Что такое TTL и как с его помощью обмануть оператора. ЧТо такое TTL-замер вспышки


Вспышка – это очень удобный инструмент, который вовсе не обременительно носить с собой. Не хватает света – используй вспышку; свет некрасиво ложится на лицах людей в кадре – включай вспышку; хочешь подсветить тени при съемке ярким днем или на закате – вспышка тебе в помощь! Если вы научитесь понимать вспышку и правильно использовать ее, вам откроется новый мир неизведанных возможностей. Но начинать нужно, как всегда, с основ. Поэтому давайте разберем режимы работы вспышки.

В этой статье будут рассмотрены режимы, которые можно выставить на самой вспышке при нажатии на кнопку Mode (Режим) . Поэтому не путайте эти режимы работы вспышки с режимами синхронизации вспышки и фотоаппарата. Также оговорюсь, что в основном речь будет идти о работе с внешней вспышкой. Но на некоторых фотоаппаратах даже встроенная вспышка может иметь расширенные функции управления и несколько режимов работы. Подробнее о разнице между встроенной и внешней вспышкой .

Основных режимов работы вспышки не так много – всего три:

Автоматический (ETTL, TTL, i-TTL, ADI и т.п.)

Мануальный / Ручной – Manual

Мульти – Multi

Обычно топовые вспышки могут работать во всех этих режимах, но также существуют вспышки, у которых, например, нет режима Multi и/или поддержки TTL. Но прежде чем расстраиваться из-за отсутствия какого-то режима или заказывать самую дорогую вспышку, давайте разберемся – а так ли нужны эти дополнительные режимы съемки?

Режим вспышки Manual

Этот режим аналогичен Ручному режиму съемки в вашем фотоаппарате – все настройки подбираются и выставляются вручную. К основным настройкам вспышки в ручном режиме относятся:

Мощность импульса – влияет на яркость освещения и расстояние, на котором объекты окажутся освещены светом от вспышки. Мощность обычно регулируется по шкале от 1/1 (максимально возможная мощность вашей вспышки) до 1/16, 1/32, 1/64 или 1/128 от максимальной мощности. Шкала градаций мощности различается в зависимости от модели вспышки. Чем больше значений (например, от 1/1 до 1/128), тем больше свободы управления и тонкостей при подстройке яркости импульса. Но и со вспышками, минимальная мощность импульса которых 1/16, вполне можно работать в большинстве ситуаций.

Большинство современных вспышек оснащены дисплеем, на котором высвечивается выставленное значение мощности в виде числового обозначения. Но встречаются вспышки без дисплея, где индикатором выставленной мощности служит своего рода шкала со светящимися лампочками. В этом случае чем больше лампочек зажжено, тем мощнее импульс выставлен. Чтобы узнать наверняка, каким образом устанавливается мощность именно на вашей вспышке, откройте инструкцию к ней. Если вы купили б/у вспышку без инструкции, наберите название и модель вспышки в поисковике с добавлением словосочетания «инструкция» или «инструкция на русском». Почти все инструкции есть в электронном виде в интернете для бесплатного просмотра и/или скачивания.

Zoom вспышки (не путать с зумом на объективе, это разные настройки, хотя и взаимосвязаны) – регулирует угол распространения и дальность «добивания» импульса от вспышки. Обычно рекомендуется выставлять значения зума внешней вспышки в соответствии с выбранным фокусным расстоянием объектива. Так, чем больше фокусное расстояние объектива, на который ведется съемка, тем меньше угол обзора, но больше расстояние от точки съемки до объекта съемки. Соответственно, для нормального освещения кадра при съемке с длиннофокусным объективом, нужен световой импульс, который добьет на большее расстояния. При этом сам световой пучок может быть более узким – не за чем освещать объекты по краям кадра, которые не участвуют в сюжете съемки.

Наоборот, при съемке с важнее осветить большую площадь сцены, т.к. у широкоугольных объективов бОльший угол обзора. При этом объекты съемки находятся намного ближе к точке съемке, поэтому световой импульс должен быть рассчитан на короткое расстояние.

Ручной режим управления вспышкой есть практически у всех внешних вспышек и даже встречается у некоторых встроенных вспышек. Существуют полностью мануальные вспышки (они обычно стоят гораздо дешевле), которые работают только в режиме ручных настроек.

