Как снизить показания теплосчетчика. Семь главных вопросов после установки теплосчетчика


Существует ошибочное мнение, что установив теплосчетчик, можно экономить. На самом деле теплосчетчик всего лишь считает тепловую энергию, которая используется для отопления. Для того чтобы начать экономить необходимо предпринимать определенные действия. Например. утеплить здание, установить пластиковые окна, поставить автоматические терморегуляторы на радиаторы отопления, сделать теплоизоляцию стояков и трубопроводов отопления и наконец установить систему погодозависимого автоматического регулирования теплопотребления в зависимости от наружного воздуха.
Каждый объект потребляющий тепловую энергию имеет расчетную максимальную тепловую нагрузку Гкал/час, которая рассчитывается для определенной температуре в помещении и максимальной отрицательной температуры наружного воздуха. Данная температура зависит от местности, в которой расположен объект и определяется на основе статистических данных за несколько лет. По окончанию соответствующего месяца отопительного сезона расчетная нагрузка пересчитывается по фактической среднемесячной температуре наружного воздуха.
В большинстве случаев расчетное значение тепловой энергии и фактическое теплопотребление полученное по показаниям теплосчетчика не совпадают в силу множества причин.
Основные причины не соответствия расчетной величины теплопотребления и полученной по приборам учета:
1. Невыполнение нормативного графика по температуре теплоносителя, который должна выдерживать теплоснабжающая организация в зависимости от температуры наружного воздуха.
2. Не соблюдение расчетного расхода теплоносителя на объекте, как в большую, так и в меньшую сторону из-за нестабильности давления в теплосети, нехватки или избытка перепада давления на объекте.
3. Ошибки в расчетах при проектировании объекта. Изменение нагрузки при строительстве, модернизации, старении объекта.
Для жилых домов существует нормативные величины тепловой энергии на квадратный метр рассчитываемые для температуры внутри помещений +18(+20) градусов. Для каждого месяца отопительного сезона свой норматив, так как среднемесячная температура наружного воздуха для каждого месяца будет своя. Так, например, по возрастанию будет увеличиваться норматив с ноября до января, а далее идет снижение до апреля. Конкретные значения для каждого города утверждаются на административном уровне и их можно получить, зайдя, например, на сайт администрации или теплоснабжающей организации. Таким образом, зная площадь дома можно получить расчетное значение теплопотребления для всего дома и квартиры, в частности умножив нормативное значение Гкал на 1 м3 на площадь дома или квартиры. Для расчета норматива в рублях полученное значение в Гкал нужно умножить на тариф - стоимость 1 Гкал. Получив расчетное значение теплопотребления можно сравнить с фактическим, получаемым по теплосчетчикам.
При превышении нормативного значения температуры внутри помещений вызывают, так называемые "перетопы". Когда становиться жарко и душно в квартирах жильцы проветривают помещения, тем самым, отапливая улицу. Причиной этого может быть резкое потепление и не способность теплоснабжающей организации своевременного снижения температуры теплоносителя. В результате получаемое значение по теплосчетчику может превысить расчетное значение.
По статистике теплосчетчики показывают, что фактическое теплопотребление на 20% ниже, чем расчетное значение, но существуют факторы, которые нарушают данную статистику. В этой статье приводятся .
В ручную, использую регулирующую арматуру или задвижки можно уменьшать или увеличивать теплопотребление, но намного эффективнее использовать специально разработанные для этого системы автоматического регулирования. При ручном регулировании необходимо постоянно контролировать температуру внутри помещений и в зависимости от того стало прохладно или наоборот тепло, приоткрывать или призакрывать задвижку или регулирующую арматуру на тепловом узле. Практически человек должен жить в этом доме и регулярно день ото дня (а может и несколько раз в день) ходить на тепловой узел и регулировать расход. Про автоматические средства, позволяющие экономить можно почитать

При заполненном трубопроводе и закрытой запорной арматуре (отображаемый расход при этом должен быть равен 0) отображаются значения g1.

Вероятная причина:

1. По трубопроводу, на котором установлен теплосчетчик с первичный преобразователем расхода, течет электрический ток.

2. Неисправность запорной арматуры

1. Поскольку тепловые сети не предназначены для передачи электроэнергии, найти и устранить источник электрического тока.

2. Пустить ток в обвод участка, на котором установлен теплосчетчик, следующим образом:

Заизолировать болты фланцев. Для приборов с резьбовым соединение - врезать фланцы на близлежащих участках трубопроводов либо воспользоваться фланцами примыкающей арматуры;

Рис. 1. Схема заизолирования болтов фланцев

Произвести электрическое шунтирование участка трубопровода на котором установлен теплосчетчик шунтирующей шиной. Использовать стальную проволоку диаметром 6...8 мм. Способ соединения - сварка.

Рис. 2. Схема электрического шунтирования участка трубопровода.

При предполагаемом бесперебойном расходе теплоносителя наблюдается нестабильность показаний g1 (g2).

Наиболее вероятные причины :

Инородное тело попало в канал или подключенного к нему первичного преобразователя расхода.

Методы устранения :

Произвести демонтаж ППР (первичного преобразователя расхода). Возможно установить фильтр, если проблема повторяется.

При ожидаемом соотношении расходов в подающем и обратном трубопроводах, наблюдается разница показаний между g1 и g2. При этом (g1-g2)/g1*100 > 2%

Наиболее вероятные причины :

1.Инородное тело попало в канал или подключенного к нему первичного преобразователя расхода.

