродвигатель с гидрозащитой) и насос, над которым устанавливают обратный и сливной клапаны.

В зависимости от максимального поперечного габарита погружного агрегата установки разделяют на три условные группы - 5; 5А и 6:

Установки группы 5 поперечным габаритом 112 мм применяют в скважинах с колонной обсадных труб внутренним диаметром не менее 121,7 мм;

Установки группы 5А поперечным габаритом 124 мм - в скважинах внутренним диаметром не менее 130 мм;

Установки группы 6 поперечным габаритом 140,5 мм - в скважинах внутренним диаметром не менее 148,3 мм.

Рис. 3. Установка погружного центробежного насоса:

1 – оборудование устья скважин; 2 ‑ пункт подключательный выносной; 3 ‑ трансформаторная комплексная подстанция; 4 – клапан спускной; 5 ‑ клапан обратный; 6 ‑ модуль‑головка; 7 – кабель; 8 ‑ модуль‑секция; 9 – модуль насосный газосепараторный; 10 – модуль исходный; 11 – протектор; 12 ‑ электродвигатель; 13 ‑ система термоманометрическая.


Условия применимости УЭЦН по перекачиваемым средам: жидкость с содержанием механических примесей не более 0,5 г/л, свободного газа на приеме насоса не более 25%; сероводорода не более 1,25 г/л; воды не более 99%; водородный показатель (рН) пластовой воды в пределах 6¸8,5. Температура в зоне размещения электродвигателя не более +90оС (специального теплостойкого исполнения до +140°С). Пример шифра установок - УЭЦНМК5-125-1300 означает: УЭЦНМК - установка электроцентробежного насоса модульного и коррозионно-стойкого исполнения; 5 - группа насоса; 125 - подача, м 3 /сут; 1300 - развиваемый напор, м вод. ст. На рис. 9 представлена схема установки погружных центробежных насосов в модульном исполнении, представляющая новое поколение оборудования этого типа, что позволяет индивидуально подбирать оптимальную компоновку установки к скважинам в соответствии с их параметрами из небольшого числа взаимозаменяемых модулей.

Насосы также подразделяют на три условные группы - 5; 5А и 6. Диаметры корпусов группы 5¸92 мм, группы 5А - 103 мм, группы 6 - 114 мм.

Модуль-секция насоса (рис. 4) состоит из корпуса 1, вала 2, пакетов ступеней (рабочих колес - 3 и направляющих аппаратов - 4), верхнего подшипника 5, нижнего подшипника 6, верхней осевой опоры 7, головки 8, основания 9, двух ребер 10 (служат для защиты кабеля от механических повреждений) и резиновых колец 11, 12, 13. Рабочие колеса свободно передвигаются по валу в осевом направлении и ограничены в перемещении нижних, и верхним направляющими аппаратами. Осевое усилие от рабочего колеса передается на нижнее текстолитовое кольцо и затем на бурт направляющего аппарата. Частично осевое усилие передается валу вследствие трения колеса о вал или прихвата колеса к валу при отложении солей в зазоре или коррозии металлов. Крутящий момент передается от вала к колесам латунной (Л62) шпонкой, входящей в паз рабочего колеса. Шпонка расположена по всей длине сборки колес и состоит из отрезков длиною 400-1000 мм. Направляющие аппараты сочленяются между собой по периферийным частям, в нижней части корпуса они все опираются на нижний подшипник 6 и основание 9, а сверху через корпус верхнего подшипника зажаты в корпусе. Рабочие колеса и направляющие аппараты насосов обычного исполнения изготавливаются из модифицированного серого чугуна и радиационно модифицированного полиамида, насосов коррозионно-стойкого исполнения - из модифицированного чугуна ЦН16Д71ХШ типа "нирезист". Валы модулей секций и входных модулей для насосов обычного исполнения изготавливаются из комбинированной коррозионно-стойкой высокопрочной стали ОЗХ14Н7В и имеют на торце маркировку "НЖ" для насосов повышенной коррозионной стойкости - из калиброванных прутков из сплава Н65Д29ЮТ-ИШ-К-монель и имеют на торцах маркировку "М".

Рис. 4. Модуль‑секция насос: 1 – корпус; 2 – вал; 3‑ колесо рабочее; 4 ‑ аппарат направляющий; 5 ‑ подшипник верхний; 6 ‑ подшипник нижний; 7 ‑ опора осевая верхняя; 8 ‑ головка; 9 – основание; 10 – ребро; 11, 12, 13 ‑ кольца резиновые

Валы модулей-секций всех групп насосов, имеющих одинаковые длины корпусов 3, 4 и 5 м, унифицированы.

Соединение валов модулей-секций между собой, модуля секции с валом входного модуля (или вала газосепаратора), вала входного модуля свалом гидрозащиты двигателя осуществляется при помощи шлицевых муфт.

Соединение модулей между собой и входного модуля с двигателем - фланцевое. Уплотнение соединений (кроме соединения входного модуля с двигателем и входного модуля с газосепаратором) осуществляется резиновыми кольцами.

Для откачивания пластовой жидкости, содержащей у сетки входного модуля насоса свыше 25 % (до 55 %) по объему свободного газа, к насосу подсоединяется модуль насосный - газосепаратор (рис. 5).



Рис. 5. Газосепаратор: 1 – головка; 2 – переводник; 3 – сепаратор; 4 – корпус; 5 – вал; 6 – решетка; 7 ‑ направляющий аппарат; 8 – рабочее колесо; 9 – шнек; 10 – подшипник; 11 ‑ основание

Газосепаратор устанавливается между входным модулем и модулем-секцией. Наиболее эффективны газосепараторы центробежного типа, в которых фазы разделяются в поле центробежных сил. При этом жидкость концентрируется в периферийной части, а газ - в центральной части газосепаратора и выбрасывается в затрубное пространство. Газосепараторы серии МНГ имеют предельную подачу 250¸500 м 3 /сут, коэффициент сепарации 90%, массу от 26 до 42 кг.

Двигатель погружного насосного агрегата состоит из электродвигателя и гидрозащиты. Электродвигатели (рис. 6) погружные трехфазные коротко замкнутые двухполюсные маслонаполненные обычного и коррозионно-стойкого исполнения унифицированной серии ПЭДУ и в обычном исполнении серии ПЭД модернизации Л. Гидростатическое давление в зоне работы не более 20 МПа. Номинальная мощность от 16 до 360 кВт, номинальное напряжение 530¸2300 В, номинальный ток 26¸122,5 А.



Рис. 6. Электродвигатель серии ПЭДУ: 1 – соединительная муфта; 2 – крышка; 3 – головка; 4 – пятка; 5 – подпятник; 6 ‑ крышка кабельного ввода; 7 – пробка; 8 – колодка кабельного ввода; 9 – ротор; 10 – статор; 11 – фильтр; 12 – основание

Гидрозащита (рис. 7) двигателей ПЭД предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации изменения объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса.



Рис. 7. Гидрозащита: а – открытого типа; б – закрытого типа;А – верхняя камера; Б – нижняя камера;1 – головка; 2 – торцевое уплотнение; 3 – верхний ниппель; 4 – корпус; 5 – средний ниппель; 6 – вал; 7 – нижний ниппель; 8 – основание; 9 ‑ соединительная трубка; 10 – диафрагма

Гидрозащита состоит либо из одного протектора, либо из протектора и компенсатора. Могут быть три варианта исполнения гидрозащиты.

