Допускаемая величина погрешности приборов учета давления теплоносителя. Коптев В.С


На сегодняшний день, основным документом, определяющим требования к учету тепловой энергии, являются "Правила учета тепловой энергии и теплоносителя ".

В Правилах приведены подробные формулы. Здесь я немного упрощу для лучшего понимания.

Я опишу только водяные системы, так как их большинство, и не буду рассматривать паровые системы. Если поймете суть на примере водяных систем, пар посчитаете сами без проблем.

Для расчета тепловой энергии нужно определиться с целями. Будем считать калории в теплоносителе для целей отопления или для целей горячего водоснабжения.

Расчет Гкал в системе ГВС

Если у вас стоит механический счетчик горячей воды (вертушка) или вы собираетесь его установить, то здесь все просто. Сколько накрутил, столько и придется заплатить, по утвержденному тарифу за горячую воду. Тариф, в данном случае, уже будет учитывать количество Гкал в ней.

Если у вас смонтирован узел учета тепловой энергии в горячей воде, или вы только собираетесь его установить, то платить придется отдельно за тепловую энергию (Гкал) и отдельно за сетевую воду. Также по утвержденным тарифам (руб./Гкал + руб./тонну)

Для вычисления количества калорий, получаемых с горячей водой (а также паром или конденсатом), минимум, что нам нужно знать это расход горячей воды (пара, конденсата) и ее температуру.

Расход измеряется расходомерами, температура - термопарами, термодатчиками, а Гкал вычисляет теплосчетчик (или теплорегистратор).

Qгв= Gгв *(tгв - tхв)/1000 = ... Гкал

Qгв - количество тепловой энергии, в этой формуле в Гкал.*

Gгв - расход горячей воды (или пара, или конденсата) в м. куб. или в тоннах

tгв - температура (энтальпия) горячей воды в °С **

tхв - температура (энтальпия) холодной воды в °С ***

* делим на 1000 для того, чтобы получить не калории, а гигакалории

** правильнее умножать надо не на разность температур (t гв-t хв), а на разностьэнтальпий (h гв-h хв). Величины hгв, hхв определяются по соответствующим измеренным на узле учета средним за рассматриваемый период значениям температур и давлений. Значения энтальпий близко к значениям температур. На узле учета тепловой энергии тепловычислитель сам рассчитывает и энтальпию, и Гкал.

*** температура холодной воды, она же температура подпитки, измеряется на трубопроводе холодной воды на источнике теплоты. У потребителя, как правило, нет возможности использовать этот параметр. Поэтому берется постоянная расчетная утвержденная величина: в отопительный период tхв=+5 °С (или +8 °С), в неотопительный tхв=+15 °С

Если у Вас стоит вертушка и нет возможности измерить температуру горячей воды, то для выделения Гкал, как правило, теплоснабжающая организация устанавливает постоянную расчетную величину в соответствии с нормативными документами и технической возможностью источника теплоты (котельной, или теплового пункта, например). В каждой организации своя, у нас 64,1°С.

Тогда расчет будет следующий:

Qгв = Gгв * 64,1 / 1000 = ... Гкал

Помните, что заплатить нужно будет не только за Гкал, но и за сетевую воду. По формуле и мы считаем только Гкал.

Расчет Гкал в системах водяного отопления.

Рассмотрим отличия расчета количества теплоты при открытой и при закрытой системе отопления.

Закрытая система отопления - это когда запрещено брать теплоноситель из системы, ни для целей горячего водоснабжения ни для мытья личного авто. На практике сами знаете как. Горячая вода для целей ГВС в этом случае заходит по отдельной третьей трубе или ее вообще нет, если ГВС не предусмотрено.

Открытая система отопления - это когда разрешено брать теплоноситель из системы для целей горячего водоснабжения.

При открытой системе теплоноситель можно брать из системы только в пределах договорных отношений!

Если при горячем водоснабжении мы забираем весь теплоноситель, т.е. всю сетевую воду и все Гкал в ней, то при отоплении мы возвращаем какую-то часть теплоносителя и, соответственно, какую-то часть Гкал обратно в систему. Соответственно, нужно посчитать сколько пришло Гкал и сколько ушло.