2. Не выдержаны требования к прямым участкам трубопроводов.

3. Неисправность первичного преобразователя расхода.

Методы устранения :

В том случае, если не обнаружено засорения проточной части, преобразователь расхода направить для ремонта и проведения поверки

Отсутствие сигнала от преобразователя расхода канала V1.

Наиболее вероятные причины :

1.Направление потока в трубопроводе не соответствует направлению стрелки, нанесенной на корпусе первичного преобразователя

2. Электропроводное инородное тело попало в канал или подключенного к нему преобразователя расход и замкнуло электроды на корпус.

Диагностик а:

1.Проанализировать соответствие направления стрелки направлению потока.

2.Демонтирвоать ППР, произвести осмотр проточной части

3.Прозвонить цепочку питания от вычислителя.

Устранение :

1. Осуществить перемонтаж ППР.

2.Очистить проточную часть и установить перед преобразователем расхода магнитно - механический фильтр.

3.Восстановить сеть при её разрыве.

Обрыв или короткое замыкание датчиков температуры канала Т1 или Т2.

Наиболее вероятные причины :

1.Датчики температуры не подключены или вместо них подключено другое устройство (преобразователь расхода).

2.Обрыв или короткое замыкание в проводах, соединяющих датчики температуры к вычислителю или неисправны датчики температуры.

Диагностика :

1.Проверить правильность подключения.

2.Отсоединить провода от датчиков температуры, измерить их сопротивление (нормальным считается сопротивление от 500 до 780 Ом). Если сопротивление выходит за упомянутые границы, это может говорить об обрыве, коротком замыкании или же о неисправности датчиков температуры.

Устранение :

1. Выполнить заново монтаж с выбранной измерительной схемой.

2. Произвести замену датчиков температуры, если неисправность нашли в них

T12.

Наиболее вероятные причины :

к.т.н. И.П.Андреев, Докторант Самарского государственного технического университета, директор ЗАО «Точэнерго» г. Тольятти

В статье рассмотрены типичные способы искажения показаний приборов учета и методы борьбы с ними.

Одна из основных общефедеральных проблем учета и сбережения природных и энергетических ресурсов (ПЭР) при их добыче, транспортировке, переработке, хранении, продаже и применении - это искажение учета ПЭР и их потерь, особенно в денежном выражении. Проблема учета потерь ПЭР имеет ряд скрытых от широкой публики отрицательных организационно-методических особенностей, не свойственных цивилизованным системам ведения учета.

Широко распространена ненаказуемая практика материального стимулирования работников для получения дохода («экономии») путем мошеннического несанкционированного искажения показаний приборов учета.

Рассмотрим типичные способы искажения показаний приборов учета и методы борьбы с ним.

1 . Использование для изменения показаний приборов гидродинамических факторов

Один из самых доступных способов изменения показаний приборов с помощью подручных сантехнических средств - изменить эпюру скоростей и закрутку потока с помощью нестандартной уплотнительной прокладки, устанавливаемой между прямым участком на входе потока в датчик и самим датчиком.

Конструкции и материалы прокладок могут быть самыми различными. Можно уменьшить внутренний диаметр прокладки и даже выполнить винтовую нарезку с закруткой потока. Если прокладка мягкая, начнет вибрировать и вызывать пульсации потока, то теоретически это может снизить эффект, т.к. пульсации потока приводят, например, к завышению показаний турбинных счетчиков. Если прокладка имеет внутреннюю винтовую нарезку и представляет собой завихритель потока, но неправильно сконструирована, это вызовет дополнительное падение давления и возможный шум в трубопроводе. Завихритель потока можно устанавливать и перед прямым участком по потоку, особенно если по рекомендации завода-изготовителя прибора допускается небольшая длина участка (3…5 диаметров условного прохода).

Загрязненные фильтры, загрязненные внутренние поверхности трубопроводов и частично открытые задвижки (краны), установленные вблизи датчика расхода, также вызывают изменения эпюры скоростей и приводят к погрешностям. Известен случай, когда вследствие частичного засорения входного фильтра показания теплосчетчика в одной из московских гостиниц были занижены на 30%.

Другой случай зарегистрирован автором на одной из плодоовощных баз, где частичное перекрытие входной задвижки перед теплосчетчиком в теплую погоду систематически приводило к занижению показаний расхода примерно на порядок. Увеличение расхода до нижней границы рабочего диапазона, напротив, приводило к восстановлению достоверных показаний. Однако точно не выявлено, связано ли занижение показаний с эпюрой скоростей или порогом чувствительности канала измерения расхода.

Завоздушивание потока с помощью центробежного насоса, установленного в магистрали, или внешнего компрессора также вызывает изменение показаний приборов учета. Хорошо известно использование компрессоров для целей завышения показаний счетчиков на автозаправочных станциях. При этом объемный счетчик, в силу физических особенностей своей работы, отображает объем не только продукта, но и закаченного с продуктом воздуха.

В то же время завоздушивание потока с помощью насосов в пищевой промышленности, в частности, в алкогольной отрасли, приводит к неблагоприятному для производителя дисбалансу объемов, измеряемых счетчиком и определяемых по количеству заполненных через дозатор бутылок. Объяснение этому явлению достаточно простое - в воде воздух растворен в количестве до 3% по объему (при атмосферном давлении), а при сильной встряске, как из шампанского, он выделяется. Чтобы избавиться от этого явления, надо либо насос менять, либо расход уменьшать, либо счетчик устанавливать по потоку до насоса. Если устанавливается воздухосборник, то следует обязательно инструментально проконтролировать эффективность его работы. Очень часто случается, что воздухосборники, даже сложные по конструкции, не создают гасящего эффекта на пищевых продуктах.