Первый состоит из протекторов П92, ПК92 и П114 (открытого типа) из двух камер. Верхняя камера заполнена тяжелой барьерной жидкостью (плотность до 2 г/см 3 , не смешиваемая с пластовой жидкостью и маслом), нижняя - маслом МА‑ПЭД, что и полость электродвигателя. Камеры сообщены трубкой. Изменения объемов жидкого диэлектрика в двигателе компенсируются за счет переноса барьерной жидкости в гидрозащите из одной камеры в другую.

Второй состоит из протекторов П92Д, ПК92Д и П114Д (закрытого типа), в которых применяются резиновые диафрагмы, их эластичность компенсирует изменение объема жидкого диэлектрика в двигателе.

Третий - гидрозащита 1Г51М и 1Г62 состоит из протектора, размещенного над электродвигателем и компенсатора, присоединяемого к нижней части электродвигателя. Система торцевых уплотнений обеспечивает защиту от попадания пластовой жидкости по валу внутрь электродвигателя. Передаваемая мощность гидрозащит 125¸250 кВт, масса 53¸59 кг.

Система термоманометрическая ТМС - 3 предназначена для автоматического контроля за работой погружного центробежного насоса и его защиты от аномальных режимов работы (при пониженном давлении на приеме насоса и повышенной температуре погружного электродвигателя) в процессе эксплуатации скважин. Имеется подземная и наземная части. Диапазон контролируемого давления от 0 до 20 МПа. Диапазон рабочих температур от 25 до 105 о С.

Масса общая 10,2 кг (см. рис. 3).

В комплект поставки установки входят: насос, кабель в сборе, двигатель, трансформатор, комплектная трансформаторная подстанция, комплектное устройство, газосепаратор и комплект инструмента.

2.2 Установки погружных винтовых электронасосов

Установки погружных винтовых сдвоенных электронасосов типа УЭВН5 предназначены для откачки из нефтяных скважин пластовой жидкости повышенной вязкости (до 1×10 3 м 2 /с) температурой 70 о С, с содержанием механических примесей не более 0,4 г/л, свободного газа на приеме насоса - не более 50% по объему.

Установка погружного винтового сдвоенного электронасоса состоит из насоса, электродвигателя с гидрозащитой, комплектного устройства, токоподводящего кабеля с муфтой кабельного ввода. В состав установок с подачами 63, 100 и 200 м 3 /сут входит еще и трансформатор, так как двигатели этих установок выполнены соответственно на напряжение 700 и 1000 В.

Установки выпускаются для скважин с условным диаметром колонны обсадных труб 146 мм.

С учетом температуры в скважине установки изготавливают в трех модификациях:

для температуры 30 о С (А);

для температуры 30¸50 о С (Б);

для температуры 50¸70 о С (В, Г).


Рис. 8. Установки погружного винтового сдвоенного электронасоса: 1 – трансформатор; 2 – комплектное устройство; 3 ‑ пояс крепления кабелей; 4 ‑ насосно‑компрессорная труба; 5 – винтовой насос; 6 – кабельный ввод; 7 – электродвигатель с гидрозащитой

В обозначении установок в зависимости от температуры добываемой жидкости введены буквы А, Б и В (Г). Например, УЭВН5‑16-1200А или УЭВН5‑200-900В.

Все установки комплектуют погружными двигателями типа ПЭД с гидрозащитой 1Г51.

Приводом винтовых насосов служит электродвигатель трехфазный, асинхронный, короткозамкнутый, четырехполюсный, погружной, маслонаполненный. Исполнение двигателя вертикальное, со свободным концом вала, направленным вверх.

Гидрозащита предохраняет его внутреннюю полость от попадания пластовой жидкости, а также компенсирует температурные изменения объема и расхода масла при работе двигателя. С помощью гидрозащиты осуществляется выравнивание двигателя с давлением в скважине на уровне его подвески.

Внутренняя полость двигателей заполнена специальным маслом высокой диэлектрической прочности.

Установки обеспечивают подачу от 16 до 200 м 3 /сут, давление 9¸12МПа; КПД погружного агрегата составляет 38¸50%; мощность электродвигателя 5,5, 22 и 32 кВт; масса погружного агрегата 341¸713 кг; частота вращения - 1500 мин -1 .

2.3 Установки погружных диафрагменных электронасосов

Установки погружных диафрагменных электронасосов УЭДН5 предназначены для эксплуатации малодебитных нефтяных скважин преимущественно с пескопроявлениями, высокой обводненностью продукции, кривыми и наклонными стволами с внутренним диаметром обсадной колонны не менее 121,7 мм.

Примечания:

1. Значения показателей указаны при перекачивании воды плотностью 1000 кг/м 3 температурой 45°С при напряжении сети 380 В и частоте тока в сети 50 Гц.

2. Эксплуатация при давлении на выходе насоса, превышающем номинальное значение, не допускается.

Изготовитель: Машиностроительный завод им. Сардарова, г. Баку.

Электронасос (рис. 9 насос и электродвигатель в одном корпусе) содержит асинхронный четырехполюсный электродвигатель, конический редуктор и плунжерный насос с эксцентриковым приводом и пружиной для возврата плунжера. Муфта кабеля соединяется с токовводом.




Рис. 9. Погружной диафрагменный электронасос:1 – токоввод; 2 – нагнетательный клапан; 3 – всасывающий клапан; 4 – диафрагма; 5 – пружина; 6 – плунжерный насос; 7 – эксцентриковый привод; 8 – конический редуктор; 9 – электродвигатель; 10 - компенсатор

Установки обеспечивают подачу от 4 до 16 м 3 , давление 6,5¸17 МПа, КПД 35-40%, мощность электродвигателя 2,2¸2,85 кВт; частота вращения электродвигателя - 1500 мин -1 , масса от 1377 до 2715 кг.

2.4 Арматура устьевая

скважинный насос нефть газолифтный

Для герметизации устья нефтяных скважин, эксплуатируемых погружными центробежными, винтовыми и диафрагменными электронасосами, применяют устьевую арматуру типа АУЭ-65/50-14 или устьевое оборудование типа ОУЭ‑65/50‑14. Арматура типа АУЭ-65/ 50-14 состоит из корпуса, трубной подвески, отборника давления с пробоотборником, угловых вентилей, перепускного клапана и быстросборного соединения (рис. 10).


Рис. 10. Устьевая арматура типа АУЭ: 1 - перепускной клапан; 2 - манжета; 3 - уплотнение кабеля; 4 ‑ пробковый кран; 5 ‑ патрубок; 6 - зажимная гайка; 7 ‑ трубная подвеска; 8 - корпус; 9,12,13 - угловые вентили; 10 ‑ отборник проб, 11 - быстросъемное соединение

2.5 Установки гидропоршневых насосов для добычи нефти (УГН)

Современные УГН позволяют эксплуатировать скважины с высотой подъема до 4500 м, с максимальным дебитом до 1200 м 3 /сут. при высоком содержании в скважинной продукции воды.