Следующая формула подходт как для открытой системы теплоснабжения, так и для закрытой.

Q = [ (G1 * (t1 - tхв)) - (G2 * (t2 - tхв)) ] / 1000 = ... Гкал

Есть еще пара формул, которые используются в учете тепловой энергии, но я беру вышестоящую, т.к. думаю, что на ней проще понять, как работают теплосчетчики, и которые дают такой же результат при расчетах, что и формула .

Q = [ (G1 * (t1 - t2)) + (G1 - G2) * (t2-tхв) ] / 1000 = ... Гкал

Q = [ (G2 * (t1 - t2)) + (G1 - G2) * (t1-tхв) ] / 1000 = ... Гкал

Q - количество потребленной тепловой энергии, Гкал.

t1 - температура (энтальпия) теплоносителя в подающем трубопроводе, °С

tхв - температура (энтальпия) холодной воды, °С

G2 - расход теплоносителя в обратном трубопроводе, т (м.куб.)

t2 - температура (энтальпия) теплоносителя в обратном трубопроводе, °С

Первая часть формулы (G1 * (t1 - tхв)) считает сколько пришло Гкал, вторая часть формулы (G2 * (t2 - tхв)) считает сколько вышло Гкал.

По формуле [ 3] теплосчетчик посчитает все Гкал одной цифрой: на отопление, на водоразбор горячей воды при открытой системе, погрешность приборов, аварийные утечки.

Если при открытой системе теплоснабжения необходимо выделить количество Гкал, пошедших на ГВС, то могут понадобиться дополнительные расчеты. Все зависит от того, как организован учет. Есть ли на трубе ГВС приборы, подключенные к теплосчетчику, или там стоит вертушка.

Если приборы есть, то теплосчетчик должен сам все посчитать и выдать отчет, при условии, что все настроено правильно. Если стоит вертушка, то рассчитать количество Гкал пошедших на ГВС можно по формуле. . Не забудьте вычесть Гкал пошедшие на ГВС из общей суммы Гкал по счетчику.

Закрытая система подразумевает, что теплоноситель не берется из системы. Иногда проектанты и монтажники узлов учета забивают в проект и программируют теплосчетчик на другую формулу:

Q = G1 * (t1 - t2) / 1000 = ... ГКал

Qи - количество потребленной тепловой энергии, Гкал.

G1 - расход теплоносителя в подающем трубопроводе, т (м.куб.)

t1 - температура теплоносителя в подающем трубопроводе, °С

t2 - температура теплоносителя в обратном трубопроводе, °С

Если произойдет утечка (аварийная или умышленная), то по формуле теплосчетчик не зафиксирует количество потерянных Гкал. Такая формула не устраивает теплоснабжающие компании, нашу по крайней мере.

Тем не менее есть узлы учета, которые работают по такой формуле расчета. Я сам несколько раз выдавал Потребителям предписания, чтобы перепрограммировали теплосчетчик. При том, что когда Потребитель приносит отчет в теплоснабжающую компанию, то НЕ видно по какой формуле ведется расчет, можно просчитать конечно, но просчитывать вручную всех Потребителей крайне затруднительно.

Кстати, из тех теплосчетчиков для поквартирного учета теплоты, которые я видел, ни один не предусматривает измерение расхода теплоносителя в прямом и обратном трубопроводе одновременно. Соответственно, посчитать количество потерянных, например при аварии, Гкал невозможно, а также количество потерянного теплоносителя.

Условный пример:

Исходные данные:

Закрытая система отопления. Зима.
теплоэнергия - 885,52 руб. / Гкал
сетевая вода - 12,39 руб. / м.куб.

теплосчетчик выдал следующий отчет за сутки:

Допустим, что на следующий день произошла утечка, авария например, утекло 32 м.куб.

теплосчетчик выдал следующий суточный отчет:

Погрешность расчетов.

При закрытой системе теплоснабжения и при отсутствии утечек, как правило, расход в подающем трубопроводе больше, чем расход в обратном. Т. е. приборы показывают, что заходит одно количество теплоносителя, а выходит немного меньше. Это считается нормой. В системе теплопотребления могут быть нормативные потери, маленький процентик, небольшие подтеки, протечки и т.п.

