Закон Моргана. Хромосомная теория наследственности


Сущность хромосомной теории наследственности. В 1902–1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга высказали предположение, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 г. американским генетиком Т. Морганом, который в последующие годы (1911 – 1926) обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Сцепленное наследование. Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов, как правило, значительно превышает количество хромосом. Например, у кукурузы изучено более 500, у мухи дрозофилы – более 1000, а у человека – около 2000 генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному набору хромосом, поскольку каждую группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены .

Наследование сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигибрид образует четыре типа гамет (, Ав , а В , ав ) в равных количествах, то такой же дигибрид образует только два типа гамет: АВ и ав тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме этих гамет (АВ и ав) возникают и другие – Ав и аВ – с новыми комбинациями генов. Причиной возникновения новых гамет является обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом (рис.). В это время части двух хромосом могут перекрещиваться и обмениваться своими участками (генами), в результате чего возникают хромосомы с иными комбинациями генов. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных, или рекомбинантных.



Рассмотрим один из первых экспериментов Т. Моргана по изучению сцепленного наследования. При скрещивании дрозофил, различающихся по двум парам альтернативных признаков (серых с нормальными крыльями и черных с зачаточными крыльями), были получены дигетерозиготные по этим генам особи. Все мухи в соответствии с законом единообразия гибридов первого поколения были серыми с нормальными крыльями.

Далее было проведено анализирующее скрещивание – дигетерозиготную самку скрестили с гомозиготным по обоим рецессивным генам самцом (черное тело и зачаточные крылья). Если бы две пары аллельных генов, определяющих указанные альтернативные признаки, располагались в разных хромосомах, то во втором поколении при анализирующем скрещивании можно было бы ожидать четыре разных фенотипа в равном соотношении: серое тело, нормальные крылья; серое тело, зачаточные крылья; черное тело, нормальные крылья; черное тело, зачаточные крылья.

На самом же деле в результате такого скрещивания наблюдается преимущественно два класса: серые мухи с нормальными крыльями и черные мухи с зачаточными крыльями (на их долю приходится 83%); два других класса – серые мухи с зачаточными крыльями и черные мухи с нормальными крыльями были в небольшом количестве (17%).

Полученный результат свидетельствует о тесной связи между генами, определяющими окраску тела и длину крыльев, что может быть только при нахождении обоих этих генов в одной хромосоме.

Причиной появления небольшого количества мух с новыми сочетаниями признаков является кроссинговер, который приводит к новому рекомбинантному сочетанию аллелей генов в гомологичных хромосомах. Эти обмены происходят с вероятностью 17% и в итоге дают два класса рекомбинантов с равной вероятностью – по 8,5% .

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, зависит от расстояния между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены.

Расстояние между генами характеризует силу сцепления и выражается в морганидах (в честь Т. Моргана) или в процентах рекомбинации (кроссинговера). Морганида – это генетическое расстояние, на котором кроссинговер происходит с вероятностью 1%.

Биологическое значение кроссинговера чрезвычайно велико. Генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повысить наследственную изменчивость, которая дает широкие возможности адаптации организмов в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

Генетические карты. Сцепление генов, локализованных в одной хромосоме, не бывает абсолютным. Кроссинговер, происходящий в процессе мейоза между гомологичными хромосомами, приводит к рекомбинации (перераспределению) генов. Т. Морган и его сотрудники К. Бриджес, А. Стертевант и Г. Меллер экспериментально показали, что знание явлений сцепления и кроссинговера позволяет не только установить группу сцепления генов, но и построить генетические карты хромосом, на которых указаны порядок расположения генов в хромосоме и относительные расстояния между ними.

Генетической картой хромосом называют схему взаимного расположения генов, находящихся в одной группе сцепления. Генетические карты составляются для каждой пары гомологичных хромосом.

Возможность такого картирования основана на постоянстве процента кроссинговера между определенными генами. Если известно взаимное расположение генов на в хромосоме (их порядок и расстояние между ними), то его можно изобразить в виде схемы (рис.).

Генетические карты хромосом составлены для многих организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), многих протистов, бактерий и вирусов.

Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес. Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение. В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что теперь широко используется в селекционной практике. Так, создание штаммов микроорганизмов , способных синтезировать необходимые для фармакологии и сельского хозяйства белки, гормоны и другие сложные органические вещества, возможно только на основе методов генной инженерии, которые, в свою очередь, базируются на знании генетических карт соответствующих микроорганизмов.

Генетические карты человека также могут оказаться полезными в развитии здравоохранения и медицины. Знания о локализации гена на определенной хромосоме используются при диагностике ряда тяжелых наследственных заболеваний человека.

Основные положения хромосомной теории наследственности. Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической карт позволяют сформулировать основные положения хромосомной теории наследственности:

1. Гены локализованы в хромосомах.

2. Гены расположены в хромосоме линейно.

3. Гены локализованы в одной хромосоме, наследуются вместе и образуют группу сцепления. Число групп сцепления равно гаплоидному набору хромосом.

4. Сцепление между генами, локализованными в одной хромосоме, неполное, между ними может происходить кроссинговер. Частота кроссинговера служит мерой расстояния между генами, расположенными в одной хромосоме.

1. Что такое группа сцепления? Чему равно количество групп сцепления в клетках разных организмов? 2. Какие факты, полученные при изучении сцепления и кроссинговера между генами, подтверждают хромосомную теорию наследственности? 3. Что такое генетические карты хромосом и каковы перспективы их использования? 4. Каковы основные положения хромосом ной теории наследственности?

Роль хромосом в передаче наследственной информации была доказана благодаря: а) открытию генетического определения пола; б) установлению групп сцепления признаков, соответствующие количеству хромосом; в) построении генетических, а затем и цитологических карт хромосом. Обоснование хромосомной теории представлены в работах Т. Моргана, К. Бриджеса и А. Стертеванта.

В частности, школой Моргана установлены закономерности, которые со временем были подтверждены и углубленные позже, известные как хромосомная теория наследственности.

Основные положения хромосомной теории наследственности:

гены содержатся в хромосомах;

Каждый ген в хромосоме занимает определенное место - локус. Гены в хромосомах расположены линейно;

Между гомологичными хромосомами может происходить обмен аллелями гена;

Расстояние между генами в хромосоме пропорционально процентные кроссинговера между ними;

Во время мейоза, который происходит только при образовании гамет, диплоидное число хромосом уменьшается вдвое;

Между генами гомологичных родительских и материнских групп сцепления могут происходить изменения благодаря кроссинговера;

Сила сцепления между генами обратно пропорциональна расстоянию между ними. Расстояние между генами измеряется в процентах кроссинговера. Один процент кроссинговера соответствует одной морга- Ниде;

Каждый биологический вид характеризуется специфическим набором хромосом - кариотипом.

Одним из первых весомых доказательств роли хромосом в явлениях наследственности стало открытие закономерности, согласно которой пол наследуется как менделирующих признак, то есть по законам Менделя. У всех млекопитающих (в том числе и у человека), большинства животных и дрозофилы женские особи в соматических клетках имеют две Х-хромосомы, а мужские - X- и Y-хромосомы. В этих организмов все яйцеклетки содержат X-хромосомы и в этом отношении они одинаковы (гомогаметным), в отличие от сперматозоидов, которые образуются двух типов: один содержит Х-хромосому, второй - У-хромосому (гетерогаметным). Поэтому при оплодотворении возможны две комбинации:

1) яйцеклетка с X-хромосомой оплодотворяется сперматозоидом с Х-хромосомой, образуется зигота с двумя Х-хромосомами.

С такой зиготы развивается организм женского пола;

2) яйцеклетка с Х-хромосомой оплодотворяется сперматозоидом с Y-хромосомой. В зиготе объединяются X- и Y-хромосомы.

С такой зиготы развивается организм мужского пола. Таким образом сочетание половых хромосом в зиготе, а следовательно, и развитие пола человека, млекопитающих и дрозофилы зависит от того, каким сперматозоидом будет оплодотворена яйцеклетка. Пол, имеющий две одинаковые хромосомы - гомогаметным, так как все гаметы одинаковы, а пол с различными половыми хромосомами - гетерогаметным. У человека, млекопитающих, дрозофилы гомогаметным является женский пол, а мужской - гетерогаметным, у птиц и бабочек, наоборот, гомогаметным - мужская, гетерогаметным - женская.