Ручной режим работы со вспышкой, так же как и ручной режим на фотоаппарате, требует не только понимания настроек, но и некоторого опыта. Если настройку зума вспышки в ручном режиме можно выставить, опираясь на фокусное расстояние объектива, то параметр мощности импульса выставляется в основном экспериментальным путем.

Значение мощности импульса вспышки зависит от следующих параметров:

условия освещения (вечер, ночь, сумерки, помещение с недостаточным светом, съемка на закате и проч.)

расстояние до объекта съемки (чем ближе находится объект съемки, тем меньше нужна мощность для его нормального освещения вспышкой) – вспоминаем закон распределения света в пространстве

выставленные настройки экспозиции (выдержка, диафрагма, ISO) – можно уже при помощи регулировки параметров экспозиции пропустить достаточное количество окружающего света, а вспышкой лишь немного подсветить передний план (мощность 1/16 – 1/64). Обычно такие снимки выглядят более естественно. Но если вам нужно получить ярко освещенный главный объект на переднем плане на черном фоне – выставляем максимальный импульс (1/1 – 1/4) и подбираем настройки экспозиции по этому импульсу

использование направленного (прямо на объект, без насадок), отраженного или рассеянного света – при использовании вспышки на отражение или применение рассеивающих насадок (рассеивающие колпачки, мини-софтбоксы) снижает интенсивность светового потока. Поэтому чаще всего для отраженного или рассеянного света от вспышки можно выбирать более мощный импульс, чем при использовании направленного света от «голой» вспышки

Режим вспышки TTL

Режим TTL, который может буквенно обозначаться по-разному в зависимости от производителя. Смысл один и тот же - это режим автоматического подбора настроек вспышки. В современных вспышках Canon этот режим обозначается ETTL, в Nikon – i-TTL.

Аббревиатура TTL происходит от «Through The Lens» , что дословно переводится «через объектив». Это означает, что автоматический экспозамер для подбора настройки мощности вспышки происходит путем оценки освещенности в кадре через линзы объектива. Для этого используется предварительный оценочный импульс, который позволяет произвести замер экспозиции. Преимущество такого метода замера экспозиции позволяет учесть характеристики используемого объектива – во время замера делаются поправки на , накрученные фильтры и насадки и угол обзора.

Технология TTL претерпела несколько модификаций за время развития фототехники. Так, в старых пленочных зеркальных фотоаппаратах для автоматического управления вспышкой использовалась технология замера по инфракрасному импульсу (A-TTL в камерах Canon), затем модифицировалась в замер по предварительному импульсу (ETTL в камерах Canon). Последняя модификация (ETTL-II в камерах Canon) также учитывает расстояние от точки съемки до объекта в кадре.

При выборе вспышки обращайте внимание, поддерживает ли она технологию TTL (вашего производителя, соответственно). Так, существуют мануальные вспышки, которые совсем не поддерживают автоматический режим работы. Также бывают вспышки, которые поддерживают, например, более старую технологию, чем ваша камера. Например, у вас новая камера с режимом ETTL-II, а вспышка поддерживает только ETTL. Это не означает, что они не совместимы; техника, которая работает на более продвинутых технологиях автоматического замера, обычно поддерживает и менее продвинутые. Таким образом, вы будете работать с технологией ETTL, а не ETTL-II.

Аналогично выглядит обратная ситуация. Например, вы надеваете последнюю модель вспышки с поддержкой ETTL-II на старенькую камеру. Если вспышка «родная» (т.е. к камере Canon – вспышка Canon и т.д.), то система «фотоаппарат» - «вспышка» автоматически сориентируется и определит технологию доступную взаимодействия.

Съемка со вспышкой в автоматическом режиме , по сути, напоминает съемку в режиме «Авто» на фотоаппарате. Ваша камера замеряет экспозицию и подбирает подходящее (на ее взгляд) значение мощности импульса вспышки и параметр «зум» в зависимости от типа объектива (выставленное фокусное расстояние определяется автоматически даже при использовании зум-объектива). Причем, совсем не обязательно использовать вспышку в режиме TTL , только когда на фотоаппарате выставлен автоматический или полуавтоматический режим. Эти два режима никак не привязаны друг к другу. Вы можете спокойно снимать в ручном режиме M на фотоаппарате и использовать режим автоматического управления вспышкой.