Кроме этого, приборы учета несовершенны, у каждого прибора есть допустимая погрешность, установленная заводом изготовителем. Поэтому бывает, что при закрытой системе заходит одно количество теплоносителя, а выходит больше. Это тоже нормально, если разница в пределах допустимой погрешности.

(см. Правила учета тепловой энергии и теплоносителя п.5.2. Требования к метрологическим характеристикам приборов учета)

Погрешность(%) = (G1-G2)/(G1+G2)*100

Пример, если погрешность одного расходомера, установленная заводом изготовителем ±1%, то суммарная допустимая погрешность составляет ±2%.


При установке теплосчетчика и расходомеров горячей воды всегда возникает вопрос - насколько показания измеряемые приборами учета достоверны. Любые измерительные приборы имеют определенную погрешность измерений. Поэтому при измерении расхода воды показания измерительных приборов могут не соответствовать фактическому расходу воды. В соответствии с правилами учета тепловой энергии и теплоносителя относительная погрешность измерений не должна превышать +/-2% от эталонного значения. Эталонное значение расхода можно получить только при использовании эталонного средства измерений. Процедура сравнения показаний эталона и показаний проверяемого расходомера называется поверкой. Если водомер, расходомер прошел поверку, то считается, что фактический расход находится в диапазоне от 0,98X до 1,02X, где X – показание расходомера , водомера. Открывая кран и сливая воду, например 3 м3, по показаниям водомера, означает, что фактическое значение расхода может быть в диапазоне от 2,94 до 3,06 м3. К сожалению, если расходомер один, то его показания проверить можно только с использованием дополнительного образцового средства измерений, например контрольного водомера или мерной емкости (поверка методом сличения показаний) или взвешивания пролитой воды на контрольных весах (поверка весовым методом).

Несколько лучше обстоит ситуация в общедомовых системах учета тепловой энергии и горячей воды. Если система теплопотребления закрытая, т.е. отсутствует потребление воды из системы на нужды горячего водоснабжения, то должно выполняться равенство расходов М1=М2 при измерении расхода водомерами как показано на рис.1. Водомеры или расходомеры при учете тепловой энергии устанавливаются в паре на подающем и обратном трубопроводе. Тепловычислитель и датчики температуры для упрощения не показаны. Баланс расходов или равенство М1=М2, как правило, не выполняется по вышеуказанной причине – погрешности расходомеров . В данном случае допустимое расхождение показаний будет определяться следующим выражением
+/-((М1+М2)/2)*0,04>=(М1-М2) или +/-(М1+М2)*0,02>=(М1-М2).
Рассмотрим выражение подробнее. Левая часть выражения определяет допустимое значение не баланса (+/-4% или в долях 0,04, так как расходомера два, то погрешности водомеров суммируются) от среднего значения показаний водомеров (М1+М2)/2. В правой части вычисляется величина не баланса расходов . Рассмотрим пример. Фактический расход в системе составляет 100 м3. Водомер или расходомер на подающем трубопроводе показал измеренное значение М1=98 м3, а расходомер на обратном трубопроводе М2=102 м3. В данном случае оба водомера измеряют в пределах допустимой погрешности +/-2%. Проверим данное утверждение по приведенному выражению
+/-(98+102)0,02=+/-4>=(98-102)=-4.
Водомеры измеряют в пределах правил учета, что подтверждается выполнением равенства. Отрицательная разность измеренных расходов -4 м3 объясняется тем, что погрешность может быть как положительной, так и отрицательной. В первом случае водомер будет завышать показания, во втором занижать.

В рассмотренном примере установленный на подаче водомер занижает показания, а водомер установленный на обратном трубопроводе завышает, поэтому разность расходов отрицательная, и данный факт не является неисправностью приборов. Все в допустимых пределах. Крайне не благоприятная ситуация если оба расходомера завышают или занижают измеряемые значения. В этом случае определить погрешность возможно только при поверки приборов.

