Устойчивое и неустойчивое равновесие. Механическое равновесие


Равновесие называют устойчивым , если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия.

Равновесие называется неустойчивым , если при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия.

Равновесия называется безразличным , если при небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю.

Центр тяжести

Центром тяжести называется точка, через которую проходит равнодействующая сил тяжести при любом расположении тела.

Третий закон Ньютона

Тела действуют друг на друга с силами, вдоль одной прямой, равными по модулю и противоположными по направлению. Эти силы имеют одинаковую физическую природу; они приложены к разным телам и поэтому друг друга не компенсируют.

Сила упругости. Закон Гука

Сила упругости возникает в результате деформации тела и направлена в сторону, противоположную деформации.

При малых по сравнению с размерами тел деформациях сила упругости прямо пропорциональна величине абсолютной деформации тела. В проекции на направление деформирования сила упругости равна

Где x– абсолютная деформация,k– коэффициент жесткости.

Этот закон был установлен экспериментально английским ученым Робертом Гуком и называется законом Гука:

Сила упругости, возникающая при деформации тела, пропорциональна удлинению тела и направлена в сторону, противоположную направлению перемещений частиц тела при деформации.

Коэффициент пропорциональности в законе Гука называется жесткостью тела. Он зависит от формы и размеров тела и от материала, из которого оно изготовлено (уменьшается с увеличением длины и с уменьшением площади поперечного сечения – см. Молекулярную Физику).

В Си жесткость выражается в ньютонах на метр :
.

Упругая сила стремится восстановить форму тела, подвергнутого деформации, и приложена к телу, которое эту деформацию вызывает.

Природа силы упругости электромагнитная, т.к. сила упругости возникает в результате стремления электромагнитных сил, действующих между атомами вещества, вернуть атомы вещества в исходное положение при изменении их взаимного положения в результате деформации.

Упругая реакция опоры, нити, подвеса – пассивная сила, действующая всегда перпендикулярно поверхности опоры.

Сила трения. Коэффициент трения скольжения

Сила трения возникает при соприкосновении поверхностей двух тел и всегда препятствует их взаимному перемещению.

Сила, возникающая на границе соприкосновения тел при отсутствии относительного движения называется силой трения покоя . Сила трения покоя – упругая сила, она равна по модуля внешней силе, направленной по касательной к поверхности соприкосновения тел, и противоположна ей по направлению.

При движении одного тела по поверхности другого возникает сила трения скольжения .

Сила трения имеет электромагнитную природу, т.к. возникает благодаря существованию сил взаимодействия между молекулами и атомами соприкасающихся тел – электромагнитных сил.

Сила трения скольжения прямо пропорциональна силе нормального давления (или упругой реакции опоры) и не зависит от площади поверхности соприкосновения тел {закон Кулона}:

, где – коэффициент трения.

Коэффициент трения зависит от рельефа поверхности и всегда меньше единицы: «сдвинуть легче, чем оторвать».

Раздел механики, в котором изучаются условия равновесия тел, называется статикой. Проще всего рассмотреть условия равновесия абсолютно твердого тела, т. е. такого тела, размеры и форму которого можно считать неизменными. Понятие абсолютно твердого тела является абстракцией, поскольку все реальные тела под влиянием приложенных к ним сил в той или иной степени деформируются, т. е. меняют свою форму и размеры. Величина деформаций зависит как от приложенных к телу сил, так и от свойств самого тела - его формы и свойств материала, из которого оно изготовлено. Во многих практически важных случаях деформации бывают малыми и использование представлений об абсолютно твердом теле является оправданным.

Модель абсолютно твердого тела. Однако не всегда малость деформаций является достаточным условием для того, чтобы тело можно было считать абсолютно твердым. Чтобы пояснить это, рассмотрим следующий пример. Доска, лежащая на двух опорах (рис. 140а), может рассматриваться как абсолютно твердое тело, несмотря на то, что она слегка прогибается под действием сил тяжести. Действительно, в этом случае условия механического равновесия позволяют определить силы реакции опор не учитывая деформации доски.