Установки гидропоршневых насосов - блочные автоматизированные, предназначены для добычи нефти из двух - восьми глубоких кустовых наклонно направленных скважин в заболоченных и труднодоступных районах Западной Сибири и других районах. Откачиваемая жидкость кинематической вязкостью не более 15×10 -6 м2/с (15×10 -2 Ст) с содержанием механических примесей не более 0,1 г/л, сероводорода не более 0,01 г/л и попутной воды не более 99%. Наличие свободного газа на приеме гидропоршневого насосного агрегата не допускается. Температура откачиваемой жидкости в месте подвески агрегата не выше 120 о С.

Установки выпускаются для скважин с условным диаметром обсадных колонн 140, 146 и 168 мм.

Гидропоршневая насосная установка (рис. 11) состоит из поршневого гидравлического двигателя и насоса 13, устанавливаемого в нижней части труб 10, силового насоса 4, расположенного на поверхности, емкости 2 для отстоя жидкости и сепаратора 6 для её очистки. Насос 13, сбрасываемый в трубы 10, садится в седло 14, где уплотняется в посадочном конусе 15 под воздействием струй рабочей жидкости, нагнетаемой в скважину по центральному ряду труб 10. Золотниковое устройство направляет жидкость в пространство над или под поршнем двигателя, и поэтому он совершает вертикальные возвратно-поступательные движения.

Нефть из скважин всасывается через обратный клапан 16, направляется в кольцевое пространство между внутренним 10 и наружным 11 рядами труб. В это же пространство из двигателя поступает отработанная жидкость (нефть), т.е. по кольцевому пространству на поверхность поднимается одновременно добываемая рабочая жидкость.

При необходимости подъема насоса изменяется направление нагнетания рабочей жидкости - её подают в кольцевое пространство. Различают гидропоршневые насосы одинарного и двойного действия, с раздельным и совместным движением добываемой жидкости с рабочей и т.д.


Рис. 11. Схема компоновки оборудования гидропоршневой насосной установки:а – подъем насоса; б – работа насоса; 1 – трубопровод; 2 – емкость для рабочей жидкости; 3 – всасывающий трубопровод; 4 – силовой насос; 5 – манометр; 6 – сепаратор; 7 – выкидная линия; 8 – напорный трубоопровод; 9 – оборудование устья скважины; 10 – 63 мм трубы; 11 – 102 мм трубы; 12 – обсадная колонна; 13 – гидропоршневой насос (сбрасываемый); 14 – седло гидропоршневого насоса; 15 – конус посадочный; 16 – обратный клапан; I - рабочая жидкость; II - добываемая жидкость; III - смесь отработанной и добытой жидкости

2.6 Струйные насосы

Струйно-насосная установка представляет собой насосную систему механизированной добычи нефти, состоящую из устьевого наземного и погружного оборудования. Наземное оборудование включает сепаратор, силовой насос, устьевую арматуру, КИП; погружное оборудование - струйный насос с посадочным узлом (рис. 12).

Струйные насосы отличаются отсутствием подвижных частей, компактностью, высокой прочностью, устойчивостью к коррозии и абразивному износу, дешевизной. КПД струйной установки приближается к КПД других гидравлических насосных систем. Рабочие характеристики струйного насоса близки к характеристикам электропогружного насоса.

Струйный насос (рис. 13) приводится в действие под влиянием напора рабочей жидкости (лучше нефти или воды), нагнетаемой в НКТ 1, соединенные с соплом 2. При прохождении узкого сечения сопла струя перед диффузором 4 приобретает большую скорость и поэтому в каналах 3 снижается давление. Эти каналы соединены через полость насоса 5 с подпакерным пространством 6 и пластом, откуда пластовая жидкость всасывается в насос и смешивается в камере смешения с рабочей. Смесь жидкостей далее движется по кольцевому пространству насоса и поднимается на поверхность по межтрубному пространству (насос спускают на двух концентрических рядах труб) под давлением нагнетаемой в НКТ рабочей жидкости. Насос может откачивать высоковязкие жидкости и эксплуатироваться в сложнейших условиях (высокие температуры пластовой жидкости, содержание значительного количества свободного газа и песка в продукции и т.д.).По данным НИПИ Гипроморнефтегаз срок службы струйного насоса в абразивной среде не менее 8 мес., теоретический отбор жидкости до 4000 м 3 /сут. максимальная глубина спуска - 5000 м, масса погружного насоса 10 кг.В 1971 г. Крецом В.Г. были обоснованы и предложены схемы струйных установок для целей испытания, освоения и эксплуатации нефтяных скважин (НИИ ВН при ТПУ). Тогда внедрены были струйные установки для откачки питьевой воды из скважин (разработанные под руководством В.С. Арбит и С.Я. Рябчикова).


Рис. 12. Струйно‑насосная установка:1 – струйный насос; 2 – ловитель; 3 – силовой насос; 4 ‑ сепаратор; 5 – продуктивный пласт

Рис. 13. Схема струйного насоса:1 - насосно-компрессорные трубы; 2 - сопло; 3 ‑ каналы; 4 ‑ диффузор; 5 - входная часть насоса; 6 ‑ подпакерное пространство

2.7 Винтовые погружные насосы с приводом на устье скважины

На рис. 14 показана схема винтового насоса "фирмы "Гриффин". На устье скважины находится двигатель (газовый, электрический, гидравлический), который через редуктор вращает штанговую колонну и ротор винтового насоса по часовой стрелке. Винтовые насосы перспективны для применения при работе на нефтяных месторождениях.

Рис. 14. Схема винтового насоса фирмы "Гриффин"

3. ОБОРУДОВАНИЕ ГАЗЛИФТНЫХ СКВАЖИН

Системы газлифтной добычи зависят от источника рабочего агента:

а) используется отделенный от скважинной продукции газ (необходимы подготовка газа и его сжатие);

б) при наличии внешнего источника, таких как газовый пласт, газопровод, газоперерабатывающий завод следует использовать бескомпрессорную газлифтную систему (отличается простотой);

в) применение системы эрлифта с использованием воздуха в качестве рабочего агента.

Газлифтный способ добычи нефти, при котором жидкость поднимается из забоя за счет энергии газа, нагнетаемого с устья, позволяет эксплуатировать скважины, продукция которых содержит большое количество газа и песка, а также скважины с высокой обводненностью продукции, значительно искривленным стволом, низким динамическим уровнем и плохими коллекторскими свойствами пласта.

Существует две основные разновидности газлифта - периодический и непрерывный. При этом газ может подаваться в скважину по кольцевому пространству (кольцевая система) или по НКТ (центральная система).

Ниже приводится описание оборудования схемы закрытой установки типа ЛН (непрерывного газлифта кольцевой системы).

3.1 Газлифтная установка ЛН

Газлифтная установка ЛН (рис. 15) предназначена для добычи газлифтным способом из условно-вертикальных и наклонно-направленных скважин. Рабочая среда - нефть, газ, пластовая вода с содержанием СО 2 до 1% и механических примесей до 0,1 г/л.

Оборудование предусматривает возможность перевода скважин с фонтанного способа эксплуатации на газлифтный без подъема скважинного оборудования.

Установка включает в себя скважинные камеры КТ1, газлифтные клапаны 2Г или 5Г, пакер 2ПД-ЯГ с гидравлическим управлением, ниппель, глухую и циркуляционную пробки.

Рис. 15. Газлифтная установка ЛН:

1 – фонтанная арматура; 2 – скважинная камера; 3 ‑ колонна насосно‑компрессорных труб; 4 – газлифтный клапан; 5 – пакер; 6 – приемный клапан; 7 – ниппель приемного клапана

В период фонтанирования скважины в карман скважинных камер устанавливаются пробки. При переводе скважины на газлифтный способ эксплуатации пробки заменяются газлифтными клапанами.

После спуска скважинного оборудования, монтажа фонтанной арматуры и посадки пакера, а также замены глухих пробок на газлифтные клапаны в затрубное пространство скважины через отвод трубной головки нагнетается газ. Под давлением нагнетаемого газа и гидростатического столба жидкости в скважине все газлифтные клапаны открываются и жидкость перетекает из затрубного пространства в подъемные трубы.

Уровень жидкости в затрубном пространстве понижается. При обнажении первого клапана нагнетаемый газ поступает в подъемные трубы и выбрасывает столб жидкости выше клапана. Давление в подъемных трубах на глубине установки первого клапана уменьшается, и жидкость из затрубного пространства продолжает перетекать через нижние клапаны в подъемные трубы. Уровень жидкости в затрубном пространстве понижается и обнажается второй клапан.

Так как давление закрытия первого верхнего клапана меньше давления открытия второго клапана, первый клапан закрывается. Нагнетаемый газ начинает поступать в подъемные трубы через второй клапан. Столб жидкости выше второго клапана аэрируется и выносится на поверхность. Давление в подъемных трубах на глубине расположения второго клапана уменьшается, что приводит к дальнейшему перетоку жидкости из затрубного пространства в подъемные трубы через последующие клапаны. Уровень жидкости в затрубном пространстве понижается и достигает третьего клапана. Нагнетаемый газ начинает поступать в подъемные трубы через третий клапан. Уровень жидкости в затрубном пространстве продолжает понижаться и в момент обнажения третьего клапана закрывает второй.

Процесс продолжается до вступления в работу низшего рабочего клапана, когда газ поступает в подъемные трубы через рабочий клапан, а все вышерасположенные (пусковые) клапаны закрыты.

Работа скважины на заданном технологическом режиме осуществляется через нижний клапан.




Наиболее широко применяются газлифтные установки ЛН рассчитаны на рабочее давление 21 и 35 МПа, максимальную глубину спуска скважинного оборудования - 5000 м, температуру скважинной среды до 120°С и имеют массу от 185 до 585 кг.

Периодический газлифт осуществляется путем прерывной подачи агента в скважину, т.е. циклами.

Для повышения эффективности периодического газлифта может применяться плунжер - своеобразный поршень, движущийся в трубах одноразмерной колонны с минимальным зазором 1,5¸2,0 мм, чтобы уменьшить величину отекания жидкости по стенкам труб и отделяющий поднимаемый столб жидкости от газа. При ударе о верхний амортизатор, расположенный в плунжере, клапан автоматически открывается, плунжер падает вниз, а при ударе о нижний амортизатор происходит закрытие клапана и плунжер готов к следующему циклу. Плунжерный лифт может работать также с периодической подкачкой газа в затрубное пространство.

Плунжерный лифт можно использовать также при непрерывном газлифте и фонтанной эксплуатации скважины.

В других установках, например, при эксплуатации скважин гидропакерным автоматическим поршнем, последний не имеет проходного отверстия и после перемещения к устью скважины нагнетательным газом падает вниз после прекращения подачи газа. Зазор между поршнем и колонной НКТ - 2,5¸4 мм. Дебит скважин - 1¸20 т/сут.

В настоящее время распространение установок периодического газлифта невелико.

Нефтяные насосы используются для прокачки нефтепродуктов, непосредственно нефти и различных сжиженных газов, включая углеводородный газ. Основное их отличие от других типов - возможность работы с жидкостями, которые имеют высокий уровень вязкости. При этом они имеют высокую степень безопасности, отказоустойчивости и надежности, при хорошей скорости перекачки. Их отличает так же особые условия эксплуатации – широкий диапазон температур, перекачка взрывоопасных веществ, высокое рабочее давление. В зависимости от климата, где должен будет эксплуатироваться насос, существуют различные его исполнения (северные, экваториальные, южные широты и т.д.). Для обеспечения необходимой мощности работы насоса используются различные приводы, которые так же накладывают свои ограничения на его характеристики и использование:

  • механическим;
  • термическим;
  • гидравлическим;
  • пневматическим;
  • электрическим.

Электрический – используется, если имеется подвод электроэнергии. Данный привод надежен, удобен, а так же имеет большой разброс характеристик. В случаях отсутствия подвода электроэнергии используется различные двигатели внутреннего сгорания, либо газотурбинные. Пневматика используется реже и применяются на центробежных насосах, тогда, когда можно применять энергию добываемого газа, либо попутного. Это серьезно повышает рентабельность работы и транспортировки газа.

К особенностям нефтяных насосов можно отнести такие вещи как:

  • наличие гидравлики;
  • особые материалы, которые обеспечивают работу насоса при перекачке активных веществ, с возможностью установки его вне помещений;
  • особые торцевые уплотнения;
  • высокая степень защиты, для исключения аварий.

Различают 2 основных вида нефтяных насосов:

  1. винтовой
  2. центробежный.

Первый тип может работать в суровых климатических зонах, что связано с тем, что прокачка жидкости осуществляется без контакта винтов. Это обеспечивает возможность транспортировки даже “грязных” жидкостей (нефть, шлам и т.д.), а так же вещества высокой плотности и вязкости. В зависимости от количества винтов они бывают одно или двух винтовые. Обе конструкции обеспечивают надежную работу, высокую степень всасывания, создается хороший напор и давление жидкости. Отличие заключается в том, что двухвинтовые модели могут перекачивать очень вязкие жидкости, имеющие экстремальные температуры. Так возможно осуществлять транспортировку жидкости с температурой до 450 С, при этом почти -60 С составит нижний предел. Возможность работать с сильно загазованными жидкостями является так же несомненным плюсом двухвинтовых моделей.

В зависимости от температуры определяется тип насоса, который можно использовать:

  • если температура жидкости не превышает 80 С можно использовать нефтяной полупогружной насос, магистральный насос, многоступенчатый горизонтальный насос;
  • если температура жидкости не превышает 200 С можно использовать нефтяной консольный насос, горизонтальный многоступенчатый насос;
  • если температура жидкости не превышает 450 С можно использовать консольный нефтяной насос.

Сферы применения насосов для нефти

Область применения нефтяного насоса определяется из названия – нефтяная, химическая и нефтеперерабатывающая промышленность. Так же они используются в смежных отраслях связанных с транспортировкой нефти, жидкостей, газов и других веществ, которые близки по своему составу с нефтью (вязкость, вес, коррозионное воздействие и т.д.). Данный тип насоса пользуется постоянным спросом и отличается высокой степенью защиты, для минимизации аварийных ситуаций, которые несут повышенную опасность для окружающих.

ВЫСОЧАЙШАЯ НАДЕЖНОСТЬ И ДОЛГОВЕЧНОСТЬ!!!