В большинстве случаев вспышка сработает нормально для заданного сюжета. Но следует понимать, что автоматика фототехники не может учитывать все тонкости и особенности съемки. Автоматический расчет строится исходя из средней освещенности средне-серых объектов в кадре. Причем расчеты в автоматического замера экспозиции для настройки вспышки нормально срабатывают только при направлении вспышки «в лоб» и использовании вспышки либо на «горячем башмаке», либо на синхронизаторе с поддержкой режима TTL . Задача для автоматики усложняется, когда вспышка работает на отражение – автоматически сложно рассчитать, как упадет отраженный свет на объект. Камера не может оценить, под каким углом и на какое расстояние отразится свет вспышки. В результате настройки выставляются уже примерно.

Также существует множество ситуаций, когда имеет смысл перейти в ручной режим управления вспышкой. Чаще всего я работаю именно в ручном режиме вспышки – мне так проще отконтролировать процесс. Режим TTL подходит, прежде всего, для начинающих фотографов, которым трудно разобраться с настройками, а также для ситуаций, когда вам либо некогда, либо просто не хочется задумываться о настройках вспышки, а сюжет меняется очень быстро (репортажная съемка, путешествие и т.п.).

Даже в режиме TTL есть возможность вносить корректировку в работу вспышки. Для этого существует настройки компенсации вспышки, которая аналогична настройке экспокоррекции в фотоаппарате. Компенсация вспышки позволяет установить импульс ярче или слабее, чем значение, рассчитанное автоматически. При этом вручную задается значение по шкале (от -3 до +3 ступеней экспозиции), на которое вы компенсируете мощность вспышки. Так, если при съемке в автоматическом режиме вспышки при съемке тестового кадра вам кажется, что вспышка сработала недостаточно мощно, выставляем экспокоррекцию в плюс, и наоборот.

Для встроенной вспышки существует аналогичная настройка, которую можно выставить в Меню фотоаппарата. Меню - > Компенсация вспышки или Меню -> Управление вспышкой - > Встроенная вспышка - > Компенсация вспышки . Путь к настройкам может отличаться в зависимости от производителя и модели камеры. Если не можете найти эти настройки «методом тыка», открывайте инструкцию.

Также в настройках фотоаппарата Меню -> Управление вспышкой существует настройка экспозамера при работе со вспышкой . Если у вас сюжет со сложным освещением (съемка против солнца, например) или вам нужно при помощи вспышки правильно подсветить и проэкспонировать только одну часть кадра, выбирайте точечный или частичный режим экспозамера. Иначе камера замеряет освещенность по всей площади кадра, и все объекты становятся равнозначными. В результате подбор настроек может дать недосвет на одних объектах или пересвет на других.

Чаще всего вспышка в режиме TTL дает достаточно мощный импульс, особенно при съемке ночью. В итоге на фотографии – белые лица, черный фон, а вспышка срабатывает на максимальной мощности, что приводит к быстрому перегреву и расходу батареек. Выход – учиться снимать в мануальном режиме или умело использовать компенсацию вспышки.

Режим Multi

Если в режимах Manual и TTL вспышка делает только один импульс за время выдержки, то в режиме Multi вспышка срабатывает несколько раз за время, пока открыт затвор фотоаппарата. В результате можно получать интересные эффекты – несколько изображений одного и того же объекта в одном кадре, без использования какой-либо обработки.

Режим Мульти – это также режим, который полностью управляется вручную. Но помимо параметров мощности импульса и зума вспышки (как в режиме M), вам необходимо задать еще 2 параметра:

Количество импульсов – сколько раз сработает вспышка

Частота импульсов (в Гц) – чем больше частота, тем меньше будет промежуток времени между двумя соседними импульсами вспышки

Не все вспышки поддерживают режим Multi . Скажу больше – в большинстве вспышек этого режима обычно нет. Но этот режим используется в основном для специфической или экспериментальной съемки. В ежедневной работе этот режим бесполезен. Если он есть в вашей вспышке – отлично, можно побаловаться! Если его нет – не отчаивайтесь, не так уж велика потеря. Подробнее о съемке со вспышкой в режиме Мульти я рассказывала в своем онлайн-курсе «Цифровая фотография – это легко!» Начальный уровень.