Но если та же доска лежит на тех же опорах (рис. 1406), то представление об абсолютно твердом теле является неприменимым. В самом деле, пусть крайние опоры находятся на одной горизонтали, а средняя - чуть ниже. Если доска абсолютно твердая, т. е. вообще не прогибается, то она совсем не давит на среднюю опору Если же доска прогибается, то она давит на среднюю опору, причем тем сильнее, чем больше деформация. Условия

равновесия абсолютно твердого тела в этом случае не позволяют определить силы реакции опор так как приводят к двум уравнениям для трех неизвестных величин.

Рис. 140. Силы реакции, действующие на доску, лежащую на двух (а) и на трех (б) опорах

Такие системы носят название статически неопределимых. Для их расчета необходимо учитывать упругие свойства тел.

Приведенный пример показывает, что применимость модели абсолютно твердого тела в статике определяется не столько свойствами самого тела, сколько условиями, в которых оно находится. Так, в рассмотренном примере даже тонкую соломинку можно считать абсолютно твердым телом, если она лежит на двух опорах. Но даже очень жесткую балку нельзя считать абсолютно твердым телом, если она лежит на трех опорах.

Условия равновесия. Условия равновесия абсолютно твердого тела представляют собой частный случай динамических уравнений, когда ускорение отсутствует, хотя исторически статика возникла из потребностей строительной техники почти на два тысячелетия раньше динамики. В инерциальной системе отсчета твердое тело находится в равновесии, если векторная сумма всех действующих на тело внешних сил и векторная сумма моментов этих сил равны нулю. При выполнении первого условия равно нулю ускорение центра масс тела. При выполнении второго условия отсутствует угловое ускорение вращения. Поэтому если в начальный момент тело покоилось, то оно будет оставаться в покое и дальше.

В дальнейшем мы ограничимся изучением сравнительно простых систем, в которых все действующие силы лежат в одной плоскости. В этом случае векторное условие

сводится к двум скалярным:

если расположить оси плоскости действия сил. Некоторые из входящих в условия равновесия (1) действующих на тело внешних сил могут быть заданы, т. е. их модули и направления известны. Что же касается сил реакции связей или опор, ограничивающих возможное перемещение тела, то они, как правило, заранее не заданы и сами подлежат определению. В отсутствие трения силы реакции перпендикулярны поверхности соприкосновения тел.

Рис. 141. К определению направления сил реакции

Силы реакции. Иногда возникают сомнения в определении направления силы реакции связи, как, например, на рис. 141, где изображен стержень, опирающийся в точке А о гладкую вогнутую поверхность чашки и в точке В на острый край чашки.

Для определения направления сил реакции в этом случае можно мысленно немного подвинуть стержень, не нарушая его контакта с чашкой. Сила реакции будет направлена перпендикулярно поверхности, по которой скользит точка контакта. Так, в точке А действующая на стержень сила реакции перпендикулярна поверхности чашки, а в точке В - перпендикулярна стержню.

Момент силы. Моментом М силы относительно некоторой точки

О называется векторное произведение радиуса-вектора проведенного из О в точку приложения силы, на вектор силы

Вектор М момента силы перпендикулярен плоскости, в которой лежат векторы

Уравнение моментов. Если на тело действует несколько сил, то второе, связанное с моментами сил условие равновесия записывается в виде

При этом точка О, из которой проводятся радиусы-векторы должна выбираться общей для всех действующих сил.

Для плоской системы сил векторы моментов всех сил направлены перпендикулярно плоскости, в которой лежат силы, если моменты рассматриваются относительно точки, лежащей в этой же плоскости. Поэтому векторное условие (4) для моментов сводится к одному скалярному: в положении равновесия алгебраическая сумма моментов всех внешних действующих сил равна нулю. Модуль момента силы относительно точки О равен произведению модуля

силы на расстояние от точки О до линии, вдоль которой действует сила При этом моменты, стремящиеся повернуть тело по часовой стрелке, берутся с одним знаком, против часовой стрелки - с противоположным. Выбор точки, относительно которой рассматриваются моменты сил, производится исключительно из соображений удобства: уравнение моментов будет тем проще, чем больше сил будут иметь равные нулю моменты.

Пример равновесия. Для иллюстрации применения условий равновесия абсолютно твердого тела рассмотрим следующий пример. Легкая лестница-стремянка состоит из двух одинаковых частей, шарнирно соединенных вверху и связанных веревкой у основания (рис. 142). Определим, какова сила натяжения веревки, с какими силами взаимодействуют половинки лестницы в шарнире и с какими силами они давят на пол, если на середине одной из них стоит человек весом Р.