У человека признаки, наследуемые через У-хромосому, могут быть только у лиц мужского пола, а через Х-хромосому - у обоих полов. Особь женского пола может быть как гомо-, так и гетерозиготной по генам, которые локализованы в X-хромосоме. Рецессивные аллели генов у нее проявляются только в гомозиготном состоянии. Поскольку у лиц мужского пола только одна Х-хромосома, то все локализованные в ней гены, даже рецессивные, проявляются в фенотипе - организм гемизиготний.

Известно, что у человека некоторые патологические состояния наследуются сцеплено с полом. К ним, в частности, относится гемофилия (пониженная скорость свертывания крови), что приводит повышенное кровотечение. Аллель гена, который контролирует нормальную свертываемость крови (Я) и его аллельные пара "ген гемофилии" (А) содержится в X-хромосоме, причем первый доминирует над другим. Запись генотипа женщины гетерозиготной по этому признаку имеет вид - ХНХh. Такая женщина будет нормальный процесс свертывания крови, но будет носителем этого недостатка. У мужчин только одна Х-хромосома. Итак, если у него в Х-хромосоме содержится аллель Н, то он будет иметь нормальный процесс свертывания крови, а если аллель А, то болеть гемофилией; Y-хромосома не несет генов, которые определяют механизм свертывания крови. Аналогичным образом наследуется дальтонизм (аномалия зрения, когда человек не различает цветов, чаще всего не отличает красный от зеленого).

Хромосомная теория наследственности – это учение о локализации наследственных факторов (генов) в хромосомах, которое утверждает, что преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом.

Связь между наследственными факторами – генами и структурными компонентами клетки – хромосомами была замечена в начале ХХ столетия. В это время были установлены правила видового постоянства числа хромосом, их парности и индивидуальности. В период 1908-1918 гг. американскими генетиками во главе с Т.Г. Морганом было сделано ряд научных открытий, доказавших роль хромосом в передаче наследственной информации: 1) генетическое определение пола, 2) наследование, сцепленное с полом, 3) группы сцепления генов и дp.

Наследование пола и хромосомы. Пол – это совокупность морфологических и физиологических признаков, обеспечивающих его половое размножение и передачу наследственной информации за счет образования гамет.

Особи мужского и женского пола отличаются хромосомным набором. Например, у самок многих животных (дрозофила, млекопитающие, в том числе человек) все пары хромосом гомологичны, а у самцов – две хромосомы непарные, причем одна из них такая же, как у самки. Хромосомы, по которым различаются особи мужского и женского пола, назвали половыми хромосомами: парная хромосома обозначается буквой Х, непарная – Y. Хромосомы, одинаковые у самцов и самок, назвали аутосомами (А). Например, у человека 23 пары хромосом, из них – 22 пары аутосом и одна пара – половые хромосомы. Хромосомный набор женщины можно записать так: 44А+ХХ, а мужчины – 44А+ХY. У дрозофилы хромосомный набор самки – 6А+ХХ, самца – 6А+ХY. Особи женского пола образуют один тип гамет (АХ) и называются гомогаметными , а особи мужского пола продуцируют два типа гамет (АХ, АY) и называются гетерогаметными. При оплодотворении я йцеклеток, несущих Х – хромосому, сперматозоидом с Х – хромосомой, образуется зигота (ХХ), из которой развивается особь женского пола. При слиянии яйцеклетки и сперматозоида, несущего Y – хромосому, развивается особь мужского пола. Математически такое наследование пола можно выразить следующим образом:

Р ААХХ х ААХY

Позднее выяснилось, что есть виды, у которых гетерогаметными являются самки, а самцы – гомогаметны (птицы, бабочки, жабы). В таких случаях женские половые хромосомы принято обозначать буквой WZ, а мужские ZZ. Наследование пола схемой можно записать так:

У некотоpых насекомых (кузнечиков) выявлен еще один тип хpомосомного опpеделения пола. У них самки несут диплоидный набоp хpомосом по всем паpам (ААХХ), а самцы – диплоидный набоp аутосом и гаплоидный набоp половых хpомосом (ААХО). Схематично такое наследование пола можно изобpазить так:

Р ААХХ х ААХО

G АХ АХ, АО

F1ААХХ, ААХО

Совершенно иной тип детерминации пола имеется у перепончатокрылых, в частности, у пчел. У них самки развиваются из оплодотворенных яйцеклеток и клетки их тела имеют диплоидный набор хромосом, а самцы развиваются партеногенетически (из неоплодотворенных яйцеклеток) и имеют гаплоидные клетки тела. Хромосомная теория наследования пола дает основание утверждать, что у большинства видов pастений и животных гены, детерминирующие развитие пола, локализованы в половых хромосомах. Например, у человека, гены, обуславливающие развитие женского пола, находятся в Х – хромосоме, а гены, определяющие развитие мужского пола – в Y – хромосоме. При этом гены, находящиеся в Y – хромосоме, являются доминантными. Поэтому генотип ХY детерминирует развитие мужской особи, а генотип ХХ – женской.

Наследование, сцепленное с полом . Половые хромосомы, помимо генов определяющих пол, несут гены, детерминируюшие другие признаки. Признаки, наследуемые через половые хромосомы, получили название сцепленных с полом. У человека признаки, наследуемые через Y – хромосому, могут проявляться лишь у мужчин, а признаки, наследуемые через Х – хромосому, – у лиц и мужского, и женского пола. Особь женского пола по генам Х – хромосомы может быть как гомо-, так и гетерозиготной. Рецессивные аллели проявляются у нее только в гомозиготном состоянии. У особей мужского пола гены Х – хромосомы могут проявляться и в рецессивном состоянии.

При записи схемы передачи признаков, сцепленных с полом, в генетических формулах, наряду с символами генов, контролирующих признаки, записывают и половые хромосомы, в которых эти гены локализованы.

Hапpимеp, ген окpаски глаз у дpозофилы локализован в Х – хpомосоме. Это можно записать так: ХW– ген кpасного цвета глаз и Хw– ген белого цвета глаз. Или ген ихтиоза (заболевание кожи) локализован у человека в Y – хpомосоме – YJ. У человека чеpез половые хромосомы наследуются многие физиологические и патологические признаки. Например, через Х – хромосому передается дальтонизм (цветовая слепота), гемофилия (несвертываемость крови), темная эмаль зубов и др.

Изучение сцепленного с полом наследования стимулировало исследование сцепления генов в аутосомах.

Группы сцепления генов. По третьему закону Г. Менделя, независимое комбинирование признаков может быть при условии, если гены, контролируюшие эти признаки, находятся в разных парах хромосом. Следовательно, у каждого организма число парных признаков, которые могут наследоваться независимо, ограничено числом пар хромосом. Однако в одном организме число признаков, контролируемых генами, значительно больше числа пар хромосом, имеющихся в его кариотипе. Следовательно, в каждой хромосоме имеется не один ген, а много. Если это так, то третий закон Менделя касается лишь свободного комбинирования хромосом, а не генов. Анализ проявления третьего закона Менделя показал, что в некоторых случаях новые комбинации генов у гибридов совсем отсутствовали, т. е. наблюдалось полное сцепление между генами родительских форм, и тогда в фенотипе происходило расщепление в соотношении 1: 1. Иногда при независимом наследовании комбинации признаков совершаются с меньшей, чем это должно было быть, частотой.

Т.Г. Морган назвал совместное наследование генов, расположенных в одной хромосоме, сцеплением генов. Гены, локализованные в одной хромосоме, располагаются последовательно друг за другом (линейно) и образуют группу сцепления . У каждого вида число их равно гаплоидному набору хромосом. Установлено, что в гомологичной паре хромосом регулярно происходит обмен аллельными генами. Процесс обмена идентичными участками гомологичных хромосом с содержащимися в них генами называют кроссинговером. Кроссинговер происходит в профазу I мейоза и обеспечивает новые сочетания генов в гомологичных хромосомах. Частота кроссинговера зависит от расстояния между генами, ее принято обозначать в процентах. Гаметы с хромосомами, претерпевшими кроссинговер, называют кроссоверными , а с не претерпевшими – некроссоверными . После оплодотвоpения таких гамет из них pазвиваются особи соответственно кpоссовеpные и некpоссовеpные.

Если во вpемя гаметогенеза пpоисходит кpоссинговеp, то говоpят о неполном сцеплении генов. Моpган пpедложил фоpмулу, по котоpой можно математически вычислить пpоцент кpоссинговеpа (pасстояние между генами), зная общее число гибpидов пеpвого поколения и число кpоссовеpных фоpм:

где Х – пpоцент кpоссинговеpа, а – число кpоссовеpных фоpм пеpвой гpуппы, в – число кpоссовеpных фоpм втоpой гpуппы, n – общее число потомков.