Подробнее про работу со вспышкой в режиме Manual в помещении смотрите в записи МК «Работа с внешней вспышкой в помещении».


Почти все накамерные фотовспышки являются системами TTL , то есть во всех случаях измеряется и оценивается количество света, прошедшее через объектив.

Система TTL

Стандартная система TTL действует следующим образом:

При срабатывании затвора (открытии полной площади кадрового окна) зажигается вспышка. Flash-TTL сенсор 2 на рис.1 в аппарате улавливает свет, прошедший через объектив и отраженный от пленки (путь света указан зелёной линией) и передаёт в процессор камеры который обрабатывает информацию о его количестве, в момент достижения правильной, по мнению аппарата, экспозиции процессор камеры передаёт во вспышку сигнал "достаточно" и IGBT транзистор практически мгновенно прекращает горение разряда в лампе. При этом неиспользованная энергия конденсатора вспышки остается в полной сохранности и время и энергия необходимые для перезарядки емкости существенно сокращаются.

Некоторые недостатки заключаются в том, что из-за абсолютно разных условий съемки и разных отражающих свойств объектов правильная экспозиции в некоторых случаях практически невозможна. Например, когда на пути между камерой и объектом съёмки внезапно возникает обьект с высокой отражающей способностью. Обычно такая система расчитана на то, что отражающие способности сцены близки к отражающей способности стандартной ). Не трудно представить себе ситуацию, которая серьезно отличается от подобной. Скажем светлые объекты (стена, бумага, светлый фон), занимающие бОльшую площадь кадра отражают света значительно больше, чем 18%. Доверяя автоматике на 100% в такой ситуации мы получим недодержку приблительнов 2 ступени. Хотя справедливости ради нужно заметить, что ситуации эти вообщем-то известны и легко исключаемы в бытовой съемке. В примере чуть выше необходимо просто установить поправку экспозиции. Навыки легко достигаются увеличением опыта съёмок.

Рис 1 Оптические пути системы экспонометрии и автофокусировки фотокамер Nikon

1 - датчик автофокуса, 2 - датчик вспышечного TTL, 3 - главный экспонометрический датчик камеры.

Система 3D Multi Sensor Ballanced Fill-In Flash

Наиболее совершенный режим работы вспышек Никон. Эта система принципиально отличается от предыдущих. Кратко механизм работы.

Сразу после поднятия зеркальца, перед тем как начнется открывание затвора, вспышка излучает серию быстрых тестовых предвспышек, которые, отражаясь от закрытых шторок затвора, улавливаются системой TTL Multi Sensor (5-сенсорная система) камеры. Более того, информация о удаленности объекта передается от объектива серии D и обрабатывается камерой вместе с информацией системы TTL. Это автоматически вносит коррективы мощности вспышки. После этого открывается затвор и происходит заранее рассчитанный импульс вспышки.
Эта система практически исключает ошибки кромеуказанных выше (возникновение предметов с высокой отражающей способностью на пути камера-объект съёмки). Но фото на фоне отражающего материала, съемка при недостаточном основном освещении объекта на фоне пейзажа, окна, заката, источника света (контровое освещение) получаются весьма удачно.

Система A-TTL

Система, применяемая фирмой Кэнон, A-TTL, помимо стандартного TTL замера учитывает также расстояние до объекта съемки (подобно Система 3D Multi Sensor Ballanced Fill-In Flash от Nikon).

Сисета E-TTL (Evaluative-Through-The-Lens) auto flash control

В отличие от TTL, A-TTL да и 3D автоматических систем вспышек, которые используют специальный многозонный сенсор для определения экспозиции, система E-TTL использует нормальный замер через систему экспонометрии камеры и автоматически определяет экспозицию вспышки.


А - режим работы вспышки

Не TTL автоматическая работа вспышки предполагает установку значения диафрагмы и чувствительности пленки на самой вспышке. Отраженный во время свечения вспышки свет улавливается сенсором на корпусе вспышки, который определяет достижение правильной экспозиции и выключает вспышку, ориентируясь на установленную чувствительность пленки и диафрагму.

Ручной режим работы фотовспышки

Самая простая система вспышек -ручное управление - не предполагает какого либо автоматизма в работе. Необходимая для правильной экспозиции диафрагма определяется в зависимости от расстояния до объекта и чувствительности используемой пленки, с помощью таблицы на задней панели вспышки, с помощью формулы или с помощью автоматического (которым оснащены практически все современные накамерные вспышки начиная от среднего класса) калькулятора с дисплеем.

E-TTL (англ. Evaluative-Through The Lens) — современная технология EOS flash system, основанная на совершенно других принципах, и используемая как с цифровыми, так и с плёночными фотоаппаратами Canon, относящимися к группе «А»

Основой технологии является измерение отражённого от снимаемой сцены света предварительного импульса основной лампы фотовспышки, мощность которого заранее известна. Дополнительный модуль с инфракрасным излучателем во вспышках серии EX не принимает участия в измерении экспозиции, а используется только для вспомогательной подсветки автофокуса и управления внешними вспышками.

Важным отличием от предыдущей технологии A-TTL является момент начала измерения: если в старых вспышках дальномер срабатывал при поджатии спусковой кнопки, то в новых предварительный импульс излучается непосредственно перед подъёмом зеркала.

Интервал между измерительным и рабочим импульсами вспышки E-TTL настолько мал, что оба воспринимаются глазом, как один общий. При этом вместо дополнительного сенсора камеры, улавливающего отражённый от плёнки свет, используется основной TTL-экспонометр, предназначенный для измерения постоянного освещения. В цифровых фотоаппаратах Canon используется только такая технология, поскольку системы типа TTL OTF неработоспособны из-за низкой отражательной способности фотоматриц.

Главным достоинством новой системы является измерение света вспышки основным TTL-экспонометром, что даёт возможность осуществлять центровзвешенный или матричный замер импульсного освещения с такой же точностью, как и непрерывного. Кроме того, алгоритм оценочного измерения учитывает активную точку автофокуса, отдавая приоритет окружающей её зоне.

Предварительное измерение происходит через объектив и автоматически учитывает большинство факторов, недоступных внешнему сенсору: кратность установленного светофильтра, выдвижение объектива и его поле зрения. Последовательность работы системы содержит несколько этапов, и начинается с измерения экспозиции непрерывного освещения при поджатии спусковой кнопки. После её полного нажатия излучается измерительный импульс вспышки, отражённый свет которого также измеряется TTL-экспонометром. Результат измерения используется для вычисления мощности рабочего импульса, значение которого сохраняется в памяти микропроцессора. Как и в системе A-TTL, значение диафрагмы выбирается на основе сопоставления результатов измерения непрерывного и импульсного освещения.

При достаточном уровне непрерывного освещения включается «режим заполняющей вспышки», снижающий мощность импульса на 1/2 - 2 ступени для сохранения естественного светотеневого рисунка. Сразу после измерительного импульса поднимается зеркало и открывается затвор, а вспышка излучает импульс в соответствии с записанным в памяти процессора значением его мощности, вычисленным перед съёмкой.

E-TTL впервые реализована в 1995 году в малоформатном фотоаппарате Canon EOS 50 и вспышках серии EX, обладающих частичной обратной совместимостью с фотоаппаратурой предыдущего поколения, рассчитанного на вспышки EZ. Первым цифровым фотоаппаратом, поддерживающим систему, стал Canon EOS D30. Плёночные фотоаппараты Canon, принадлежащие к группе «А», как и цифровые, поддерживают систему E-TTL, полностью заменившую A-TTL. Фотовспышки серии EX также обеспечивают синхронизацию на коротких выдержках и излучение моделирующего света, состоящего из серии коротких импульсов. Последняя функция применяется для визуальной оценки световой картины, получаемой от дополнительных вспышек этой же системы, управляемых дистанционно по инфракрасному каналу.