Рассматриваемая система состоит из двух твердых тел - половинок лестницы, и условия равновесия можно применять как для системы в целом, так и для ее частей. Применяя условия равновесия ко всей системе в целом, можно найти силы реакции пола и (рис. 142). При отсутствии трения эти силы направлены вертикально вверх и условие равенства нулю векторной суммы внешних сил (1) принимает вид

Условие равновесия моментов внешних сил относительно точки А записывается следующим образом:

где - длина лестницы, угол, образованный лестницей с полом. Решая систему уравнений (5) и (6), находим

Рис. 142. Векторная сумма внешних сил и сумма моментов внешних сил в равновесии равна нулю

Разумеется, вместо уравнения моментов (6) относительно точки А можно было бы написать уравнение моментов относительно точки В (или любой другой точки). При этом получилась бы система уравнений, эквивалентная использованной системе (5) и (6).

Сила натяжения веревки и силы взаимодействия в шарнире для рассматриваемой физической системы являются внутренними и поэтому не могут быть определены из условий равновесия всей системы как целого. Для определения этих сил необходимо рассматривать условия равновесия отдельных частей системы. При этом

удачным выбором точки, относительно которой составляется уравнение моментов сил, можно добиться упрощения алгебраической системы уравнений. Так, например, в данной системе можно рассмотреть условие равновесия моментов сил, действующих на левую половинку лестницы, относительно точки С, в которой находится шарнир.

При таком выборе точки С силы, действующие в шарнире, не войдут в это условие, и мы сразу находим силу натяжения веревки Т:

откуда, учитывая, что получаем

Условие (7) означает, что равнодействующая сил Т и проходит через точку С, т. е. направлена вдоль лестницы. Поэтому равновесие этой половинки лестницы возможно, только если сила действующая на нее в шарнире, также направлена вдоль лестницы (рис. 143), а ее модуль равен модулю равнодействующей сил Т и

Рис. 143. Линии действия всех трех сил, действующих на левую половинку лестницы, проходят через одну точку

Абсолютное значение силы действующей в шарнире на другую половинку лестницы, на основании третьего закона Ньютона равно а ее направление противоположно направлению вектора Направление силы можно было бы определить непосредственно из рис. 143, учитывая, что при равновесии тела под действием трех сил линии, по которым действуют эти силы, пересекаются в одной точке. Действительно, рассмотрим точку пересечения линий действия двух из этих трех сил и составим уравнение моментов относительно этой точки. Моменты первых двух сил относительно этой точки равны нулю; значит, должен равняться нулю и момент третьей силы, что в соответствии с (3) возможно, только если линия ее действия также проходит через эту точку.

Золотое правило механики. Иногда задачу статики можно решить, вообще не рассматривая условий равновесия, а используя закон сохранения энергии применительно к механизмам без трения: ни один механизм не дает выигрыша в работе. Этот закон

называют золотым правилом механики. Для иллюстрации такого подхода рассмотрим следующий пример: тяжелый груз весом Р подвешен на невесомом шарнире с тремя звеньями (рис. 144). Какую силу натяжения должна выдержать нить, соединяющая точки А и В?

Рис. 144. К определению силы натяжения нити в трехзвенном шарнире, поддерживающем груз весом Р

Попробуем с помощью этого механизма поднимать груз Р. Отвязав нить в точке А, потянем ее вверх так, чтобы точка В медленно поднялась на расстояние Это расстояние ограничено тем, что сила натяжения нити Т должна оставаться неизменной в процессе перемещения. В данном случае, как будет видно из ответа, сила Т вообще не зависит от того, насколько сжат или растянут шарнир. Совершенная при этом работа . В результате груз Р поднимается на высоту которая, как ясно из геометрических соображений, равна Так как при отсутствии трения никаких потерь энергии не происходит, можно утверждать, что изменение потенциальной энергии груза, равное определяется совершенной при подъеме работой. Поэтому

Очевидно, что для шарнира, содержащего произвольное число одинаковых звеньев,

Нетрудно найти силу натяжения нити и в том случае, когда требуется учитывать вес самого шарнира совершаемую при подъеме работу следует приравнять сумме изменений потенциальных энергий груза и шарнира. Для шарнира из одинаковых звеньев центр масс его поднимается на Поэтому

Сформулированный принцип («золотое правило механики») применим и тогда, когда в процессе перемещений не происходит изменения потенциальной энергии, а механизм используется для преобразования силы. Редукторы, трансмиссии, вороты, системы рычагов и блоков - во всех таких системах преобразованную силу можно определить, приравнивая работы преобразованной и приложенной сил. Другими словами, при отсутствии трения отношение этих сил определяется только геометрией устройства.