Изменение шероховатости поверхностей. Известно, что внутренние стенки трубы и лопасти турбинки должны иметь шероховатые поверхности. Если поверхность лопастей очень гладкая, например, покрыта пленкой или отполирована, это существенно затруднит турбулизацию потока вдоль лопасти и достижение критического числа Рейнольдса. В свою очередь это существенно увеличит скольжение турбинки в эксплуатации и приведет к заметному занижению показаний счетчика (рис. 1). Для сведения, на планерах специально натягивают нить впереди крыльев, чтобы вызвать турбулизацию потока и большую, при том же угле атаки, подъемную силу.

Еще один способ - замена откалиброванных шайб и турбинок поверенных счетчиков на поддельные, с другим диаметром отверстия шайбы или другим углом винтовой нарезки турбинки. В трубе чувствительные элементы не видны, а при вскрытии практически невозможно обнаружить дефект или обвинить заказчика подделки в умышленном занижении показаний.

2. Механическое и магнитное торможение

Механическое торможение крыльчатки с помощью лески, пропущенной через кран или при помощи пробки фильтра, при организации квартирного учета водопотребления. Особенно эффективна идея с пробкой, поскольку наглядно демонстрирует некомпетентность проектировщиков и инспекторов в вопросах приборного учета.

Если сеточные фильтры в квартирах установлены по потоку впереди счетчиков воды и не опломбированы, то коммутация потоков через фильтровые пробки с помощью гибких шлангов приводит к «скручиванию» показаний счетчиков.

Магнитное торможение крыльчаток и магнитных муфт с помощью внешнего постоянного или вращающегося магнитного поля возможно, но при наличии на счетчике ферромагнитных экранов обычно неэффективно. По-видимому, требуются дополнительные исследования по данному вопросу.

Что касается вихревых счетчиков с постоянным магнитным полем возбуждения, то, как показали наши экспериментальные исследования, имеются возможности для изменения (фальсификации) регистрируемого счетчиком нижнего предела измерения по порогу чувствительности. Другими словами, если электронный регистратор вихревого счетчика настроен на 1 м 3 /ч, то с искусственной компенсацией магнитного поля срабатывание может происходить при значительно большем расходе, например, при 4 м 3 /ч. Объемы с расходом до приведенного значения будут регистрироваться по меньшей предварительной настройке. Все, что для этого требуется, - это время от времени подключать к магнитной системе вихревого датчика внешнюю электромагнитную систему из блока питания и соленоида, в качестве сердечника которого выбирается магнит вихревого датчика. При 2-трубных измерениях требуется 2 соленоида. Однако для технологических измерений вихревой датчик описанной конструкции может представлять интерес.

3. Температурные факторы

На 1-м же узле учета наших инструментальных обследований был выявлен факт занижения показаний температуры подачи теплоносителя на 20 °С, что давало крупному потребителю почти 50% занижение показаний узла теплоучета. Источником дефекта служил нестандартный термокарман (термогильза), выполненный из отрезка водопроводной трубы, который выступал над трубопроводом подачи примерно на 8 см и был доверху заполнен жидкостью. Поскольку термокарманы не подвергаются ревизии при их монтаже на трубопроводе, их особая конструкция и заполнение жидкостью сверх рабочего уровня чувствительного элемента термометра сопротивления могут также способствовать изменению показаний счетчиков.

Можно заменить термометр сопротивления на поддельный или подключить параллельно ему или линии связи резистор определенного номинала. Эффект аналогичен предыдущему, а при наличии скрытого коммутируемого резистора, сложно обнаружить причину занижения показаний при проведении инспекционных проверок.

4. Влияние асимметрии кабелей и правильности заземления

На 2-х однотипных узлах учета было обнаружено расхождение примерно на 4% показаний цифровых расходомеров и подключенных к ним вычислителей, причем, как ни странно, в одном случае показания расходомера были выше показаний вычислителя, а в другом, наоборот. Объяснить этот факт можно тем, что вместо кабеля с жилами одного сечения применялись заключенные в металлорукав асимметричные провода, а также неверно исполненным заземлением, что приводило к контурным токам соответствующего направления.

5. Неправильное пломбирование и наличие клавиатуры

Наличие мягких, особенно пластилиновых, пломб на компонентах узлов учета позволяет делать с пломб оттиски и вскрывать узлы учета с обеспечением изменения показаний любым доступным способом. Примечательно, но однажды налоговая инспекция отказала автору в изъятии образцов свинцовых пломб с исследуемого узла учета алкогольной продукции, т.к. пломбы с отрезанными концами проволоки подлежали учету. Возможно, в сдаче использованных пломб заложен смысл не только утилизации свинца, но и глубокий смысл контроля за подделками (по внешним признакам и составу).

После завершения обучения одной из тепловых инспекций автор попросил выполнить контрольное пломбирование любого узла учета с тем, чтобы нельзя было, как обещано, за 5 минут занизить показания. Каково же было всеобщее изумление, когда автор, осмотрев все пломбы, вместо планируемого способа, остановил выбор на пломбе термометра трубопровода подачи и сумел вывернуть термометр сопротивления, не нарушив пломбу. На всю операцию по занижению показаний узла учета ушло 2 минуты.