Недостатки E-TTL

Главным недостатком системы E-TTL считается наличие предварительного импульса вспышки, на который могут реагировать снимаемые люди. Несмотря на короткий интервал между вспышками, он вполне достаточен для того, чтобы человек успел моргнуть и оказаться на снимке с закрытыми глазами, особенно при синхронизации «по второй шторке». Та же проблема актуальна при съёмке диких животных. Предотвратить эффект можно использованием экспопамяти вспышки (англ. Flash Exposure Lock, FE Lock, FEL), излучающей измерительный импульс в момент своего включения. В этом случае в момент съёмки производится только рабочая вспышка.

Ещё одна проблема связана с использованием светосинхронизатора ведомых студийных вспышек и флэшметров, срабатывающих от измерительного, а не рабочего импульса. В результате ведомые вспышки запускаются раньше открытия затвора, а флэшметр выдаёт ошибку измерения. Проблема устраняется применением усовершенствованных световых ловушек, срабатывающих с задержкой или от второго по счёту импульса.

E-TTL II

E-TTL II (англ. Evaluative-Through The Lens 2) — на 2016 год новейшая технология Canon взаимодействия камеры и вспышки, впервые появившаяся в фотоаппарате Canon EOS-1D Mark II в 2004 году. В отличие от базовой системы, E-TTL II использует все доступные зоны матричного замера экспозиции, а также учитывает расстояние до объекта съёмки, получаемое от датчика положения кольца фокусировки объектива. Вычисленная на основе ведущего числа и дистанции фокусировки мощность вспышки используется для корректировки значения, полученного измерением предварительного импульса, исключая грубые ошибки при съёмке небольших объектов на удалённом светлом фоне. Кроме того, предотвращаются ошибки при изменении композиции снимка после фокусировки объектива, происходящие из-за приоритета выбранной точки фокусировки при измерении вспышки.

Влияние ярких отражений на точность измерения также практически исключается.

Дистанция не учитывается в трёх случаях: при повороте головки вспышки для съёмки в отражённом свете, в режиме макросъёмки и при работе с дополнительными вспышками. Информацию о дистанции фокусировки передают в камеру большинство объективов Canon EF, но встречаются исключения, например Canon EF 50/1,4 USM и ранняя версия Canon EF 85/1,2 L USM.

Поддержка системы зависит только от модели фотоаппарата: все фотовспышки серии EX пригодны для работы в режиме E-TTL II.

Почему возникает и как избежать эффекта «красных глаз»?

«Красные глаза» появляются в случае отражения света вспышки от кровеносных сосудов расположенных на глазном дне. Эффект возникает из-за расширившихся в темноте зрачков. Принцип работы режима уменьшения эффекта «красных глаз» заключается в дополнительном освещении глаз перед основным импульсом. Зрачок сужается, что предотвращает появление эффекта. Иногда стандартного освещения, которое дает режим уменьшения эффекта «красных глаз» недостаточно, тогда «красные глаза» на фотографии остаются. Чтобы быть гарантированно защищенным от появления этого эффекта рекомендуется, чтобы модель в течение приблизительно 20-30сек. смотрела на горящую лампочку или открытое окно. Используя внешнюю вспышку рекомендуется выносить ее дальше от оптической оси объектива или работать с отраженным светом, направив вспышку в потолок или стену.

Что такое и когда нужна высокоскоростная синхронизация со вспышкой?

Синхронизация на коротких выдержках (короче 1/300сек.) необходима при съемке портретов на ярком солнце. Для разных систем фотоаппаратов она получила различные названия: режим FP (Canon, Nikon), HSS (Minolta). Т.е. высокоскоростная синхронизация позволяет избежать переэкспонирования кадра, одновременно работая с высокочувствительной пленкой, открыв диафрагму и подсвечивая тени вспышкой.

Что такое и чем отличаются TTL, A-TTL, E-TTL и E-TTL II?

TTL (Through-The-Lens) – система измерения света через объектив, в том числе и света вспышки. В момент экспонирования свет, отраженный от объекта съемки, проходит сквозь объектив и, отразившись от пленки, попадает на датчик. Датчик, направленный на пленку, измеряет количество света и посылает информацию в центральный процессор. По достижении оптимальной экспозиции центральный процессор прерывает импульс вспышки и закрывает затвор. Принципиальная схема работы системы TTL со вспышкой приведена ниже.

A-TTL (Advanced Through-The-Lens) – передовая система измерения света через объектив. Используя систему измерения света вспышки A-TTL в фотоаппаратах, работающих в программном режиме, рабочее значение диафрагмы вспышки устанавливается на основании сравнения двух измерений. Во-первых, измеряется окружающий свет и устанавливается значение диафрагмы для него. Затем вспышка делает несколько инфракрасных импульсов для измерения расстояния до объекта съемки. В соответствии с расстоянием до объекта вычисляется еще одно значение диафрагмы. После сравнения двух полученных значений устанавливается рабочее значение диафрагмы.

E-TTL (Evaluative TTL) – улучшенная система измерения света через объектив. Для измерения света в этом режиме фотоаппарат использует многозонный датчик, связанный с фокусировочными точками, тот же что используется и при измерении постоянного освещёния. Перед основным импульсом вспышка делает предварительный, практически невидимый для глаза импульс, по которому вычисляется экспозиция. Также измеряется окружающий свет. После чего сравниваются результаты измерений, и вычисляется оптимальная экспозиция.

E-TTL II - система которая помимо работы по методу E-TTL учитывает расстояние от фотокамеры до объекта съёмки, на который сфокусирован объектив. Информация о дистанции позволяет более точно скорректировать мощность импульса. Система E-TTL II работает только в том случае, если используется объектив способный сообщать камере информацию о дистанции съёмки.

При использовании стандартного TTL замера вспышки камера использует обычный режим замера экспозиции, используя встроенную память камеры. TTL замер вспышки измеряет мощность вспышки света, отраженной от предмета. Эту информацию камера получает через объектив. В таком случае, если вы используете защитный или любой другой фильтр, потеря света, вызванная наличием дополнительного стекла, будет учтена. TTL изменяет экспозицию вспышки благодаря использованию специального датчика, который измеряет мощность вспышки, отраженной от поверхности датчика изображения во время её работы. Данный TTL замер не использует предварительную вспышку для расчета экспозиции.

Автоматический TTL-замер

В автоматическом режиме TTL-замера, камера выполняет те же функции, что и в режиме TTL замера. То есть, камера использует информацию о количестве света, определенного специальными датчиками. Кроме того, в автоматическом режиме замера, вспышка так же использует предварительный импульс света, помогающий в расчете соответствующей диафрагмы в зависимости от расстояния до объекта, которое должен пройти свет, что бы осветить его. Этот импульс света включается при половинном зажатии кнопки спуска затвора. Основная вспышка включится когда кнопка будет нажата полностью. Кроме того, если вы установили камеру в программный режим и используете замер A-TTL , камера сравнивает и оценивает информацию со стандартной системы замера экспозиции и автоматического TTL, а затем выбирает большее значение диафрагма, для обеспечения более точной экспозиции и увеличения резкости и глубины резкости.

Оценочный TTL замер

Оценочный TTL замер использует другую технологию для определения необходимых настроек. При использовании замера E-TTL, камера активирует предварительную вспышку, которая отличается от тех импульсов, которые используются в режиме A-TTL. Вспышка в оценочном режиме замера TL активируется непосредственно перед открытием затвора (не тогда, когда кнопка спуска затвора нажата наполовину, как в A-TTL). Таким образом, значения экспозиции рассчитывается за долю секунды до основной вспышки, а не во время измерения окружающего света. Кроме того, информация от предварительной вспышки будет проанализирована на основе датчика TTL, а не внешнего датчика на вспышке. Это делает режим E-TTL более точным. Человеческий взгляд может даже не уловить импульс света от предварительной вспышки E-TTL, так как он запускается чрезвычайно быстро.

Заключение

Система измерения TTL стала большой находкой для фотографов, этот режим способен невероятно точно и быстро определить необходимую мощность света вспышки. Теперь, в эпоху цифровой фотографии, вы кроме всего прочего, можете сразу же посмотреть на получившийся результат, и в случае необходимости сделать некоторую корректировку настроек и попробовать сфотографировать еще раз. Если снимок переэкспонирован (или недоэкспонирован) вы можете перенастроить вспышку и продолжить работу. Если вы научитесь так же понимать различия между режимами TTL замера, ваша работа станет более продуктивной и творческой. Умение ориентироваться в разных настройках вспышки позволяет создавать более качественные фотографии.