Рассмотрим открытую систему теплопотребления, в которой теплоноситель из системы используется на нужды горячего водоснабжения рис.2.

Так как система открытая то М3=Мгвс, где Мгвс – расход на горячее водоснабжение, то уравнение баланса будет выглядеть следующим образом М1=М2+Мгвс или М1=М2+М3. по аналогии получаем уравнение проверки соблюдения баланса в данной системе с учетом погрешностей водомеров, которое будет выглядеть следующим образом:
+/-((М1+М2+М3)/3)*0,06>=(М1-М2-М3)
или
+/-(М1+М2+М3)0,02>=(М1-М2-М3).

Схема представленная на рис.3 является открытой системой с циркуляцией горячей воды. Уравнение баланса для такой системы М1=М2+Мгвс, где Мгвс=М3-М4, следовательно М1=М2+М3-М4.

По аналогии получаем уравнение проверки баланса для данной системы:
+/-((М1+М2+М3+М4)/4)*0,08>=(М1-М2-М3+М4)
или
+/-((М1+М2+М3+М4)0,02>=(М1-М2-М3+М4).

Недавно на форуме НПО «Тепловизор» был задан вопрос: «Теплосчетчик, как известно, имеет погрешность в измерениях расхода, температуры... Вопрос в вот в чем: скажем, за сутки через расходомер пришло 100 кубов теплоносителя, ушло 99 (по показаниям счетчика), погрешность измерения 1% (в пределах погрешности измерния 2%). В энергоснабжающей организации спрашивают, куда делся 1 куб, и как они будут считать расходы воды. Как с ними спорить, что это в пределах погрешности прибора, на что апеллировать? На какой нормативный документ сослаться?». Поскольку эта тема актуальна для многих потребителей, мы решили выложить небольшую статью.

Отвечая на Ваш вопрос, заранее вынуждены извиниться за дидактический характер ответа. Подобные вопросы находят ответ в основах теории измерений, являющейся таким же элементом технической культуры, да и культуры вообще, как например, основы философии, математики и физики.

Все измерительные процессы и средства не идеальны, т.е. при измерении с помощью них возникают ошибки – отклонения от истинного значения измеряемой величины – длины, объема, массы и пр. Более того, каждое измерение даже на одном и том же измерительном средстве зачастую дает разные результаты. Максимальная относительная величина возможных односторонних отклонений от истинного значения измеряемой величины является неотъемлемой и важнейшей характеристикой конкретного измерительного средства будь это линейка, весы, счетчик-расходомер и т.п. Эта характеристика называется погрешностью измерительного средства и выражается в процентах, или долях процента. Таким образом зона отклонений показаний измерительного средства от истинного значения, в силу симметрии этих отклонений, равна удвоенной погрешности средства измерения. Эта зона является зоной неопределенности значения измеряемой величины. То есть истинное значение измеряемой величины может быть любым находящимся в пределах этой зоны.

Измерения утечек или подмесов теплоносителя с помощью счетчиков-расходомеров, установленных на подающем и обратном трубопроводах, являются разностными или непрямыми измерениями, т.е. такими, где значение измеряемой величины определяется в процессе математической обработки результатов двух и более измерений.

Для разностных измерений, если не предусмотрены специальные мероприятия по взаимопривязке измерительных средств, среднестатистически зона неопределенности увеличивается в корень из двух раз. Относительная погрешность таких измерений гиперболически нарастает с уменьшением измеряемой разности. Так для приведенного Вами случая относительная погрешность измерения величины предполагаемой утечки в одну тонну (при вычислении объема следует иметь в виду, что вода в системе отопления при охлаждении ее с 90° С до 60° С уменьшает удельный объем на 1,9%) на уровне прошедших 100 тонн для счетчиков–расходомеров класса 1,0 превышает 100%, что противоречит требованиям пункта 5.2.4. «Правил учета тепловой энергии и теплоносителя», согласно которому «Водосчетчики должны обеспечивать измерение массы (объема) теплоносителя с относительной погрешностью не более 2%...». Следует отметить, что в приведенном Вами примере относительная погрешность измерения утечки в разностной схеме будет тогда удовлетворять требованиям «Правил учета…», когда уровень утечки будет превышать 71 тонну, поэтому «Правила учета…» предусматривают определение массы (объема) теплоносителя, израсходованного на подпитку и водоразбор, прямым измерением с помощью отдельно установленных водосчетчиков на трубопроводах подпитки и водоразбора ГВС. Таким образом, вопрос-гипотеза инспектора теплоснабжающей организации о суточной утечке в теплосистеме потребителя 1 тонны метрологически и юридически не обоснован.