Наличие клавиатуры позволяет «зомбировать» программу вычислителя и управлять изменением показаний непосредственно с клавиатуры по только известным мошенникам командам. В первых разработках отечественных теплосчетчиков сетевое питание расходомера и вычислителя было раздельно. Отключение расходомера от сети не приводило к отключению счетчика наработки в вычислителе. До сих пор некоторые счетчики, установленные автором еще в 1994 г., работают в режиме несанкционированного занижения показаний, а теплосети компенсируют свои убытки ростом тарифов на энергию. Всякие программные ухищрения разработчиков в виде сигнализации аварий, как выяснилось, легко снимаются и никакой пользы, кроме проблем в эксплуатации, не дают.

6. Несбалансированный учет

При организации системы учета, включающей некоторое количество узлов учета, объединяемых в единую систему, наблюдается несбалансированность всей системы со значительным превышением результирующей погрешности, которую должна иметь вся система в целом. Например, ночью квартирный счетчик показывает количество израсходованной потребителем воды, а счетчик на вводе в многоквартирный жилой дом, например, вихревого типа, не реагирует на поток из-за наличия порогового значения расхода. Такой дисбаланс вроде бы «выгоден» жильцам дома, если не учитывать, что несбалансированный учет согласно стандартам на измерительные информационные системы и нормы точности является незаконным.

Выводы:

Таким образом, из всего вышесказанного напрашиваются первоочередные мероприятия по снижению неопределенности и искажения коммерческого учета ПЭР и их потерь :

Для повышения достоверности учетных измерений энергетических и природных ресурсов узлы учета должны проходить государственную поверку органами Госстандарта РФ непосредственно в местах эксплуатации без нарушения целостности узлов учета.

На стратегически важных магистралях транспортирования природных и энергетических ресурсов помимо метрологического контроля должен осуществляться контроль налоговый (балансный) с использованием портативных калибраторов, средств связи, компьютеров, методов статистической обработки и других инструментов выявления сверхнормативных потерь.

Контроль узлов учета, своеобразно толкуемый и фактически осуществляемый энергетиками, незаконен, приносит огромные ежегодные убытки потребителям ресурсов и казне в виде недобора продуктов, налогов, таможенных сборов и наличия потерь (до 100 млрд $ ежегодно), мешает техническому прогрессу. Незаконные действия целесообразно из Правил учета и повседневной практики исключить и привести в соответствие со стандартами и основами метрологии измерительных информационных систем.

Необходимо импортировать к узлам учета известные, в первую очередь налоговые и таможенные, требования по защите грузов и коммерческой информации от несанкционированного доступа. Специфичные методы и средства защиты должны пройти сертификационные испытания.

Литература

1.Андреев И. П. Типичные ошибки организации коммерческого теплоучета. Энергетическая эффективность, ЦЭНЭФ, 1995, № 9.

2.Андреев И. П. Инструментальное обследование и выявление дефектов городских систем тепловодоучета. Энергетическая эффективность, ЦЭНЭФ,1998, №21, с. 20-22.

3.Андреев И.П. О метрологическом обеспечении уз-

лов учета энергоресурсов. Доклад на НТК Госстандарта РФ, протокол № 10 от27.06.00 г.

4.Андреев И. П. Портативные калибраторы для отбраковки, наладки, оперативного и метрологического контроля, сертификации систем товарного трубопроводного учета энергетических и природных ресурсов и оказания услуг по устранению дефектов учета. Проект, победивший по итогам Российского конкурса инновационных проектов «Наука-технология-производство»

В настоящее время практически во всех российских регионах начисления за коммунальные услуги происходят по одинаковому сценарию: жилец передаёт в управляющую компанию показания со своих приборов учёта, а УК снимает показания с общедомовых счётчиков и вычисляет разницу в показаниях между ними и индивидуальными приборами учёта.

Если данная разница не больше нормативов для мест общего пользования (лестничных площадок, коридоров, подвальных помещений и пр.), она пропорционально делится между всеми жильцами. В противном случае, разницу доплачивает управляющая компания из своего дохода. Если жилец своевременно не подал в УК показания со своих приборов учёта, либо у его приборов закончился межповерочный интервал, то первые два месяца управляющая компания начисляет оплату за потреблённые ресурсы, учитывая средний расход за предыдущий период. В дальнейшем, УК начисляет оплату, исходя из нормативов для конкретного региона.

Как правило, нормативы значительно превышают реальную потребность в ресурсах. Например, в средней полосе России в современных энергоэффективных домах реальное потребление тепла в 2-2,5 раза меньше, чем по нормативу . Соответственно, своевременная передача показаний, прежде всего, в интересах самого жильца.

Процесс снятия показаний с прибора учета тепла описан в . В этой статье мы немного подробнее расскажем о том, как снять показания счетчика отопления SANEXT.

Принцип работы теплосчетчика

Сначала немного о принципе работы теплосчетчика. Теплосчётчик SANEXT предназначен для работы в горизонтальных системах отопления. В прямой или обратный трубопровод устанавливается расходомер со встроенным электронным модулем - теплосчетчиком, а в подающий и обратный трубопроводы встраиваются датчики температуры. Комплекс приборов называется узлом учета тепловой энергии.