Рассмотрим с этой точки зрения разобранный выше пример со стремянкой. Конечно, использовать стремянку в качестве подъемного механизма, т. е. поднимать человека, сближая половинки стремянки, вряд ли целесообразно. Однако это не может помешать нам применить описанный метод для нахождения силы натяжения веревки. Приравнивая работу, совершаемую при сближении частей стремянки, изменению потенциальной энергии человека на стремянке и связывая из геометрических соображений перемещение нижнего конца лестницы с изменением высоты груза (рис. 145), получаем, как и следовало ожидать, приведенный ранее результат:

Как уже отмечалось, перемещение следует выбрать таким, чтобы в процессе его можно было считать действующую силу постоянной. Легко убедиться, что в примере с шарниром это условие не накладывает ограничений на перемещение, так как сила натяжения нити не зависит от угла (рис. 144). Напротив, в задаче о стремянке перемещение следует выбирать малым, ибо сила натяжения веревки зависит от угла а.

Устойчивость равновесия. Равновесие бывает устойчивым, неустойчивым и безразличным. Равновесие устойчиво (рис. 146а), если при малых перемещениях тела из положения равновесия действующие силы стремятся вернуть его обратно, и неустойчиво (рис. 1466), если силы уводят его дальше от положения равновесия.

Рис. 145. Перемещения нижних концов лестницы и перемещение груза при сближении половинок стремянки

Рис. 146. Устойчивое (а), неустойчивое (б) и безразличное (в) равновесия

Если же при малых смещениях действующие на тело силы и их моменты по-прежнему уравновешиваются, то равновесие безразличное (рис. 146в). При безразличном равновесии соседние положения тела также являются равновесными.

Рассмотрим примеры исследования устойчивости равновесия.

1. Устойчивому равновесию соответствует минимум потенциальной энергии тела по отношению к ее значениям в соседних положениях тела. Этим свойством часто удобно пользоваться при отыскании положения равновесия и при исследовании характера равновесия.

Рис. 147. Устойчивость равновесия тела и положение центра масс

Вертикальная свободно стоящая колонна находится в устойчивом равновесии, поскольку при малых наклонах ее центр масс приподнимается. Так происходит до тех пор, пока вертикальная проекция центра масс не выйдет за пределы площади опоры, т. е. угол отклонения от вертикали не превысит некоторого максимального значения. Другими словами, область устойчивости простирается от минимума потенциальной энергии (при вертикальном положении) до ближайшего к нему максимума (рис. 147). Когда центр масс расположен точно над границей площади опоры, колонна также находится в равновесии, но неустойчивом. Горизонтально лежащей колонне соответствует гораздо более широкая область устойчивости.

2. Имеются два круглых карандаша с радиусами и Один из них расположен горизонтально, другой уравновешен на нем в горизонтальном положении так, что оси карандашей взаимно перпендикулярны (рис. 148а). При каком соотношении между радиусами равновесие устойчиво? На какой максимальный угол можно при этом отклонить от горизонтали верхний карандаш? Коэффициент трения карандашей друг о друга равен

На первый взгляд может показаться, что равновесие верхнего карандаша вообще неустойчиво, так как центр масс верхнего карандаша лежит выше оси, вокруг которой он может поворачиваться. Однако здесь положение оси вращения не остается неизменным, поэтому этот случай требует специального исследования. Поскольку верхний карандаш уравновешен в горизонтальном положении, центры масс карандашей лежат на этой вертикали (рис. ). проходит левее новой точки опоры С, то сила тяжести стремится вернуть верхний карандаш в положение равновесия.

Выразим это условие математически. Проведя вертикаль через точку В, видим, что должно выполняться условие

Так как то из условия (8) получаем

Поскольку сила тяжести будет стремиться возвратить верхний карандаш в положение равновесия только при Следовательно, устойчивое равновесие верхнего карандаша на нижнем возможно только тогда, когда его радиус меньше радиуса нижнего карандаша.