Используя эту фоpмулу, он вместе со своими учениками составил генетические каpты для всех четыpех гpупп сцепления у дpозофил.

Каpта хpомосомы – схема линейного pасположения генов в хpомосоме. Если эта каpта составлена математически (по фоpмуле Моpгана), то ее называют генетической , а если положение генов в хpомосоме опpеделено под микpоскопом, то такую каpту называют цитологической .

В целом можно выделить следующие основные положения хромосомной теории наследственности:

1) материальными носителями наследственной информации являются хромосомы, а в них – гены;

2) гены занимают в хромосоме определенное место (локус) и располагаются линейно;

3) гены одной хромосомы составляют группу их сцепления, число групп сцепления равно гаплоидному набору хромосом;

4) сцепление генов в хромосоме не абсолютно, оно нарушается при кроссинговере;

5) процент кроссинговера прямо пропорционален расстоянию между генами.

За единицу расстояния принят 1% кроссинговера и эту единицу назвали морганидой.

Хромосомная теория наследственности базируется на знаниях ученых о строении генов и их передаче следующим поколениям. Это дает возможность ответить на некоторые вопросы, связанные с нашим происхождением, внешними данными, поведением, болезнями и т. д. Хромосомная теория наследственности заключается в порядке передачи от родителей к детям информации, находящейся в генах, которые в сумме дают нового человека.

Наследственность

Информация передается по наследству посредством тысячи генов, которые находятся в ядрах яйцеклетки и сперматозоида, образующих новый организм. Каждый ген имеет код, который синтезирует один определенный вид белка. Данный процесс упорядочен, что дает возможность предсказать особенности будущего поколения. Это объясняется тем, что гены (единицы наследования) объединены в определенном порядке. Интересным остается тот факт, что каждая клетка содержит пару хромосом, отвечающих за один белок. Таким образом, каждый ген - парный (аллельный). Один из них доминирует, другой находится в «спящем» состоянии. Это присуще всем клеткам организма, кроме половых (те имеют только по одной цепи ДНК, чтобы во время слития в зиготу образовать полноценное ядро с полным набором хромосом). Эти простые истины и называются «хромосомная теория наследственности», или генетика Менделя.

Потомство

Во время образования гамет пары генов расходятся, но во время оплодотворения происходит другое: гены яйцеклетки и сперматозоида объединяются. Новое сочетание дает возможность выявить развитие определенных признаков у потомства. Так как у каждого родителя гены аллельные, они не могут предсказать, какие передадутся ребенку. Конечно, согласно одному из законов Менделя доминантные гены более сильные, и поэтому велика вероятность, что у ребенка они проявятся, однако все зависит от случая.

Болезни

Хромосомы человека составляют 23 пары. Иногда набор может быть неправильным в результате прикрепления лишнего гена. Тогда способны возникнуть различного рода мутации. Также это называется «хромосомный синдром» - изменение структуры цепи ДНК: инверсия хромосомы, ее выпадение, дупликация, перестановка в определенном участке. Еще возможны обмен участками непохожих хромосом, перестановка определенного участка или перенесение гена из одной хромосомы на другую. Яркими примерами подобных проявлений выступают следующие болезни.

1. Синдром «кошачьего крика»

Хромосомная теория наследственности подтверждает, что подобное нарушение вызвано посредством выпадения короткого плеча пятой хромосомы. Данный недуг проявляется в первые минуты жизни в виде плача, похожего на кошачье «мяу». После нескольких недель такой симптом пропадает. Чем старше ребенок, тем сильнее видно аномальное развитие: сначала он отличается малым весом, затем все четче заметна асимметрия лица, проявляется микроцефалия, глаза раскосые, переносица - широкая, аномальные уши с внешним слуховым проходом, возможен порок сердца. Физическое и умственное отставание - неотъемлемая часть болезни.