Насосные установки — одна из главных составляющих нефтедобывающей и перерабатывающей промышленности. Без насосного оборудования не обходятся нефтебазы, технологические установки, резервуарные парки, танкеры. Сложность в подборе насоса заключается в особенностях химических свойств нефтепродуктов. Горючие, легковоспламеняющиеся, с высокой вязкостью, большим количеством взвешенных частиц и различных примесей, они требуют особого подхода.

  1. Насосы изготавливаются из плавостойких материалов, а корпус покрывается дополнительным защитным слоем из металла для лучшего охлаждения агрегата во время работы.
  2. Уровень вибрации в процессе эксплуатации должен быть минимальным, а механические примеси не должны засорять оборудование.
  3. Необходимо добиться нулевой токопроводимости из-за повышенного риска воспламенения.
  4. Оборудование должно быть сконструировано с возможностью применения в широком диапазоне внешних температур и в разнообразных климатических условиях: от пустыни до регионов Крайнего Севера.

Мы предлагаем насосы для нефтяной промышленности, отвечающие всем вышеперечисленным требованиям. Лучшие варианты представлены марками Mouvex и Blackmer. Когда необходимо работать с темными нефтепродуктами: мазутом, битумом, нефтью, газотурбинным топливом или гудроном, — лучше всего справятся шиберные или винтовые насосы серии S от Blackmer и насосы серии А от Mouvex.

Насосы Blackmer S-Series — новинка 2016 года, которая быстро завоевала популярность благодаря широким возможностям применения, сертификату ATEX для работы во взрывоопасных условиях и уникальным конструктивным особенностям.

Шиберный насос Blackmer — родоначальник всех шиберных насосов — был введен в серийное производство в далеком 1903 году. Технологичность, высокое качество и польза от его применения подтверждается многолетними испытаниями в реальных условиях эксплуатации.

Еще одна новинка последних лет — эксцентриковые дисковые насосы Mouvex серии А, улучшенные с учетом характеристик нефтегазовой и нефтедобывающей промышленности. Французский концерн PSG Dover с подразделением Mouvex — один из ведущих европейских поставщиков насосного оборудования для нефтяной, пищевой, фармацевтической и косметической отраслей.

Применение насосов Mouvex и Blackmer



Конструктивные особенности и технические характеристики насосов Mouvex и Blackmer позволяют использовать их в любой области, связанной с нефтепродуктами:

  • при производстве сырой нефти и вторичной добыче;
  • для транспортировки и разгрузки сырья;
  • для улавливания паров и газов;
  • для перекачки асфальта, битума, керосина, пропана, бензина, дизельного топлива и других горюче-смазочных материалов;
  • для перекачки нефтешлама, мазута и сырой нефти;
  • для нагнетания промывочной жидкости в процессе бурения скважин или подачи сред в пласт для улучшения интенсивности нефтедобычи;
  • для транспортировки химических реагентов, солевых растворов, сжиженных газов, газового конденсата;
  • в системах генерации давления и бустерных системах;
  • для перекачки неагрессивных сред, например обводненной нефти.

Кроме того, насосные установки подобного типа используются на любом производстве, где необходимо работать с веществами, которые имеют сходные с нефтепродуктами качества: вязкость, агрессивность, воспламеняемость и т. д. Насосы для нефтяной промышленности могут применяться как в помещениях, так и в уличных условиях, когда есть возможность образования взрывоопасных газов или паров, а также смеси пыли с воздухом.

Одно из преимуществ использования насосов Mouvex и Blackmer — их универсальность. Оборудование соответствующих серий для нефтяной промышленности находит применение и в других областях:

  • в химической отрасли — при работе с каустическими жидкостями, кислотами, полимерами, адгезивами;
  • в пищевой и фармацевтической промышленности — для закачки меда, патоки, кремов, жидкого мыла, глицерина;
  • в бумажной отрасли и кораблестроении — для работы с едкими жидкостями, растворителями, лаками, красками, мастикой.

Военная промышленность и область пожаротушения также не обходятся без универсальных эксцентриковых насосов Mouvex и винтовых агрегатов Blackmer.

Принцип работы насосов для нефтяной промышленности



Принцип работы насосов Mouvex и Blackmer позволяет им справляться с самыми тяжелыми условиями перекачки и без проблем контактировать с агрессивными и вязкими средами.

Эксцентриковые дисковые насосы Mouvex состоят из цилиндра и насосного элемента, установленного на эксцентриковый вал. По мере того как эксцентриковый вал вращается, насосный элемент образует камеру внутри цилиндра, которая увеличивается в размерах на входе, передавая жидкость в насосную камеру. Жидкость транспортируется к выходному отверстию, где размер насосной камеры уменьшается. Под давлением жидкость поступает в выпускной трубопровод.

Насосы Blackmer роторно-пластинчатого типа, используемые для подачи и перекачки жидкостей с различными показателями вязкости, являются универсальными. Шиберные устройства легко справляются с газотурбинным топливом, мазутом, продуктами нефтепереработки и масляными составами, благодаря чему применяются в нефтяной, пищевой, фармацевтической, целлюлозной отраслях промышленности.

При перекачке задействовано несколько сил:

  • механическая стабилизирует и прижимает лопасти к цилиндру, продвигая вязкую жидкость к выходному клапану насоса;
  • гидравлическая способствует тому, чтобы давление перекачиваемого состава на основание всех лопастей было постоянным и стабильным;
  • центробежная обеспечивает проворачивание шиберов ротора, которые выталкивают жидкость наверх.

Агрегаты Blackmer с двумя винтами — это объемные насосы, транспортирующие любые жидкости без твердых примесей. Устройство состоит из пары винтов, расположенных друг напротив друга, которые при вращении образуют с насосным корпусом герметичную полость. Гидропривод создает на валах агрегата стабильное гидравлическое осевое напряжение. Перекачиваемая среда благодаря движению винтов перемещается к выпускному клапану, расположенному по центру насоса.

Особенности и преимущества

Все насосные установки, применяемые в нефтяной отрасли, обладают общими конструктивными особенностями. Оборудование обязательно имеет гидравлическую часть и торцевое уплотнение, изготовлено из специфических материалов для установки вне помещений и в любых климатических условиях, а электродвигатель оснащен защитой от взрывов. Проточная часть агрегата выполняется из углеродистой, никельсодержащей или хромированной стали.

Нефтяные установки обычно представлены двумя видами: винтовыми или центробежными насосами. Первые более универсальны, поскольку предназначены для использования в суровых условиях. А за счет перекачки жидкостей без контакта с винтовой частью подходят для работы с загрязненными веществами с высокой плотностью. Именно такие насосы для нефтяной промышленности предлагают компании Blackmer и Mouvex.

Насосы Mouvex для нефтяной промышленности

Насосы Mouvex серии А известны своей надежностью и высокой производительностью, которые обеспечиваются инновационными разработками от инженеров компании.

  1. Уникальная конструкция насоса A-Series позволяет устройству непрерывно работать в обратном направлении и обеспечивает обратную перекачку продуктов.
  2. Уникальный принцип работы эксцентриковых дисков отвечает за гладкую перекачку (при низкой частоте вращения), а также гарантирует превосходную эффективность.
  3. Конструкция насосов серии А обеспечивает самовсасываемость даже при работе всухую и в процессе очистки трубопровода.
  4. Mouvex A-series сохраняют свой первоначальный уровень производительности в течение длительного периода без регулировки благодаря автоматической очистке системы подпитки.
  5. Даже при существенном изменении вязкости перекачиваемого продукта насосы поддерживают регулярный и постоянный выход независимо от давления на подаче.