Роль трения. Для ответа на второй вопрос следует выяснить, какие причины ограничивают допустимый угол отклонения. Во-первых, при больших углах отклонения вертикаль, проведенная через центр масс верхнего карандаша, может пройти правее точки опоры С. Из условия (9) видно, что при заданном отношении радиусов карандашей максимальный угол отклонения

Всегда ли условий равновесия твердого тела достаточно для определения сил реакции?

Как практически можно определить направление сил реакции при отсутствии трения?

Как можно использовать золотое правило механики при анализе условий равновесия?

Если в шарнире, показанном на рис. 144, нитью соединить не точки А и В, а точки Л и С, то какой будет ее сила натяжения?

Как связана устойчивость равновесия системы с ее потенциальной энергией?

Какими условиями определяется максимальный угол отклонения тела, опирающегося на плоскость в трех точках, чтобы не была утрачена его устойчивость?

«Физика - 10 класс»

Вспомните, что такое момент силы.
При каких условиях тело находится в покое?

Если тело находится в покое относительно выбранной системы отсчёта, то говорят, что это тело находится в равновесии. Здания, мосты, балки вместе с опорами, части машин, книга на столе и многие другие тела покоятся, несмотря на то что к ним со стороны других тел приложены силы. Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники. Все реальные тела под влиянием приложенных к ним сил изменяют свою форму и размеры, или, как говорят, деформируются.

Во многих случаях, которые встречаются на практике, деформации тел при их равновесии незначительны. В этих случаях деформациями можно пренебречь и вести расчёт, считая тело абсолютно твёрдым .

Для краткости абсолютно твёрдое тело будем называть твёрдым телом или просто телом . Изучив условия равновесия твёрдого тела, мы найдём условия равновесия реальных тел в тех случаях, когда их деформации можно не учитывать.

Вспомните определение абсолютно твёрдого тела.

Раздел механики, в котором изучаются условия равновесия абсолютно твёрдых тел, называется статикой .

В статике учитываются размеры и форма тел, в этом случае существенным является не только значение сил, но и положение точек их приложения.

Выясним вначале с помощью законов Ньютона, при каком условии любое тело будет находиться в равновесии. С этой целью разобьём мысленно всё тело на большое число малых элементов, каждый из которых можно рассматривать как материальную точку. Как обычно, назовём силы, действующие на тело со стороны других тел, внешними, а силы, с которыми взаимодействуют элементы самого тела, внутренними (рис. 7.1). Так, сила 1,2 - это сила, действующая на элемент 1 со стороны элемента 2. Сила же 2,1 действует на элемент 2 со стороны элемента 1. Это внутренние силы; к ним относятся также силы 1,3 и 3,1 , 2,3 и 3,2 . Очевидно, что геометрическая сумма внутренних сил равна нулю, так как согласно третьему закону Ньютона

12 = - 21 , 23 = - 32 , 31 = - 13 и т.д.

Статика - частный случай динамики, так как покой тел, когда на них действуют силы, есть частный случай движения ( = 0).

На каждый элемент в общем случае может действовать несколько внешних сил. Под 1 , 2 , 3 и т. д. будем понимать все внешние силы, приложенные соответственно к элементам 1, 2, 3, ... . Точно так же через " 1 , " 2 , " 3 и т. д. обозначим геометрическую сумму внутренних сил, приложенных к элементам 2, 2, 3, ... соответственно (эти силы не показаны на рисунке), т. е.

" 1 = 12 + 13 + ... , " 2 = 21 + 22 + ... , " 3 = 31 + 32 + ... и т.д.

Если тело находится в покое, то ускорение каждого элемента равно нулю. Поэтому согласно второму закону Ньютона будет равна нулю и геометрическая сумма всех сил, действующих на любой элемент. Следовательно, можно записать:

1 + "1 = 0, 2 + "2 = 0, 3 + "3 = 0. (7.1)

Каждое из этих трёх уравнений выражает условие равновесия элемента твёрдого тела.


Первое условие равновесия твёрдого тела.


Выясним, каким условиям должны удовлетворять внешние силы, приложенные к твёрдому телу, чтобы оно находилось в равновесии. Для этого сложим уравнения (7.1):

(1 + 2 + 3) + ("1 + "2 + "3) = 0.