Теплоносителем является вода или смесь на основе гликоля, которая содержит в себе определенное количество теплоты. Учитывая расход теплоносителя в трубопроводе расходомером и разность температур с помощью датчиков, квартирный теплосчетчик сам вычисляет потребление тепла, учитывая при этом плотность и массу теплоносителя, приходящуюся на единицу объёма в зависимости от его температуры. Расход тепловой энергии измеряется в гигакалориях.

На дисплее теплосчетчика отображаются значения контролируемых параметров, их размерность, а также информация о настройках и состоянии счётчика. Кнопкой управления выбирается отображаемый параметр. Дисплей автоматически возвращается в режим сна через 10 минут после последней активации.

Как снимать показания теплосчетчика

Короткое нажатие кнопки активирует работу дисплея в режиме меню R 1 . Нажимая клавишу, вы можете просматривать элементы меню R1 по одному в следующем порядке:

  1. Накопленный расход тепла;
  2. Температура воды в подающем трубопроводе;
  3. Температура воды в обратном трубопроводе;
  4. Разница температур в трубопроводах;
  5. Мгновенный расход;
  6. Мгновенная мощность;
  7. Накопленный расход тепла;
  8. Время;
  9. Накопленное количество часов;
  10. Номер счетчика;
  11. Тип счетчика;
  12. Номер программного обеспечения;
  13. Адрес подключения диспетчеризации;

Таким образом, пошаговая инструкция как снять показания счетчика отопления SANEXT состоит из трех простых шагов:

  1. Активировать работу теплосчетчика коротким нажатием кнопки;
  2. Первый отобразившийся параметр – накопленный расход тепловой энергии, который измеряется в Гкал;
  3. Списать показания с дисплея (ультразвуковой теплосчетчик SANEXT отображает 3 знака после запятой);

Длительное нажатие кнопки в течение 3 секунд открывает доступ к другим меню. Меню R 2 показывает архивные значения. Глубина архива составляет 18 месяцев. Для входа в значения предыдущего месяца требуется короткое нажатие кнопки. После этого на дисплее автоматически меняются значения в следующем порядке:

  1. Месяц;
  2. Ежемесячный объем;
  3. Ежемесячный расход тепла;

Каждое последующее короткое нажатие кнопки выдаёт показания за предыдущий месяц отображаемого на дисплее.

Меню R4 – режим калибровки. Содержание этого меню аналогично меню R1 , но используется только для настройки прибора в соответствии с эталонными образцами для исключения погрешности показаний.

Для того чтобы вернутся обратно в главное меню R1 , удерживайте кнопку, пока на дисплее в верхнем левом углу не загорится значение R1.

Для лучшего восприятия информации дисплей теплосчетчика помимо цифр содержит графические символы, как например, при отображении температуры теплоносителя в подающем трубопроводе.

Диспетчеризация теплосчетчика

К сожалению, описанный способ снятия показаний теплосчетчиков имеет ряд недостатков. Во-первых, он требует времени и регулярного присутствия жильца для снятия показаний. То есть, в случае командировок или длительного отпуска, жильцам, не предоставившим вовремя показания теплосчетчиков, оплата за отопление будет начисляться по нормативам. Во-вторых, неисправность тепловычислителя можно обнаружить только при непосредственном осмотре узла учета. В случае механических повреждений или внештатных ситуаций в системе отопления жильцам придется оплатить не за реальное потребление тепла, а за показания некорректно работающего прибора. Гораздо удобнее снимать показания теплосчетчика посредством систем телеметрии (диспетчеризации) .

Ассортимент теплосчетчиков SANEXT поддерживает все возможные интерфейсы для подключения к любой системе телеметрии, как проводной, так и беспроводной. Это автоматизирует процесс передачи показаний и позволяет постоянно держать на контроле всю систему отопления многоквартирного дома. Можно отправлять данные в информационную систему ГИС ЖКХ или напрямую теплоснабжающей организации, минуя управляющую компанию. Эти решения уже реализованы на многих жилых объектах.

Теперь вы знаете, как снимать показания счетчика отопления SANEXT в соответствии с правилами эксплуатации данного прибора.

Если у вас остались вопросы, то пишите, пожалуйста, в комментариях.

Если на вашем объекте - жилом многоквартирном доме, либо общественном здании юридического лица уже стоит теплосчетчик, как можно добиться успеха в экономии потребления тепловой энергии? На этот вопрос мы Вам можем подсказать следующее - необходимо поставить автоматическую систему погодного регулирования. Наша компания имеет опыт установки данных систем в Приморском крае. Но необходимо отметить, что данная система является более дорогим удовольствием, чем установка теплосчетчика. В статье приведенной ниже описывается методика работы данной системы, выбор остается за Вами.

РЕГУЛИРОВАНИЕ ТЕПЛОПОТРЕБЛЕНИЯ ЗДАНИЙ - РЕАЛЬНАЯ ЭКОНОМИЯ ТЕПЛА

С. Н. Ещенко, к.т.н., технический директор ЗАО «ПромСервис», г. Димитровград

Известно, что при организации приборного коммерческого учета потребленного тепла нередко уменьшаются платежи за теплоэнергию только лишь из-за того, что указанное в Договоре с теплоснабжающей организацией количество тепла не совпадает с реально потребленным. Однако, снижение платежей - не экономия тепла, а экономия денег. Реальная экономия энергии наступает тогда, когда каким-либо образом происходит ограничение ее потребления.

1. От чего зависит потребление энергии?