Если величина расхождения показаний измерительных средств используемых в разностных измерениях меньше зоны неопределенности (Ваш пример), то отсутствует взаимооднозначное соответствие между измеряемой величиной и результом измерения, и возможен только вероятностно-логический анализ. То есть необходимы дополнительные эксперименты – измерения, позволяющие подтвердить или опровергнуть гипотезу о наличии утечек или подмесов. На практике, если нет возможности непосредственным осмотром системы теплоснабжения подтвердить отсутствие утечек, закрывают задвижку на прямом трубопроводе, фиксируя показания расходомеров и манометров на обоих трубопроводах. Далее закрывают задвижку на обратном трубопроводе, также фиксируя показания тех же приборов. На третьем этапе открывают задвижку на прямом трубопроводе, также фиксируя показания тех же приборов. После чего все задвижки возвращаются в исходное состояние (как до начала работ). Современные теплосчетчики и счетчики-расходомеры, устанавливаемые на узлах учета, если верить заявляемым на них характеристикам, имеют широкий диапазон измеряемых расходов, что и позволяет фиксировать расходы с относительной погрешностью не хуже 2% на уровне 1% от номинального. Учитывая, что задвижки зачастую полностью не перекрывают расход, в итоге мы будем иметь таблицу значений расходов и давлений по прямому и обратному трубопроводам для всех состояний задвижек.

№ п/п

Состояние задвижек

Показания

Расходомеров, т

Манометров, МПа

на трубопроводах

обратном

обратном

обратном

G 2 прямой

G 2 обратный

G 3 прямой

G 3 обратный

G 4 прямой

G 4 обратный

*Расходы определены из примера 100 тонн за 24 часа.

И положительное значение расхода связанного с утечкой определим из:

G 1 ут = G 4 прямой - G 2 прямой;

G 2 ут = G 4 обратный - G 2 обратный;

При этом рабочее значение утечки, в силу ее гидравлической близости либо к прямому, либо к обратному трубопроводу, будет находиться между значениями G 1 ут < G рабочее ут < G 2 ут.

Счетчик – неотъемлемый элемент электросетей, функцией которого является учет потребления энергии. Как и любое другое измерительное устройство, он обладает определенным значением точности производимых замеров и склонен к погрешностям при подсчете. В норме отклонения, как правило, не превышают 1-2 процентов в ту или иную сторону. Но что делать, если показатели счетчика откровенно не соответствуют реальному потреблению электроэнергии? Ведь, если устройство завышает показания – это чревато лишними расходами на счета за свет, а при заниженных цифрах – возможны претензии и санкции со стороны компании, осуществляющих электроснабжение. Разобраться с этим, а также определить корректность работы измерительного прибора поможет эта статья.

При проверке электросчетчика первым делом следует выяснить, не склонно ли устройство к самоходу – самопроизвольной работе при отсутствии электрических нагрузок. Для этого необходимо отключить всех потребителей, а еще лучше – выкрутить пробки или перевести автоматические предохранители в неактивное положение. Важно, чтобы сам счетчик оставался под напряжением. Затем следует обратить внимание на индикаторы прибора: диск индукционного электросчетчика не должен самопроизвольно осуществлять движения, а светодиодный индикатор электронного устройства – не должен мерцать.

Если в течении 15 минут отключения электроприборов наблюдались заметные передвижения диска или импульсы светового индикатора – можно говорить о присутствии самохода. В таких случаях рекомендуется обратиться к компании-поставщику электроэнергии, с целью временной замены учетного прибора и его ремонта.

Если явление самохода не было выявлено – следует переходить к следующему этапу проверки.