В первых скобках этого равенства записана векторная сумма всех внешних сил, приложенных к телу, а во вторых - векторная сумма всех внутренних сил, действующих на элементы этого тела. Но, как известно, векторная сумма всех внутренних сил системы равна нулю, так как согласно третьему закону Ньютона любой внутренней силе соответствует сила, равная ей по модулю и противоположная по направлению. Поэтому в левой части последнего равенства останется только геометрическая сумма внешних сил, приложенных к телу:

1 + 2 + 3 + ... = 0 . (7.2)

В случае абсолютно твёрдого тела условие (7.2) называют первым условием его равновесия .

Оно является необходимым, но не является достаточным.

Итак, если твёрдое тело находится в равновесии, то геометрическая сумма внешних сил, приложенных к нему, равна нулю.

Если сумма внешних сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности, для проекций внешних сил на ось ОХ можно записать:

F 1x + F 2x + F 3x + ... = 0. (7.3)

Такие же уравнения можно записать и для проекций сил на оси OY и OZ.



Второе условие равновесия твёрдого тела.


Убедимся, что условие (7.2) является необходимым, но недостаточным для равновесия твёрдого тела. Приложим к доске, лежащей на столе, в различных точках две равные по модулю и противоположно направленные силы так, как показано на рисунке 7.2. Сумма этих сил равна нулю:

+ (-) = 0. Но доска тем не менее будет поворачиваться. Точно так же две одинаковые по модулю и противоположно направленные силы поворачивают руль велосипеда или автомобиля (рис. 7.3).

Какое же ещё условие для внешних сил, кроме равенства нулю их суммы, должно выполняться, чтобы твёрдое тело находилось в равновесии? Воспользуемся теоремой об изменении кинетической энергии.

Найдём, например, условие равновесия стержня, шарнирно закреплённого на горизонтальной оси в точке О (рис. 7.4). Это простое устройство, как вам известно из курса физики основной школы, представляет собой рычаг первого рода.

Пусть к рычагу приложены перпендикулярно стержню силы 1 и 2 .

Кроме сил 1 и 2 , на рычаг действует направленная вертикально вверх сила нормальной реакции 3 со стороны оси рычага. При равновесии рычага сумма всех трёх сил равна нулю: 1 + 2 + 3 = 0.

Вычислим работу, которую совершают внешние силы при повороте рычага на очень малый угол α. Точки приложения сил 1 и 2 пройдут пути s 1 = ВВ 1 и s 2 = CC 1 (дуги ВВ 1 и СС 1 при малых углах α можно считать прямолинейными отрезками). Работа А 1 = F 1 s 1 силы 1 положительна, потому что точка В перемещается по направлению действия силы, а работа А 2 = -F 2 s 2 силы 2 отрицательна, поскольку точка С движется в сторону, противоположную направлению силы 2 . Сила 3 работы не совершает, так как точка её приложения не перемещается.

Пройденные пути s 1 и s 2 можно выразить через угол поворота рычага а, измеренный в радианах: s 1 = α|ВО| и s 2 = α|СО|. Учитывая это, перепишем выражения для работы так:

А 1 = F 1 α|BO|, (7.4)
А 2 = -F 2 α|CO|.

Радиусы ВО и СО дуг окружностей, описываемых точками приложения сил 1 и 2 , являются перпендикулярами, опущенными из оси вращения на линии действия этих сил

Как вы уже знаете, плечо силы - это кратчайшее расстояние от оси вращения до линии действия силы. Будем обозначать плечо силы буквой d. Тогда |ВО| = d 1 - плечо силы 1 , а |СО| = d 2 - плечо силы 2 . При этом выражения (7.4) примут вид

А 1 = F 1 αd 1 , А 2 = -F 2 αd 2 . (7.5)

Из формул (7.5) видно, что работа каждой из сил равна произведению момента силы на угол поворота рычага. Следовательно, выражения (7.5) для работы можно переписать в виде

А 1 = М 1 α, А 2 = М 2 α, (7.6)

а полную работу внешних сил можно выразить формулой

А = А 1 + А 2 = (М 1 + М 2)α. α, (7.7)

Так как момент силы 1 положителен и равен М 1 = F 1 d 1 (см. рис. 7.4), а момент силы 2 отрицателен и равен М 2 = -F 2 d 2 , то для работы А можно записать выражение

А = (М 1 - |М 2 |)α.