Потребление энергии, прежде всего, обусловлено потерями зданием тепла и направлено на их компенсацию, чтобы поддержать желаемый уровень комфорта.

Теплопотери зависят:

  • от климатических условий окружающей среды;
  • от конструкции здания и от материалов, из которых они изготовлены;
  • от условий комфортной среды.

Часть потерь компенсируется внутренними источниками энергии (в жилых зданиях это работа кухни, бытовых приборов, освещения). Остальная часть потерь энергии покрывается системой отопления. Какие потенциальные действия можно предпринять по уменьшению потребления энергии?

  1. ограничение потерь тепла путем снижения теплопроводности ограждающих конструкций здания (герметизация окон, утепление стен, крыш);
  2. поддержание подходящей постоянной, комфортной температуры в помещении только тогда, когда там находятся люди;
  3. снижение температуры в ночное время или в период, когда в помещении нет людей;
  4. улучшение использования «свободной энергии» или внутренних источников тепла.

2. Что такое благоприятная комнатная температура?

По оценкам специалистов, ощущение «удобной температуры» связано с возможностью тела избавиться от энергии, производимой им.

При нормальной влажности ощущение «удобной теплоты» соответствует температуре около +20°С. Это среднее между температурой воздуха и температурой внутренней поверхности окружающих стен. В плохо изолированном здании, стены которого на внутренней поверхности имеют температуру +16°С, воздух должен быть нагрет до температуры +24°С, чтобы получить благоприятную температуру в комнате.

Ткомф = (16 + 24) / 2 = 20°C

3. Системы отопления подразделяются на:

закрытые, когда теплоноситель проходит в здании только через приборы отопления и используется только на нужды нагрева; открытые, когда теплоноситель используется для отопления и для нужд горячего водоснабжения. Как правило, в закрытых системах отбор теплоносителя на какие-либо нужды запрещен.

4. Система радиаторов

Системы радиаторов бывают однотрубные, двухтрубные и трехтрубные. Однотрубные - используются, в основном, в бывших республиках СССР и в Восточной Европе. Разработаны для упрощения системы труб. Существует великое множество однотрубных систем (с верхней и нижней разводкой), с перемычками или без них. Двухтрубные - уже появились в России, а ранее имели распространение в странах Западной Европы. Система имеет одну подающую и одну отводящую трубу, а каждый радиатор снабжается теплоносителем с одинаковой температурой. Двухтрубные системы легко регулировать.

5. Качественное регулирование

Существующие в России системы теплоснабжения проектируются на постоянный расход (так называемое качественное регулирование). Отопление базируется на системе с зависимым присоединением к магистралям с постоянным расходом и гидроэлеватором, который уменьшает статическое давление и температуру в трубопроводе к радиаторам путем смешения обратной воды (в 1,8 - 2,2 раза) с первичным потоком в подающем трубопроводе. Недостатки:

  • невозможность учета реальной потребности в тепле конкретного здания в условиях колебания давления (или перепада давления между подачей и обраткой);
  • управление по температуре идет из одного источника (тепловая станция), что приводит к перекосам при распределении тепла во всей системе;
  • большая инерционность систем при центральном регулировании температуры в подающем трубопроводе;
  • в условиях нестабильности давления в поквартальной сети гидроэлеватор не обеспечивает надежную циркуляцию теплоносителя в системе отопления.

6. Модернизация систем отопления

Модернизация систем отопления включает в себя следующие мероприятия:

  1. Автоматическое регулирование температуры теплоносителя на вводе в здание, в зависимости от температуры наружного воздуха с обеспечением насосной циркуляции теплоносителя в системе отопления.
  2. Учет количества потребленного тепла.
  3. Индивидуальное автоматическое регулирование теплоотдачи отопительных приборов путем установки на них термостатических вентилей.

Рассмотрим подробно первый пункт мероприятий.

Автоматическое регулирование температуры теплоносителя реализуется в автоматизированном узле управления. Существует достаточно много разновидностей схем построения узла. Это обусловлено конкретными конструкциями здания, системы отопления, различными условиями эксплуатации.

В отличие от элеваторных узлов, устанавливаемых на каждой секции здания, автоматизированный узел целесообразно устанавливать один на здание. С целью минимизации капитальных затрат и удобства размещения узла в здании, максимальная рекомендуемая нагрузка на автоматизированный узел не должна превышать 1,2 - 1,5 Гкал/час . При большей нагрузке рекомендуется устанавливать сдвоенные, симметричные или несимметричные по нагрузке узлы.

Принципиально, автоматизированный узел состоит из трех частей: сетевой, циркуляционной и электронной.

  • Сетевая часть узла включает в себя клапан регулятора расхода теплоносителя, клапан регулятора перепада давления с пружинным регулирующим элементом (устанавливается по необходимости) и фильтры.
  • Циркуляционная часть состоит из циркуляционного насоса и обратного клапана (если клапан необходим).
  • Электронная часть узла включает регулятор температур (погодный компенсатор), обеспечивающий поддержание температурного графика в системе отопления здания, датчик температуры наружного воздуха, датчики температур теплоносителя в подающем и обратном трубопроводах и редукторный электропривод клапана регулирования расхода теплоносителя.

Контроллеры отопления были разработаны в конце 40-х годов XX века и, с тех пор, принципиально отличается лишь их исполнение (от гидравлических, с механическими часами, до полностью электронных микропроцессорных устройств).