Для этого эксперимента необходим любой электроприбор, мощность которого вы точно знаете. Подойдет лампа накаливания, мощностью 100 Ватт или другое устройство, потребляемая мощность которого отличается стабильным показателем, а также – секундомер.

Предварительно необходимо отключить все потребляющие электроприборы из сети. Те из них, что находятся в режиме ожидания и неактивны на данный момент – следует полностью обесточить, вынув вилку из розетки.

Необходимо включить в сеть только то устройство, которое послужит экспериментальным эталоном измерения. Запускаем секундомер и отсчитываем время совершения счетчиком 5-10 полных оборотов диска или время между 10-20 импульсами светодиода электронного прибора.

Затем вычисляем время одного импульса/оборота, по формуле t=T/n, где T – общее время, n-количество оборотов/импульсов.

После этого необходимо узнать передаточное число счетчика (количество оборотов/импульсов, равное потребленной энергии в объеме 1 кВтч). Как правило, эта характеристика наносится на панель прибора.

Погрешность счетчика подсчитывается с помощью следующей формулы:

E = (P*t*x/3600 – 1) *100%

Где E – погрешность электросчетчика в процентах (%), P – Мощность потребляющего устройства в киловаттах (кВт), t – время одного импульса в секундах (с), x – передаточное число учетного прибора, а 3600 – количество секунд в одном часу.

Например, проверим электронный счетчик, с передаточным числом 4000 импульсов/кВтч (как на иллюстрации). В качестве тестового прибора – используем «лампочку Ильича», мощностью 100 Ватт (0.1 кВт). Засекаем с помощью таймера время, за которое счетчик совершит 20 импульсов, получаем T=186 с. Рассчитываем время одного импульса, поделив 186 на 20, получаем 9.3 с.

Значит, E = (0.1*9.3*4000/3600 – 1)*100%, что на практике равно 3.3%. Так как результатом стало отрицательное число – счетчик работает с отставанием, которое составляет немногим более 3%.

Так как погрешность небольшая, а потребление лампы составляет не точно 100 Вт (может быть 95 или 110, например) – столь малым отклонениям значения придавать не следует, и можно считать работу учетного прибора нормальной.

В случае если электроприбор, используемый для проверки, обладает фиксированным потреблением, которое остается стабильным, а секундомер дает абсолютную точность - то счетчик может считаться таким, который имеет погрешность выше нормы - в случае отклонения полученных результатов от нормы более, чем на показатель, соответствующий классу точности (класс точности 2, например, означает допустимыми отклонения +-2%).

Недавно на форуме НПО «Тепловизор» был задан вопрос:
«Теплосчетчик, как известно, имеет погрешность в измерениях расхода,
температуры... Вопрос в вот в чем: скажем, за сутки через расходомер пришло 100
кубов теплоносителя, ушло 99 (по показаниям счетчика), погрешность измерения 1%
(в пределах погрешности измерния 2%). В энергоснабжающей организации спрашивают,
куда делся 1 куб, и как они будут считать расходы воды. Как с ними спорить, что
это в пределах погрешности прибора, на что апеллировать? На какой нормативный
документ сослаться?». Поскольку эта тема актуальна для многих потребителей, мы
решили выложить небольшую статью.

Отвечая на Ваш вопрос, заранее вынуждены извиниться за
дидактический характер ответа. Подобные вопросы находят ответ в основах теории
измерений, являющейся таким же элементом технической культуры, да и культуры
вообще, как например, основы философии, математики и физики.

Все измерительные процессы и средства не идеальны, т.е. при
измерении с помощью них возникают ошибки - отклонения от истинного значения
измеряемой величины - длины, объема, массы и пр. Более того, каждое измерение
даже на одном и том же измерительном средстве зачастую дает разные результаты.
Максимальная относительная величина возможных односторонних отклонений от
истинного значения измеряемой величины является неотъемлемой и важнейшей
характеристикой конкретного измерительного средства будь это линейка, весы,
счетчик-расходомер и т.п. Эта характеристика называется погрешностью
измерительного средства и выражается в процентах, или долях процента. Таким
образом зона отклонений показаний измерительного средства от истинного значения,
в силу симметрии этих отклонений, равна удвоенной погрешности средства
измерения. Эта зона является зоной неопределенности значения измеряемой
величины. То есть истинное значение измеряемой величины может быть любым
находящимся в пределах этой зоны.