Когда тело приходит в движение, его кинетическая энергия увеличивается. Для увеличения кинетической энергии внешние силы должны совершать работу, т. е. в этом случае А ≠ 0 и соответственно М 1 + М 2 ≠ 0.

Если работа внешних сил равна нулю, то кинетическая энергия тела не изменяется (остаётся равной нулю) и тело остаётся неподвижным. Тогда

М 1 + М 2 = 0 . (7.8)

Уравнение (7 8) и есть второе условие равновесия твёрдого тела .

При равновесии твёрдого тела сумма моментов всех внешних сил, действующих на него относительно любой оси, равна нулю.

Итак, в случае произвольного числа внешних сил условия равновесия абсолютно твёрдого тела следующие:

1 + 2 + 3 + ... = 0, (7.9)
М 1 + М 2 + М 3 + ... = 0
.

Второе условие равновесия можно вывести из основного уравнения динамики вращательного движения твёрдого тела. Согласно этому уравнению где М - суммарный момент сил, действующих на тело, М = М 1 + М 2 + М 3 + ... , ε - угловое ускорение. Если твёрдое тело неподвижно, то ε = 0, и, следовательно, М = 0. Таким образом, второе условие равновесия имеет вид М = М 1 + М 2 + М 3 + ... = 0.

Если тело не абсолютно твёрдое, то под действием приложенных к нему внешних сил оно может и не оставаться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равны нулю.

Приложим, например к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и нулю равна сумма их моментов относительно оси, проходящей через любую точку шнура.

Виды равновесия

Для того чтобы судить о поведении тела в реальных условиях, мало знать, что оно находится в равновесии. Надо еще оценить это равновесие. Различают устойчивое, неустойчивое и безразличное равновесие.

Равновесие тела называют устойчивым , если при отклонении от него возникают силы, возвращающие тело в положение равновесия (рис. 1 положение 2). В устойчивом равновесии центр тяжести тела занимает наинизшее из всех близких положений. Положение устойчивого равновесия связано с минимумом потенциальной энергии по отношению ко всем близким соседним положениям тела.

Равновесие тела называют неустойчивым , если при самом незначительном отклонении от него равнодействующая действующих на тело сил вызывает дальнейшее отклонение тела от положения равновесия (рис. 1 положение 1). В положении неустойчивого равновесия высота центра тяжести максимальна и потенциальная энергия максимальна по отношению к другим близким положениям тела.

Равновесие, при котором смещение тела в любом направлении не вызывает изменения действующих на него сил и равновесие тела сохраняется, называют безразличным (рис. 1 положение 3).

Безразличное равновесие связано с неизменной потенциальной энергией всех близких состояний, и высота центра тяжести одинакова во всех достаточно близких положениях.

Тело, имеющее ось вращения (например, однородная линейка, которая может вращаться вокруг оси, проходящей через точку О, изображенная на рисунке 2), находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела, проходит через ось вращения. Причем если центр тяжести С выше оси вращения (рис. 2,1), то при любом отклонении от положения равновесия потенциальная энергия уменьшается и момент силы тяжести относительно оси О отклоняет тело дальше от положения равновесия. Это неустойчивое положение равновесия. Если центр тяжести находится ниже оси вращения (рис. 2,2), то равновесие устойчивое. Если центр тяжести и ось вращения совпадают (рис. 2,3), то положение равновесия безразличное.

равновесие физика смещение

Тело, имеющее площадь опоры, находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела не выходит за пределы площади опоры этого тела, т.е. за пределы контура образованного точками соприкосновения тела с опорой Равновесие в этом случае зависит не только от расстояния между центром тяжести и опорой (т.е. от его потенциальной энергии в гравитационном поле Земли), но и от расположения и размеров площади опоры этого тела.

На рисунке 2 изображено тело, имеющее форму цилиндра. Если его наклонить на малый угол, то оно возвратится в исходное положение 1 или 2. Если же его отклонить на угол (положение 3), то тело опрокинется. При заданной массе и площади опоры устойчивость тела тем выше, чем ниже расположен его центр тяжести, т.е. чем меньше угол между прямой, соединяющей центр тяжести тела и крайнюю точку соприкосновения площади опоры с горизонтальной плоскостью.