Основная идея, заложенная в автоматизированный узел - поддержание отопительного графика температуры теплоносителя, на который рассчитана система отопления здания, независимо от температуры наружного воздуха. Поддержание температурного графика наряду с устойчивой циркуляцией теплоносителя в системе отопления осуществляется путем подмеса необходимого количества холодного теплоносителя из обратного трубопровода в подающий с помощью клапана с одновременным контролем температуры теплоносителя в подающем и обратном трубопроводах внутреннего контура системы отопления.

Совместная деятельность сотрудников ЗАО «ПромCервис» и ПКО «Прамер» (г. Самара) в области разработки контроллеров отопления привела к созданию прототипа специализированного контроллера , на базе которого в 2002 году был создан узел регулирования теплоснабжения административного здания ЗАО «ПромСервис» для отработки алгоритмической, программной и аппаратной частей управляющего системой контроллера.

Контроллер представляет собой микропроцессорный прибор, способный автоматически управлять тепловыми узлами, содержащими до 4 контуров отопления и горячего водоснабжения.

Контроллер обеспечивает:

  • счет времени работы прибора с момента включения (с учетом сбоя питания не более двух суток);
  • преобразование сигналов подключенных преобразователей температуры (термометров сопротивления или термопар) в значения температуры воздуха и теплоносителя;
  • ввод дискретных сигналов;
  • генерацию управляющих сигналов для управления частотными преобразователями;
  • генерацию дискретных сигналов для управления реле (0 - 36 В; 1 А);
  • генерацию дискретных сигналов для управления силовой автоматикой (220 В; 4 А);
  • отображение на встроенном индикаторе значений параметров системы, а также значений текущих и архивных значений измеренных параметров;
  • выбор и настройку системных параметров управления;
  • передачу и настройку системных параметров работы по удаленным линиям связи.

Измеряя параметры системы, контроллер обеспечивает управление тепловым режимом здания, воздействуя на электропривод регулирующего клапана (клапанов) и, если это предусмотрено системой, на циркуляционный насос.

Регулирование реализуется по заданному температурному графику отопления с учетом реальных измеренных значений температур наружного воздуха и воздуха в контрольном помещении здания. При этом система автоматически производит коррекцию выбранного графика с учетом отклонения температуры воздуха в контрольном помещении от заданного значения. Контроллер обеспечивает снижение на заданную глубину тепловой нагрузки здания в заданный промежуток времени (режим выходного дня и ночной режим). Возможность ввода аддитивных поправок к измеряемым значениям температур позволяет адаптировать режимы работы системы регулирования к каждому объекту с учетом его индивидуальных характеристик. Встроенный двустрочный индикатор обеспечивает просмотр измеренных и заданных параметров посредством простого и понятного пользовательского меню. Архивные значения параметров можно просматривать как на индикаторе, так и передавать их на компьютер по стандартному интерфейсу. Предусмотрены функции самодиагностики системы и калибровки каналов измерения.

Узел учета и регулирования теплоснабжения административного здания ЗАО «ПромСервис» спроектирован и смонтирован летом 2002 года на закрытой системе отопления с нагрузкой до 0,1 Гкал/час с однотрубной системой радиаторов. Несмотря на относительно небольшие габариты и этажность здания, система отопления содержит некоторые особенности. На выходе из теплового узла система имеет несколько петель горизонтальной разводки на этажах. При этом существует разделение системы отопления на контуры по фасадам здания. Коммерческий учет потребленного тепла обеспечивается теплосчетчиком СПТ-941К, в составе которого: термометры сопротивления типа ТСП-100П; преобразователи расхода ВЭПС-ПБ-2; тепловычислитель СПТ-941. Для визуального контроля температуры и давления теплоносителя используются комбинированные стрелочные приборы Р/Т.

Система регулирования состоит из следующих элементов:

  • контроллера К;
  • поворотного клапана с электроприводом ПКЭ;
  • циркуляционного насоса Н;
  • датчиков температуры теплоносителя в подающем Т3 и обратном Т4 трубопроводах;
  • датчика температуры наружного воздуха Тн;
  • датчика температуры воздуха в контрольном помещении Тк;
  • фильтра Ф.

Датчики температуры необходимы для определения реальных текущих значений температур для принятия решения контроллером об управлении клапаном ПКЭ на их основе. Насос обеспечивает устойчивую циркуляцию теплоносителя в системе отопления здания при любом положении регулирующего клапана.

Ориентируясь на теплотехнические параметры системы отопления (температурный график, давление в системе, условия работы) в качестве регулирующего элемента был выбран поворотный трехходовой клапан HFE с электроприводом АМВ162 производства фирмы «Данфосс» . Клапан обеспечивает смешение двух потоков теплоносителя и работает при условиях: давление - до 6 бар, температура - до 110°С, что вполне соответствует условиям использования. Применение трехходового регулирующего клапана позволило отказаться от установки обратного клапана, традиционно устанавливаемого на перемычку в системах регулирования. В качестве циркуляционного насоса используется бессальниковый насос UPS-100 фирмы «Грундфос» . Датчики температуры - стандартные термометры сопротивления ТСП. Для защиты клапана и насоса от воздействия механических примесей используется магнитно-механический фильтр ФММ. Выбор импортного оборудования обусловлен тем, что перечисленные элементы системы (клапан и насос) зарекомендовали себя как надежное и неприхотливое в эксплуатации оборудование в достаточно тяжелых условиях. Несомненным преимуществом разработанного контроллера является то, что он способен работать и электрически стыкуется как с достаточно дорогим импортным оборудованием, так и позволяет использовать широко распространенные отечественные приборы и элементы (например, недорогие, по сравнению с импортными аналогами, термометры сопротивления).

7. Некоторые результаты эксплуатации

Во-первых. За период эксплуатации узла регулирования с октября 2002 г. по март 2003 г. не зафиксировано ни одного отказа какого-либо элемента системы. Во-вторых. Температура в рабочих помещениях административного здания поддерживалась на комфортном уровне и составила 21 ± 1 °С при колебаниях температуры наружного воздуха от +7°С до -35°С. Уровень температуры в помещениях соответствовал заданной, даже при условии подачи из теплосети теплоносителя с заниженной относительно температурного графика температурой (до 15°С). Температура теплоносителя в подающем трубопроводе менялась за это время в пределах от +57°С до +80°С. В-третьих. Применение циркуляционного насоса и балансировки контуров системы позволило достичь более равномерного теплоснабжения помещений здания. В-четвертых. Система регулирования позволила при соблюдении комфортных условий в помещениях здания снизить общее количество потребленного тепла. На этом следует остановиться подробнее. В табл.1 приведены значения измеренных теплосчетчиком объемов потребленного зданием тепла за различные месяцы со значительно отличающимися средними температурами наружного воздуха. За базу сравнения приняты значения количества потребленного тепла в отопительном сезоне 2001/2002 года, когда здание было оснащено только системой коммерческого учета потребления тепла (без регулирования).

Значение 26% получено сравнением с базовым значением 26,6 Гкал при средней температуре -12,6°С, что идет в запас результатов. Приведенные данные красноречиво показывают, что эффект от применения автоматического регулирования особенно значителен при температурах наружного воздуха выше -5°С. В то же время, и при достаточно низких средних температурах воздуха снижение теплопотребления заметно. Последняя строка табл.1 содержит данные о потреблении тепла с оптимально настроенным регулятором, поэтому при снижении средней температуры с -12,4°С до -15,9°С потребление тепла сократилось с 23,9 Гкал до 19,8 Гкал, что составляет 17%. Немаловажное значение имеет и то, что контроллер отслеживает изменение температуры воздуха на улице в течение дня, подавая в контур отопления здания теплоноситель с пониженной температурой, одновременно следя за температурой в помещении здания. Особенно актуально это в ясную погоду, со значительной амплитудой колебания температур ночью и днем. Поэтому ранней весной, несмотря на достаточно низкие ночные температуры, потребление тепла становится еще меньше.

Если рассмотреть изменение режима теплоснабжения в течение суток и недели при активированных функциях контроллера понижения температуры теплоносителя на подаче в ночные часы и выходные дни, то получается следующее. Контроллер позволяет эксплуатирующему персоналу выбирать длительность ночного режима и его «глубину», то есть величину понижения температуры теплоносителя относительно заданного температурного графика в заданный период времени исходя из особенностей здания, графика работы персонала и т.д. Например, эмпирическим путем нам удалось подобрать следующий ночной режим. Начало в 16 часов, окончание в 02 часа. Понижение температуры теплоносителя на 10°С. Какие же получились результаты? Снижение потребления тепла в ночной режим составляет 40 - 55% (зависит от температуры наружного воздуха). При этом температура теплоносителя в обратном трубопроводе снижается на 10 - 20 °С, а температура воздуха в помещениях - всего на 2-3°С. В первый час после окончания ночного режима начинается режим повышенного теплоснабжения «натоп», при котором потребление тепла относительно стационарного значения достигает 189%. Во второй час - 114%. С третьего часа - режим стационарный, 100%. Эффект экономии значительно зависит от температуры наружного воздуха: чем выше температура, тем сильнее выражен эффект экономии. Например, снижение теплопотребления при введении «ночного» режима при температуре наружного воздуха около -20°С составляет 12,5%. При повышении среднесуточной температуры эффект может достигать и 25%. Аналогичная, но еще более выгодная ситуация возникает при реализации режимов «выходного дня», когда задается понижение температуры теплоносителя на подаче в выходные дни. Нет необходимости поддерживать комфортную температуру во всем здании, если в нем никого нет.

Выводы

  1. Полученный опыт эксплуатации системы регулирования показал, что экономия потребляемого тепла при регулировании теплоснабжения, даже при несоблюдении температурного графика теплоснабжающей организацией, реальна и может достигать при определенных погодных условиях до 45% в месяц.
  2. Использование разработанного прототипа контроллера позволило упростить систему регулирования и снизить ее стоимость.
  3. В системах отопления с нагрузкой до 0,5 Гкал/час возможно использование достаточно простой и надежной семиэлементной системы регулирования, способной обеспечить реальную экономию средств, при сохранении комфортных условий в здании.
  4. Простота работы с контроллером и возможность задания с клавиатуры многих параметров позволяет оптимально настроить систему регулирования, исходя из реальных теплофизических характеристик здания и желаемых условий в помещениях.
  5. Эксплуатация системы регулирования в течение 4,5 месяцев показала надежную, устойчивую работу всех элементов системы.

ЛИТЕРАТУРА

  1. Контроллер РАНК-Э. Паспорт.
  2. Каталог автоматических регуляторов для систем теплоснабжения зданий. ЗАО «Данфосс». М., 2001 г., с.85.
  3. Каталог «Бессальниковые циркуляционные насосы». «Грундфосс», 2001 г.