2. Геномные мутации
  • Анеуплоидия (не кратное гаплоидному набору количество хромосом). Яркий пример - синдром Эдвардса. Проявляется родами на ранних сроках, плод имеет гипоплазию мышц скелета, малый вес, микроцефалию. Определяются наличие «заячьей губы», отсутствие большого пальца на ногах, дефекты внутренних органов, их аномальное развитие. Выживают только единицы и остаются умственно отсталыми на протяжении всей жизни.
  • Полиплоидия (кратное количество хромосом). Синдром Патау проявляется внешними и умственными аномалиями. Дети рождаются глухими, отстают в умственном развитии. Хромосомная теория наследственности подтверждается всегда, что позволяет предсказывать развитие плода еще в утробе матери и при необходимости прерывать беременность.

Развитие естественных наук, в частности цитологии, и появление более мощных микроскопов способствовали изучению генетики. Вопросами наследования занимались многие учёные с конца XIX века. В начале ХХ века Томас Морган, опираясь на данные исследователей, сформулировал основные положения хромосомной теории наследственности.

История

Автором хромосомной теории считается Томас Морган - американский биолог, лауреат Нобелевской премии. Именно он изучил и описал механизм сцепленного наследования, а также сформулировал основные положения теории хромосомной наследственности. Однако Морган опирался на работы своих предшественников - биологов, генетиков, физиологов.

Рис. 1. Томас Морган.

Краткая история становления теории Моргана описана в таблице.

Год

Учёный

Что сделал

Иван Чистяков

Наблюдал распределение генетического материала между ядрами растительной клетки

Оскар Гертвиг

Наблюдал слияния гамет у иглокожих. Сделал вывод, что ядро несёт наследственную информацию

Эдуард Страсбургер

Наблюдал деление ядер у растений. Сравнил растительные и животные клетки. Сделал вывод, что деление во всех клетках происходит одинаково. Позже ввёл многие термины генетики (гамета, мейоз, гаплоидный и диплоидный набор хромосом, полиплоидия)

Эдуард ван Бенеден

Наблюдал мейоз. Выявил, что часть наследственной информации достаётся от отца, часть - от матери

Генрих Вальдейер

Ввёл термин «хромосома». До него использовались термины «хроматиновый сегмент» и «хроматиновый элемент»

Теодор Бовери и Уильям Сеттон

Независимо друг от друга выявили взаимосвязь наследственных факторов по Менделю и хромосом. Эти факторы в дальнейшем были названы генами. Сделали вывод, что гены находятся в хромосомах

Опубликовал выводы многолетней работы. Вместе со своими коллегами и учениками - Кэлвином Бриджесом, Альфредом Стёртевантом, Германом Мёллером - сформулировал теорию хромосомного наследования. С 1909 года проводили эксперименты с фруктовой дрозофилой и выявили механизмы сцепленного наследования и способ их нарушения - кроссинговер

В 1933 году Томасу Моргану была присуждена Нобелевская премия за вклад в физиологию и медицину. Решением для премии стала его работа о роли хромосом в процессах наследования.

Положения

Многие исследователи независимо друг от друга приходили к одинаковым выводам. К первому десятилетию ХХ века было известно о роли хромосом в наследовании, был введён в употребление термин «ген», были выявлены половые хромосомы и способы передачи наследственной информации. Знаковой работой стало исследование под руководством Моргана. Благодаря наблюдениям за поколениями фруктовой дрозофилы и на основе накопленных знаний были сформулированы основные положения хромосомной теории наследственности Моргана:

  • гены, отвечающие за наследование признаков, расположены в хромосомах;
  • гены располагаются линейно, каждый ген имеет своё место в хромосоме - локус;
  • набор генов в каждой хромосоме уникален;
  • расположенные близко друг к другу группы генов наследуются сцеплено;
  • число сцепленных генов равно гаплоидному набору хромосом и постоянно для каждого вида (у человека 23 пары хромосом, следовательно, 23 пары сцепленных генов);
  • сцепление хромосом нарушается в ходе кроссинговера (перекрёста) - процесса обмена участками хромосом в профазе I мейоза;
  • чем дальше друг от друга находятся сцепленные группы генов в хромосоме, тем больше вероятность кроссинговера.

Рис. 2. Сцепленное наследование.

Эксперименты Моргана показали, что гены, находящиеся в одной хромосоме, наследуются сцеплено, попадая в одну гамету, т.е. два признака всегда наследуются вместе. Такое явление было названо законом Моргана.

Рис. 3. Кроссинговер.