Измерения утечек или подмесов теплоносителя с помощью
счетчиков-расходомеров, установленных на подающем и обратном трубопроводах,
являются разностными или непрямыми измерениями, т.е. такими, где значение
измеряемой величины определяется в процессе математической обработки результатов
двух и более измерений.

Для разностных измерений, если не предусмотрены специальные
мероприятия по взаимопривязке измерительных средств, среднестатистически зона
неопределенности увеличивается в корень из двух раз. Относительная погрешность
таких измерений гиперболически нарастает с уменьшением измеряемой разности. Так
для приведенного Вами случая относительная погрешность измерения величины
предполагаемой утечки в одну тонну (при вычислении объема следует иметь в виду,
что вода в системе отопления при охлаждении ее с 90° С
до 60° С
уменьшает удельный объем на 1,9%) на уровне прошедших 100 тонн для
счетчиков-расходомеров класса 1,0 превышает 100%, что противоречит требованиям
пункта 5.2.4. «Правил учета тепловой энергии и теплоносителя», согласно которому
«Водосчетчики должны обеспечивать измерение массы (объема) теплоносителя с
относительной погрешностью не более 2%...». Следует отметить, что в приведенном
Вами примере относительная погрешность измерения утечки в разностной схеме будет
тогда удовлетворять требованиям «Правил учета…», когда уровень утечки будет
превышать 71 тонну, поэтому «Правила учета…» предусматривают определение массы
(объема) теплоносителя, израсходованного на подпитку и водоразбор, прямым
измерением с помощью отдельно установленных водосчетчиков на трубопроводах
подпитки и водоразбора ГВС. Таким образом, вопрос-гипотеза инспектора
теплоснабжающей организации о суточной утечке в теплосистеме потребителя 1 тонны
метрологически и юридически не обоснован.

Если величина расхождения показаний измерительных средств
используемых в разностных измерениях меньше зоны неопределенности (Ваш пример),
то отсутствует взаимооднозначное соответствие между измеряемой величиной и
результом измерения, и возможен только вероятностно-логический анализ. То есть
необходимы дополнительные эксперименты - измерения, позволяющие подтвердить или
опровергнуть гипотезу о наличии утечек или подмесов. На практике, если нет
возможности непосредственным осмотром системы теплоснабжения подтвердить
отсутствие утечек, закрывают задвижку на прямом трубопроводе, фиксируя показания
расходомеров и манометров на обоих трубопроводах. Далее закрывают задвижку на
обратном трубопроводе, также фиксируя показания тех же приборов. На третьем
этапе открывают задвижку на прямом трубопроводе, также фиксируя показания тех же
приборов. После чего все задвижки возвращаются в исходное состояние (как до
начала работ). Современные теплосчетчики и счетчики-расходомеры, устанавливаемые
на узлах учета, если верить заявляемым на них характеристикам, имеют широкий
диапазон измеряемых расходов, что и позволяет фиксировать расходы с
относительной погрешностью не хуже 2% на уровне 1% от номинального. Учитывая,
что задвижки зачастую полностью не перекрывают расход, в итоге мы будем иметь
таблицу значений расходов и давлений по прямому и обратному трубопроводам для
всех состояний задвижек.

№ п/п

Состояние задвижек

Показания

Расходомеров, т

Манометров, МПа

на трубопроводах

обратном

обратном

обратном

G 2 прямой

G 2 обратный

G 3 прямой

G 3 обратный

G 4 прямой

G 4 обратный

*Расходы определены из примера
100 тонн за 24 часа.

И положительное значение расхода связанного с утечкой определим
из:

G 1 ут = G 4 прямой -
G 2 прямой;

G 2 ут = G 4 обратный -
G 2 обратный;

При этом рабочее значение утечки, в силу ее гидравлической
близости либо к прямому, либо к обратному трубопроводу, будет находиться между
значениями G 1 ут < G рабочее ут <
G 2 ут.