Дополнительно насосы Mouvex серии А оснащены двойным байпасом для защиты при работе в обоих направлениях, а также нагревающей или охлаждающей рубашкой для транспортировки продуктов, которые могут затвердевать при низкой температуре окружающей среды.

Насосы Blackmer для нефтяной промышленности

Как шиберные, так и винтовые насосы этого изготовителя обеспечивают высокую производительность, надежность и долговечность оборудования.

  1. Шиберные и винтовые насосы «Блэкмер» отлично справляются с высокоагрессивными жидкостями и устойчиво работают в абразивных средах.
  2. Оба вида насосов могут работать всухую, что значительно экономит энергию и повышает производительность.
  3. Винтовые насосы серии S отличаются низким уровнем шума, отсутствием перемешивания продукта и эмульгированного сдвига.
  4. Уровень вязкости не имеет значения, когда в работу включаются винтовые или шиберные насосы Blackmer.
  5. Возможность работы при малой частоте вращения вала (у шиберных агрегатов) или винтов гарантирует увеличенный срок службы оборудования.

Малый расход электроэнергии и легкий ремонт — дополнительные преимущества работы с насосами фирмы Blackmer.

Основные характеристики насосов Mouvex и Blackmer для нефтяной промышленности

Чтобы справляться со всеми требованиями и суровыми условиями работы с нефтепродуктами, оборудование должно отвечать определенным характеристикам. Компании Mouvex и Blackmer представляют насосные установки, которые не только удовлетворяют самым строгим требованиям, но и помогают оптимизировать энергозатраты и финансовые расходы.

Насосы Mouvex A-Series перекачивают жидкость при перепаде давления до 10 бар, демонстрируют максимальную скорость в 600 оборотов в минуту, а максимальный поток — до 55 м 3 /ч. Постоянная скорость потока сохраняется независимо от изменения вязкости или плотности продукта. А максимально возможная температура жидкости для бесперебойной работы насосного оборудования составляет +80 0 С. В потенциально взрывоопасных условиях агрегаты А-серии могут работать всухую до шести минут.

Шиберные насосы Blackmer демонстрируют отличную производительность (до 500 кубометров в час) при скорости в 640 оборотов в минуту и температуре от -50 0 С до +260 0 С. Насосы этой серии способны выдерживать давление до 17 бар. Винтовые насосы серии S показывают еще более впечатляющие результаты. Максимальная температура среды (в зависимости от модели насоса) может колебаться от -80 до +350 0 С. Максимальный перепад давления достигает 60 бар, а вязкость — 200 000 сСт.

Благодаря экономии ресурсов, высокому КПД, удобству обслуживания и эксплуатации насосы Mouvex и Blackmer для нефтяной промышленности принесут максимальную пользу вашему предприятию!

Нефтяные центробежные насосы, рассчитанные на работу в условиях возможного образования взрывоопасных смесей газов и паров с воздухом, применяют в технологических установках нефтеперерабатывающих и нефтехимических производств для перекачиваемой нефти, сжиженных углеводородных газов, нефтепродуктов и других жидкостей, сходных с указанными по физическим свойствам (плотности, вязкости и др.) и коррозионному воздействию на материал деталей насосов. Максимальное содержание твердых взвешенных частиц в перекачиваемой жидкости не должно превышать 0,2%, а их размеры - 0,2 мм.

Насосы изготавливают следующих типов: К - консольные горизонтальные одно- и двухступенчатые; С - горизонтальные секционные межопорные с осевым разъемом корпуса; СД - горизонтальные секционные межопорные двухкорпусные; ВМ - вертикальные, встраиваемые в трубопровод.

В зависимости от температуры перекачиваемой среды для из­готовления деталей проточной части насоса используют ту или иную сталь (табл. 9).

Таблица 9

Условное давление корпуса р у - один из параметров, опреде­ляющий соответствие выбранного насоса конкретным условиям экс­плуатации, на которое рассчитаны корпусные детали насоса (табл. 10), при этом давление на входе в насос не должно превышать: для насосов типов К, С, СД - 2,5 МПа, для насосов типа ВМ - 1,0 МПа.

Таблица 10


Примечание: Сталь, из которой изготовлены детали проточной части: С – углеродистая; Х – хромистая; М – малоникелевая; Н – никельсодержащая.

Рабочее давление на выходе из насоса не должно превышать Р У К, где К - коэффициент, определяемый по графику (рис. 28), за­висящий от материала корпусных деталей и температуры перекачи­ваемой жидкости.

В местах выхода вала из корпуса насоса устанавливают саль­никовые (с подводом или без подвода затворной жидкости) или торцовые одинарные или двойные уплотнения, взаимозаменяемые по присоединительным и посадочным размерам для насоса каждой марки.

Маркировка уплотнения вала:

сальниковое охлаждаемое - СО;

сальниковое охлаждаемое с подачей затворнвй жидкости - СГ;

торцовое одинарное с проточной циркуляцией перекачиваемой насосами жидкости - ОП;

торцовое одинарное с самостоятельным контуром циркуляции перекачиваемой насосом жидкости - ОК;

торцовое одинарное с самостоятельным контуром циркуляции перекачиваемой насосом жидкости и теплообменным устройством ва­ла насоса - ОТ;

двойное торцовое с контуром циркуляции затворной жидкости в теплообменным устройством вала насоса - ДТ;

двойное торцовое с контуром циркуляции затворной жидко­сти – ДК.


Для охлаждения масла в подшипниках и узлах уплотнения ва­ла используют жидкость (пресную воду или антифриз), подаваемую по вспомогательным трубопроводам в полости в соответствующих деталях насоса. В качестве затворной жидкости для сальникового уплотнения или двойного торцового уплотнения применяют мине­ральные масла: индустриальное 20, турбинное 22, трансформаторное и другие вязкостью 10-30 мм 2 /с (при 59°С). Подвод и отвод зат­ворной жидкости также осуществляется по вспомогательным тру­бопроводам, собираемым в зависимости от условий работы насоса по одной из типовых схем (рис. 29).

Расход охлаждающей и затворной жидкости для насосов типа НК показан в табл. 11.

Насосы типа К , предназначенные для работы в системах Промыслового сбора и транспорта нефти, выпускают в специаль­ном исполнении с охлаждением узлов и деталей перекачиваемой жидкостью.

Основные технические характеристики насосав типа К для пере­качиваемой среды плотностью1000 кг/м 3 и вязкостью 0,01 см 2 /с приведены в табл. 12.

Одноступенчатые насосы с подачей до 250 м 3 /ч изготовляют с рабочим колесом одностороннего входа, насосы с подачей свыше 250 м 3 /ч -с рабочим колесом двустороннего входа.

К

аждый насос может быть изготовлен с рабочими колесами одного из четырех размеров выходного, диаметра: номинального (ва­риант а) и обточенных (варианты а, в и г), обеспечивающих соответствующие характеристики Q-H.

Рис. 29 Принципиальная гидравлическая схема насоса с уплотнением типа ДК:

1, 3и 6 – вентиль соответственно запорный, запорный игольчатый и игольчатый; 2 – сосуд разделительный; 4 – манометр; 5 – аккумулятор пружинно-гидравлический; 7 – указатель подачи; трубопроводы: I – охлаждающей жидкости; II – дренажа; III – запорной (уплотнительной) жидкости; IV – передача импульса.

Корпус насоса, отливаемый заодно с опорными лапами, вход­ным и выходными патрубками, устанавливают на стойках фунда­ментной плиты. Опорные поверхности лап расположены в горизон­тальной плоскости, проходящей через ось вала. Крышку подсоеди­няют к корпусу со стороны привода, стык между фланцами крышки и корпуса герметизируют спирально навитой прокладкой.

Вал устанавливают на двух опорах - шариковых подшипниках, смонтированных в подшипниковом кронштейне, который опорной лапой присоединен к фундаментной плите, а фланцем - к крышке корпуса. Подшипниковая опора со стороны привода состоит из двух радиально-упорных подшипников, воспринимающих осевое и радиаль­ные усилия. Между этими подшипниками устанавливают комплек­товочные шайбы, создающие предварительный натяг в подшипниках. Внутренние кольца подшипников от осевого перемещения закрепля­ют с помощью шайбы и гайки, которые одновременно крепят полу­муфты зубчатой муфты и распорную втулку. Другая подшипниковая опора вала (два радиальных шариковых подшипника) предусмот­рена для восприятия радиальных усилий.

Таблица 11



Насосы с приводом монтируют на общей фундаментной плите. Валы их соединяются с помощью зубчатой муфты с промежуточ­ным валом. При этом длина промежуточного вала позволяет разби­рать насос без демонтажа его корпуса, электродвигателя, входного и выходного трубопровода. Зубчатая муфта имеет ограждение, которое крепится к фундаментной раме болтами.

Насосы типа К выпускают с направляющим аппаратом или со спиральным корпусом.

Направляющий аппарат - разборный, состоит из четырех частей. Размещен он в кольцевой расточке корпуса. Если насос выпол­нен со спиральным корпусом, для уравновешивания радиальных сил, действующих на ротор, спиральный отвод выполнен двойным.

Насосы типа С и СД . Секционные межопорные насосы подразделены на два типа: НС - нефтяные секционные и НСД - нефтяные секционные двухкорпусные (рис. 32). Основные техниче­ские характеристики насосов этого типа для перекачиваемой среды плотностью 1000 кг/м 3 и вязкостью 0,01 см 2 /с приведены в табл. 15.

Примечание: Частота вращения вала насосов типов НК35/50 – НК1000/320 составляют 2950 мин -1 , наосов типов НК1000/50 – НК1600/80 – 1475 мин -1 .





Компания ООО "ЭНЦЕ инжиниринг", являясь инжиниринговым и сервисным центром компании ENCE GmbH / Швейцария, готова разработать и поставить по Вашему индивидуальному техническому заданию нефтяные насосы.


Общее описание

Данные агрегаты предназначены для работы с нефтью и нефтепродуктами: мазутом, сжиженными углеродными газами, водой с примесями, жидкостями высокого уровня вязкости и т.п. Такие насосы обеспечивают надежность и безопасность работ, а также эффективность процесса перекачивания.

Нефтяные насосные установки отличает от прочих агрегатов способность функционировать в особых условиях эксплуатации. Так, в процессе нефтепереработки на узлы и прочие элементы насоса оказывают воздействие такие вещества как углеводороды, а также широкий диапазон рабочих давлений и температур. Одним из специфических факторов работы данных агрегатов является высокий уровень вязкости перекачиваемого вещества (нефть до 2000 сСт).

Такие насосные установки производятся в различных климатических исполнениях, так как работают при самых разных погодных условиях (начиная от Северного моря и заканчивая ОАЭ, а также пустынями США).

Нефтяной насос должен быть достаточно мощным, так как в процессе перекачки и переработки нефти, агрегат поднимает ее со значительных глубин нефтяных скважин. На эксплуатационные характеристики скважин, в значительной степени, влияет вид энергии, который используется нефтяных оборудованием. Поэтому, определенный тип привода насосной установки, устанавливается с учетом условий эксплуатации.

Так, нефтяной насос может быть оснащен следующими типами приводов :

  • механическим;
  • электрическим;
  • гидравлическим;
  • пневматическим;
  • термическим.

Электрический привод, при условии наличия электропитания, наиболее удобен и дает наиболее широкий диапазон характеристик в процессе перекачки нефти. В условиях, когда электропитание недоступно, нефтяные насосы могут оснащаться газотурбинными двигателями либо двигателями внутреннего сгорания. Пневматические приводы устанавливаются на центробежные нефтяные насосы в случаях, когда есть возможность использовать энергию природного газа (высокого давления), либо энергию попутного газа, что значительно повышает уровень рентабельности насосной установки.

Перекачиваемые жидкости. Примеры

Нефтяные насосы перекачивают нефть, нефтепродукты, нефтегазовые эмульсии, сжиженные газы, а также прочие вещества, которые обладают схожими характеристиками, неагрессивные жидкие среды, осадки.

Примеры нефтяных насосов для:

альфа-олефинов
ароматических углеводородов (толуол, бензол)
бензина АИ-76, АИ-92, АИ-95
бензина, бензиновых фракций
бензина с водным раствором щелочи
бензина тяжелого, нестабильного бензина
бензола
битума
бурового раствора
воды с осадком
воды с содержанием сероводорода
вязких жидкостей и сред
газового бензина (пентан+гексан)
газойля
гидроочищенного бензина
гудрона
дизельного топлива
жидкого топлива
канализационных стоков
керосина
конденсата
конденсата водяного пара
ксилола
кубовой жидкости
легких бензиновых фракций
мазута
масла
масла поглотительного
масла термального
мультифазные насосы
нагнетания воды в нефтяной пласт
поддержания пластового давления
насосы с магнитной муфтой
нефти на магистральном нефтепроводе
нефти и нефтепродуктов
нефти очищенной
нефти товарной
нефтяных фракций, содержащих серную кислоту
осветленной воды
охлаждающей жидкости
парафина
питьевой воды
пластовой воды
промывной воды
пропана
пропилена
прямогонных бензиновых фракций
реактивного топлива
сероводородного конденсата
серы
сжиженного газа
сжиженных углеводородных газов (СУГ)
смеси изобутанов
сольвента, растворителей
стабильного гидрогенизата
стабильных дизельных фракций NZ
сточных вод
сырьевой смеси углеводородов
термомасла
технической воды
толуола
тяжелого и легкого риформата
углеводородного конденсата
углеводородов (нефтепродуктов)
этана

На нефтедобывающих площадках насосные установки нагнетают промывочную жидкость в процессе бурения скважин, жидкость при промывочных работах во время капремонта, жидкие среды в пласт, обеспечивая интенсивность нефтедобычи. Кроме того, нефтяные насосы перекачивают разнообразные жидкие среды, которые не являются агрессивными (в том числе обводненную нефть).

Конструктивные особенности и типы:

К общим конструктивным особенностям всех нефтяных насосных установок, в первую очередь следует отнести:

  • гидравлическая часть насосного агрегата;
  • специфические материалы, которые обеспечивают возможность установки нефтяного насоса на открытых площадках вне помещения;
  • торцевое уплотнение;
  • защита электродвигателей от взрывов.

Нефтяная насосная установка с приводом монтируется на едином фундаменте. Торцевое уплотнение с системами промывки и подачи жидкости устанавливается между валом и корпусом насоса. Проточная часть агрегата выполняется из стали (углеродистой/хромистой/никельсодержащей).

Нефтяные насосные установки делятся на два основных вида: винтовые и центробежные.

Нефтяные винтовые насосные установки способны функционировать в более суровых условиях эксплуатации, чем центробежные. В связи с тем, что винтовые агрегаты перекачивают жидкости без контакта винтов, они способны работать с загрязненными веществами (сырая нефть, пульпа, шлам, рассол и т.п.), а также с веществами с высоким уровнем плотности.

Нефтяные винтовые насосы бывают одновинтовыми и двухвинтовыми, оба вида демонстрируют хорошую самовсасывающую способность, при этом создавая высокий уровень напора (более 100 метров) и давления (более 10 атм.).

Двухвинтовые насосы данного вида отлично справляются с вязкими жидкостями (битум, мазут, гудрон, нефтешлам и т.п.) даже в условиях изменения температуры окружающей среды. Так, данные агрегаты могут работать с веществами, температура которых составляет +450 °С, при этом нижний предел температуры окружающей среды может доходить до -60 °С. Двухвинтовые мультифазные насосы способны работать с загазованными жидкостями (уровень содержания до 90%).

Нефтяные винтовые насосы применяются также при разгрузке цистерн (автомобильных и железнодорожных), емкостей с кислотами, т.е. выполняют задачи, которые не могут выполнить нефтяные центробежные насосы.

Выделяют следующие виды нефтяных центробежных насосных установок:

  • Консольные насосы могут быть оснащены упругой/жесткой муфтой. Существуют модификации без муфты. Такие насосы монтируются горизонтально/вертикально на лапах либо по центральной оси. Температура перекачиваемого вещества составляет не более 400°С.

Консольный одноступенчатый нефтяной насос оснащен рабочими колесами одностороннего хода. Данные агрегаты используются в процессе перекачки нефти, а также жидкостей с высокими температурами (до 200

  • Двухопорные насосные установки бывают одноступенчатыми/двухступенчатыми/многоступенчатыми. Существуют модификации однокорпусные/двухкорпусные, а также одностороннего и двухстороннего всасывания. Температура перекачиваемого вещества составляет не более 200 С.
  • Вертикальные полупогружные (или подвесные) насосы изготавливаются в однокорпусной или двухкорпусной модификации, с раздельным сливом или сливом, который осуществляется через колонну. Кроме того, такие агрегаты могут быть оснащены направляющим аппаратом или спиральным отводом.

Разделение типов центробежных нефтяных насосов, стандарт API 610


кликните на картинку для увеличения

Согласно уровню температуры перекачиваемой жидкости, нефтяные насосы можно разделить на следующие типы:

  • для перекачки жидкостей при температуре 80°С (нефтяные полупогружные, нефтяные магистральные горизонтальные многоступенчатые секционные чугунные насосы, оснащенные рабочими колесами одностороннего входа, а также нефтяные горизонтальные одноступенчатые стальные насосы);
  • для перекачки жидкостей при температуре 200°С (нефтяные консольные чугунные насосы, а также нефтяные горизонтальные многоступенчатые чугунные насосы);
  • для перекачки жидкостей при температуре 400°С (нефтяные консольные стальные насосы, оснащенные рабочими колеса одностороннего/двустороннего действия).

В зависимости от уровня температуры перекачиваемого вещества, нефтяные насосы оснащаются одинарными уплотнениями (для уровня температуры не более 200°С) и двойными торцевыми уплотнениями (для уровня температуры не более 400°С).

В соответствии с областью применения насосных установок, агрегаты делятся на насосы, использующиеся в процессе добычи и транспортировке нефти, а также насосы, использующиеся в процессе подготовки и переработки нефти.

К первой группе относятся агрегаты, подающие нефть на автоматизированные групповые замерные установки, на центральный пункт сбора, в резервуары товарной нефти, на головную станцию магистрального нефтепровода, а также насосы, перекачивающие нефть на нефтеперерабатывающих заводах и агрегаты для дожимной станции. Вторая группа включает агрегаты для подачи нефти на сепараторы, центрифуги, теплообменники, в печь и колонны.

10.Масляное уплотнение
11.Датчик температуры

Основные детали насоса для перекачки нефтепродуктов (типа BB3) по стандарту API 610 10-е издание



Конструкция насосов:

1.корпус насоса
2.снижающая давление втулка
3.рубашка рабочего колеса
4.рабочее колесо с диффузором первой ступени
5.балансировочная диафрагма
6.крепежные шпильки
7.щелеве уплотнение диффузора
8.опорный болт
9.вал
10.уплотнение упорного болта
11.патрубок

Основные детали насоса для перекачки нефти



Конструкция насосов

1.корпус насоса
2.сменное кольцо
3.опора насоса
4.рабочее колесо
5.уплотнительный комплекс
6.уплотнение масляной камеры
7.вал
8.подшипники
9.Оребрение
10.корпус подшипников

Область применения

Нефтяные насосные агрегаты применяются в первую очередь в нефтехимических и нефтеперерабатывающих производствах. Помимо этого, насосы данного типа работают и в других областях, где осуществляется процесс перекачки нефти и нефтепродуктов, сжиженного углеводородного газа, а также других веществ, которые имеют сходные физические свойства с перечисленными веществами (показатель вязкости, веса, уровень коррозийного воздействия на материалы элементов насоса и т.п.).

Насосы, изготавливаемые в различных климатических исполнениях и различных категорий, предназначены для работы вне помещений и в помещениях, где по условиям работы возможно образование взрывоопасных газов, паров или смеси пыли с воздухом, и относящихся к различным категориям взрывоопасности.

Таким образом, нефтяные насосные установки работают:

  • На предприятиях нефтегазодобывающей и нефтеперерабатывающей промышленности;
  • В составе систем подачи топлива ТЭЦ;
  • Крупных котельных и газонаполнительных станциях;
  • На прочих предприятиях, которые занимаются распределением или использованием нефтепродуктов во взрывоопасных условиях.
  • Перекачка нефтепродуктов различного вида
  • Магистральная перекачка сырой нефти
  • Перекачка товарной нефти
  • Перекачка газового конденсата
  • Перекачка сжиженных газов
  • Перекачка горячей воды на энергетических объектах
  • Инжекция воды в пласт в системах ППД
  • Перекачка химических реагентов
  • Перекачка кислот и солевых растворов
  • Перекачка взрывопожароопасных сред
  • Закачка химических реагентов в пласт для лучшей отдачи нефти
  • Перекачка различных химических сред на нефтегазовых объектах
  • Перекачка питательной воды в системах парового отопления
  • В бустерных системах
  • В системах генерации давления

Инженеры всегда готовы проконсультировать или предоставить дополнительную техническую информацию по предлагаемым нефтяным насосам.

Головные Представительства в странах СНГ:
России