Раздел механики, в котором изучаются условия равновесия тел, называется статикой. Из второго закона Ньютона следует, что, если векторная сумма всех сил, приложенных к телу, равна нулю, то тело сохраняет свою скорость неизменной. В частности, если начальная скорость равна нулю, тело остается в покое. Условие неизменности скорости тела можно записать в виде:

или в проекциях на оси координат:

.

Очевидно, что тело может покоиться только по отношению к одной определенной системе координат. В статике изучают условия равновесия тел именно в такой системе. Необходимое условие равновесия можно получить также, рассмотрев движение центра масс системы материальных точек. Внутренние силы не влияют на движение центра масс. Ускорение центра масс определяется векторной суммой внешних сил. Но если эта сумма равна нулю, то ускорение центра масс , а, следовательно, скорость центра масс . Если в начальный момент , то центр масс тела остается в покое.

Таким образом, первое условие равновесия тел формулируется следующим образом: скорость тела не изменяется, если сумма внешних сил, приложенных в каждой точке, равна нулю. Полученное условие покоя центра масс является необходимым (но недостаточным) условием равновесия твердого тела.

Пример

Может быть так, что все силы, действующие на тело, уравновешены, тем не менее, тело будет ускоряться. Например, если приложить две равных и противоположно направленных силы (их называют парой сил) к центру масс колеса, то колесо будет покоиться, если его начальная скорость была равна нулю. Если же эти силы приложить к разным точкам, то колесо начнет вращаться (рис. 4.5). Это объясняется тем, что тело находится в равновесии, когда сумма всех сил равна нулю в каждой точке тела. Но если сумма внешних сил равна нулю, а сумма всех сил, приложенных к каждому элементу тела, не равна нулю, то тело не будет находиться в равновесии, возможно (как в рассмотренном примере) вращательное движение. Таким образом, если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.



Чтобы получить второе условие равновесия, воспользуемся уравнением вращательного движения , где – сумма моментов внешних сил относительно оси вращения. Когда , то и b = 0, а значит, угловая скорость тела не меняется . Если в начальный момент w = 0, то тело и в дальнейшем не будет вращаться. Следовательно, вторым условием механического равновесия является требование равенства нулю алгебраической суммы моментов всех внешних сил относительно оси вращения:

В общем случае произвольного числа внешних сил условия равновесия можно представить в следующем виде:

,

.

Эти условия необходимы и достаточны.

Пример

Равновесие бывает устойчивым, неустойчивым и безразличным. Равновесие является устойчивым, если при малых смещениях тела из положения равновесия действующие на него силы и моменты сил стремятся вернуть тело в положение равновесия (рис. 4.6а). Равновесие неустойчиво, если действующие силы при этом уводят тело еще дальше от положения равновесия (рис. 4.6б). Если при малых смещениях тела действующие силы по-прежнему уравновешиваются, то равновесие безразличное (рис. 4.6в). Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, – пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия.

Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза, которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Пизанская башня получила известность благодаря тому, что она сильно наклонена. Башня «падает». Высота башни составляет 55,86 метров от земли на самой низкой стороне и 56,70 метров на самой высокой стороне. Её вес оценивается в 14700 тонн. Текущий наклон составляет около 5,5°. Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Полагали, что кривизна башни задумана зодчими изначально – ради демонстрации своего незаурядного умения. Но куда более вероятно другое: архитекторы знали, что строят на крайне ненадежном фундаменте, и потому заложили в конструкцию возможность легкого отклонения.

Когда возникла реальная угроза обрушения башни, за нее взялись современные инженеры. Ее затянули в стальной корсет из 18 тросов, фундамент утяжелили свинцовыми блоками и параллельно укрепили грунт, закачивая под землю бетон. С помощью всех этих мер удалось уменьшить угол наклона падающей башни на полградуса. Специалисты говорят, что теперь она сможет простоять еще как минимум 300 лет. С точки зрения физики принятые меры означают, что условия равновесия башни стали более надежными.

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым (рис. 4.7а). Если же центр масс расположен выше оси – состояние равновесия неустойчиво (рис. 4.7б).

Особым случаем равновесия является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, то есть внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается.