Чем отличаются белые карлики от обычных звезд. Загадочные белые карлики


Белые карлики: остывающие звезды во вселенной

Белые карлики - проэволюционировавшие с массой, не превышающей предел Чандрасекара (максимальная масса, при которой звезда может существовать как белый карлик), лишённые собственных источников термоядерной энергии.

Белые карлики представляют собой компактные звёзды с массами, сравнимыми или больше массы , но с радиусами в 100 раз меньше и, соответственно, болометрическими светимостями в ~10 000 раз меньшими солнечной. Средняя плотность вещества белых карликов в пределах их фотосфер 105-109 г/см³, что почти в миллион раз выше плотности звёзд главной последовательности. По распространённости белые карлики составляют, по разным оценкам, 3-10 % звёздного населения нашей . Неопределённость оценки обусловлена трудностью наблюдения удалённых белых карликов из-за их малой светимости.

Видимое движение Сириуса по небесной сфере (по Фламмариону)

Первым открытым белым карликом стала звезда 40 Эридана B в тройной системе системе 40 Эридана, которую ещё в 1785 году Вильям Гершель включил в каталог двойных звёзд. В 1910 году Генри Норрис Расселл обратил внимание на аномально низкую светимость 40 Эридана B при её высокой цветовой температуре, что и послужило впоследствии выделению подобных звёзд в отдельный класс белых карликов.

Вторым и третьим открытыми белыми карликами стали Сириус B и Процион B. В 1844 году директор Кёнигсбергской обсерватории Фридрих Бессель, анализируя данные наблюдений, которые велись с 1755 года, обнаружил, что Сириус, ярчайшая звезда неба, и Процион периодически, хотя и весьма слабо, отклоняются от прямолинейной траектории движения по небесной сфере. Бессель пришёл к выводу, что у каждой из них должен быть близкий спутник. Сообщение было встречено скептически, поскольку слабый спутник оставался ненаблюдаемым, а его масса должна была быть достаточно велика - сравнимой с массой Сириуса и Проциона, соответственно.

В январе 1862 года Элвин Грэхэм Кларк, юстируя 18-дюймовый рефрактор, самый большой на то время телескоп в мире (Dearborn Telescope), впоследствии поставленный семейной фирмой Кларков в обсерваторию Чикагского университета, обнаружил в непосредственной близости от Сириуса тусклую звёздочку. Это был спутник Сириуса, Сириус B, предсказанный Бесселем. А в 1896 году американский астроном Д. М. Шеберле открыл Процион B, подтвердив тем самым и второе предсказание Бесселя.

В 1915 году американский астроном Уолтер Сидней Адамс измерил спектр Сириуса B. Из измерений следовало, что его температура не ниже, чем у Сириуса A (по современным данным, температура поверхности Сириуса B составляет 25 000 K, а Сириуса A - 10 000 K), что, с учётом его в 10 000 раз более низкой светимости, чем у Сириуса A, указывает на очень малый радиус и, соответственно, высокую плотность - 106 г/см³ (плотность Сириуса ~0,25 г/см³, плотность Солнца ~1,4 г/см³).

В 1917 году Адриан ван Маанен открыл ещё один белый карлик - звезду ван Маанена в созвездии Рыб.

В 1922 году Виллем Якоб Лейтен предложил называть такие звёзды «белыми карликами».

В начале XX века Герцшпрунгом и Расселлом была открыта закономерность в отношении спектрального класса (то есть температуры) и светимости звёзд - диаграмма Герцшпрунга - Расселла (Г-Р диаграмма). Казалось, что всё разнообразие звёзд укладывается в две ветви Г-Р диаграммы - главную последовательность и ветвь красных гигантов. В ходе работ по накоплению статистики распределения звёзд по спектральному классу и светимости Расселл обратился в 1910 году к профессору Эдуарду Пикерингу. Дальнейшие события Расселл описывает так:

«Я был у своего друга … профессора Э. Пиккеринга с деловым визитом. С характерной для него добротой он предложил получить спектры всех звёзд, которые Хинкс и я наблюдали … с целью определения их параллаксов. Эта часть казавшейся рутинной работы оказалась весьма плодотворной - она привела к открытию того, что все звёзды очень малой абсолютной величины (то есть низкой светимости) имеют спектральный класс M (то есть очень низкую поверхностную температуру). Как мне помнится, обсуждая этот вопрос, я спросил у Пиккеринга о некоторых других слабых звёздах…, упомянув, в частности, 40 Эридана B. Ведя себя характерным для него образом, он тут же отправил запрос в офис (Гарвардской) обсерватории, и вскоре был получен ответ (я думаю, от миссис Флеминг), что спектр этой звезды - A (то есть высокая поверхностная температура). Даже в те палеозойские времена я знал об этих вещах достаточно, чтобы сразу же осознать, что здесь имеется крайнее несоответствие между тем, что мы тогда назвали бы „возможными“ значениями поверхностной яркости и плотности. Я, видимо, не скрыл, что не просто удивлён, а буквально сражён этим исключением из того, что казалось вполне нормальным правилом для характеристик звёзд. Пиккеринг же улыбнулся мне и сказал: „Именно такие исключения и ведут к расширению наших знаний“ - и белые карлики вошли в мир исследуемого»

Удивление Расселла вполне понятно: 40 Эридана B относится к относительно близким звёздам, и по наблюдаемому параллаксу можно достаточно точно определить расстояние до неё и, соответственно, светимость. Светимость 40 Эридана B оказалась аномально низкой для её спектрального класса - белые карлики образовали новую область на Г-Р диаграмме. Такое сочетание светимости, массы и температуры было непонятно и не находило объяснения в рамках стандартной модели строения звёзд главной последовательности, разработанной в 1920-х годах.

Высокая плотность белых карликов оставалась необъяснимой в рамках классической физики и астрономии и нашла объяснение лишь в рамках квантовой механики после появления статистики Ферми - Дирака. В 1926 году Фаулер в статье «О плотной материи» («On dense matter», Monthly Notices R. Astron. Soc. 87, 114-122) показал, что, в отличие от звёзд главной последовательности, для которых уравнение состояния основывается на модели идеального газа (стандартная модель Эддингтона), для белых карликов плотность и давление вещества определяются свойствами вырожденного электронного газа (ферми-газа).

Следующим этапом в объяснении природы белых карликов стали работы Якова Френкеля, Э. Стоунера и Чандрасекара. В 1928 году Френкель указал, что для белых карликов должен существовать верхний предел массы, то есть эти звёзды с массой выше определённого предела неустойчивы и должны коллапсировать. К этому же выводу независимо пришёл в 1930 году Э. Стоунер, который дал правильную оценку предельной массы. Более точно её вычислил в 1931 году Чандрасекар в работе «Максимальная масса идеального белого карлика» («The maximum mass of ideal white dwarfs», Astroph. J. 74, 81-82) (предел Чандрасекара) и независимо от него в 1932 году Л. Д. Ландау.

Решение Фаулера объяснило внутреннее строение белых карликов, но не прояснило механизм их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи: мысль астронома Эрнста Эпика, что красные гиганты образуются из звёзд главной последовательности в результате выгорания ядерного горючего, и предположение астронома Василия Фесенкова, сделанное вскоре после Второй мировой войны, что звёзды главной последовательности должны терять массу, и такая потеря массы должна оказывать существенное влияние на эволюцию звёзд. Эти предположения полностью подтвердились.

Строение звезды главной последовательности солнечного типа и красного гиганта с изотермическим гелиевым ядром и слоевой зоной нуклеосинтеза (масштаб не соблюдён).

В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода - нуклеосинтез с образованием гелия (см. цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатию и, соответственно, к повышению температуры и плотности в её ядре. Рост температуры и плотности в звёздном ядре ведёт к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.

При температурах порядка 108 К кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера: два ядра гелия (4He, альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия 8Be.

Несмотря на весьма низкую равновесную концентрацию 8Be (например, при температуре ~108 К отношение концентраций / ~10−10), скорость такой тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока.

Следует, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода. По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются всё более высокие температуры, и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступивших в реакцию.

Дополнительным фактором, по-видимому, влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции и реакций синтеза более тяжёлых ядер с механизмом нейтринного охлаждения: при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро.

Популяция белых карликов в шаровом звёздном скоплении NGC 6397. Синие квадраты - гелиевые белые карлики, фиолетовые кружки - «нормальные» белые карлики с высоким содержанием углерода.

В случае красных гигантов с относительно небольшой массой (порядка солнечной) изотермические ядра состоят, в основном, из гелия, в случае более массивных звёзд - из углерода и более тяжёлых элементов. Однако в любом случае плотность такого изотермического ядра настолько высока, что расстояния между электронами образующей ядро плазмы становятся соизмеримыми с их длиной волны Де Бройля, то есть выполняются условия вырождения электронного газа. Расчёты показывают, что плотность изотермических ядер соответствует плотности белых карликов, то есть ядрами красных гигантов являются белые карлики.

Протопланетарная туманность HD 44179: асимметричный выброс газопылевой материи красным гигантом.

Ядерные реакции в красных гигантах происходят не только в ядре: по мере выгорания водорода в ядре, нуклеосинтез гелия распространяется на ещё богатые водородом области звезды, образуя сферический слой на границе бедных и богатых водородом областей. Аналогичная ситуация возникает и с тройной гелиевой реакцией: по мере выгорания гелия в ядре она также сосредотачивается в сферическом слое на границе между бедными и богатыми гелием областями. Светимость звёзд с такими «двухслойными» областями нуклеосинтеза значительно возрастает, достигая порядка нескольких тысяч светимостей Солнца, звезда при этом «раздувается», увеличивая свой диаметр до размеров земной орбиты. Зона нуклеосинтеза гелия поднимается к поверхности звезды: доля массы внутри этой зоны составляет ~70 % массы звезды. «Раздувание» сопровождается достаточно интенсивным истечением вещества с поверхности звезды, наблюдаются такие объекты как протопланетарные туманности.

Планетарная туманность NGC 3132: в центре двойная звезда - аналог Сириуса.

Такие звёзды явно нестабильны, и в 1956 году астроном и астрофизик Иосиф Шкловский предложил механизм образования планетарных туманностей через сброс оболочек красных гигантов, при этом обнажение изотермических вырожденных ядер таких звёзд приводит к рождению белых карликов. Точные механизмы потери массы и дальнейшего сброса оболочки для таких звёзд пока неясны, но можно предположить следующие факторы, способные внести свой вклад в потерю оболочки:

Из-за крайне высокой светимости существенным становится световое давление потока излучения звезды на её внешние слои, что, по расчётным данным, может привести к потере оболочки за несколько тысяч лет.

Вследствие ионизации водорода в областях, лежащих ниже фотосферы, может развиться сильная конвективная неустойчивость. Аналогичную природу имеет солнечная активность, в случае же красных гигантов мощность конвективных потоков должна значительно превосходить солнечную.

В протяжённых звёздных оболочках могут развиваться неустойчивости, приводящие к сильным колебательным процессам, сопровождающимся изменением теплового режима звезды. Наблюдаются волны плотности выброшенной звездой материи, которые могут быть следствиями таких колебаний.

У красных гигантов с «двуслойным» термоядерным источником, перешедших на поздней стадии своей эволюции на асимптотическую ветвь гигантов, наблюдаются термические пульсации, сопровождающиеся «переключением» водородного и гелиевого термоядерных источников и интенсивной потерей массы.

Так или иначе, но достаточно длительный период относительно спокойного истечения вещества с поверхности красных гигантов заканчивается сбросом его оболочки и обнажением его ядра. Такая сброшенная оболочка наблюдается как планетарная туманность. Скорости расширения протопланетарных туманностей составляют десятки км/с, то есть близки к значению параболических скоростей на поверхности красных гигантов, что служит дополнительным подтверждением их образования сбросом «излишка массы» красных гигантов.

Сейчас предложенный Шкловским сценарий конца эволюции красных гигантов является общепринятым и подкреплён многочисленными наблюдательными данными.

Как уже упоминалось, массы белых карликов составляют порядка солнечной, но размеры составляют лишь сотую (и даже меньше) часть солнечного радиуса, то есть плотность вещества в белых карликах чрезвычайно высока и составляет г/см³. При таких плотностях электронные оболочки атомов разрушаются, и вещество представляет собой электронно-ядерную плазму, причём её электронная составляющая представляет собой вырожденный электронный газ. Таким образом, для белых карликов, в отличие от звёзд главной последовательности и гигантов, не существует зависимость масса - светимость.

Вышеприведённое уравнение состояния действительно для холодного электронного газа, но температура даже в несколько миллионов градусов мала по сравнению с характерной ферми-энергией электронов. Вместе с тем, при росте плотности вещества из-за запрета Паули (два электрона не могут иметь одно квантовое состояние, то есть одинаковую энергию и спин), энергия и скорость электронов возрастают настолько, что начинают действовать эффекты теории относительности - вырожденный электронный газ становится релятивистским. Зависимость давления релятивистского вырожденного электронного газа от плотности уже другая. Следствием такого соотношения зависимостей является существование некоторого значения массы звезды, при которой гравитационные силы уравновешиваются силами давления, а при увеличении массы белого карлика его радиус уменьшается. Другим следствием является то, что если масса больше некоторого предела (предел Чандрасекара), то звезда коллапсирует.

Таким образом, для белых карликов существует верхний предел массы. Интересно, что для наблюдаемых белых карликов существует и аналогичный нижний предел: поскольку скорость эволюции звёзд пропорциональна их массе, то мы можем наблюдать маломассивные белые карлики как остатки лишь тех звёзд, которые успели проэволюционировать за время от начального периода звездообразования Вселенной до наших дней.

Спектры белых карликов в шаровом скоплении NGC 6397. «Стандартный» спектр белого карлика спектрального класса DA для сравнения показан сверху (красный).

Спектры белых карликов сильно отличаются от спектров звёзд главной последовательности и гигантов. Главная их особенность - небольшое число сильно уширенных линий поглощения, а некоторые белые карлики (спектральный класс DC) вообще не содержат заметных линий поглощения. Малое число линий поглощения в спектрах звёзд этого класса объясняется очень сильным уширением линий: только самые сильные линии поглощения, уширяясь, имеют достаточную глубину, чтобы остаться заметными, а слабые, из-за малой глубины, практически сливаются с непрерывным спектром.

Особенности спектров белых карликов объясняются несколькими факторами. Во-первых, из-за высокой плотности белых карликов ускорение свободного падения на их поверхности составляет ~108 см/с² (или ~1000 км/с²), что, в свою очередь, приводит к малым протяжённостям их фотосфер, огромным плотностям и давлениям в них и уширению линий поглощения. Другим следствием сильного гравитационного поля на поверхности является гравитационное красное смещение линий в их спектрах, эквивалентное скоростям в несколько десятков км/с. Во-вторых, у некоторых белых карликов, обладающих сильными магнитными полями, наблюдаются сильная поляризация излучения и расщепление спектральных линий вследствие эффекта Зеемана.

Белые карлики выделяются в отдельный спектральный класс D (от англ. Dwarf - карлик), в настоящее время используется классификация, отражающая особенности спектров белых карликов, предложенная в 1983 г. Эдвардом Сионом; в этой классификации спектральный класс записывается в следующем формате:

DA - в спектре присутствуют линии бальмеровской серии водорода, линии гелия не наблюдаются
DB - в спектре присутствуют линии гелия He I, линии водорода или металлов отсутствуют
DC - непрерывный спектр без линий поглощения
DO - в спектре присутствуют сильные линии гелия He II, также могут присутствовать линии He I и H
DZ - только линии металлов, линии H или He отсутствуют
DQ - линии углерода, в том числе молекулярного C2
и спектральные особенности:
P - наблюдается поляризация света в магнитном поле
H - поляризация при наличии магнитного поля не наблюдается
V - звёзды типа ZZ Кита или другие переменные белые карлики
X - пекулярные или неклассифицируемые спектры

Экзотическая двойная система PSR J0348+0432, состоящая из пульсара и белого карлика, который обращается вокруг него за 2,5 часа.

Белые карлики начинают свою эволюцию как обнажившиеся вырожденные ядра красных гигантов, сбросивших свою оболочку - то есть в качестве центральных звёзд молодых планетарных туманностей. Температуры фотосфер ядер молодых планетарных туманностей чрезвычайно высоки - так, например, температура центральной звезды туманности NGC 7293 составляет от 90 000 К (оценка по линиям поглощения) до 130 000 К (оценка по рентгеновскому спектру). При таких температурах большая часть спектра приходится на жёсткое ультрафиолетовое и мягкое рентгеновское излучение.

Система KOI-256, состоящая из красного и белого карликов. Иллюстрация NASA.

Вместе с тем, наблюдаемые белые карлики по своим спектрам преимущественно делятся на две большие группы - «водородные» спектрального класса DA, в спектрах которых отсутствуют линии гелия, которые составляют ~80 % популяции белых карликов, и «гелиевые» спектрального класса DB без линий водорода в спектрах, составляющие большую часть оставшихся 20 % популяции. Причина такого различия состава атмосфер белых карликов долгое время оставалась неясной. В 1984 году Ико Ибен рассмотрел сценарии «выхода» белых карликов из пульсирующих красных гигантов, находящихся на асимптотической ветви гигантов, на различных фазах пульсации. На поздней стадии эволюции у красных гигантов с массами до десяти солнечных в результате «выгорания» гелиевого ядра образуется вырожденное ядро, состоящее преимущественно из углерода и более тяжёлых элементов, окружённое невырожденным гелиевым слоевым источником, в котором идёт тройная гелиевая реакция. В свою очередь, над ним располагается слоевой водородный источник, в котором идут термоядерные реакции цикла Бете превращения водорода в гелий, окружённый водородной оболочкой; таким образом, внешний водородный слоевой источник является «производителем» гелия для гелиевого слоевого источника. Горение гелия в слоевом источнике подвержено тепловой неустойчивости вследствие чрезвычайно высокой зависимости от температуры, и это усугубляется большей скоростью преобразования водорода в гелий по сравнению со скоростью выгорания гелия; результатом становится накопление гелия, его сжатие до начала вырождения, резкое повышение скорости тройной гелиевой реакции и развитие слоевой гелиевой вспышки.

За крайне короткое время (~30 лет) светимость гелиевого источника увеличивается настолько, что горение гелия переходит в конвективный режим, слой расширяется, выталкивая наружу водородный слоевой источник, что ведёт к его охлаждению и прекращению горения водорода. После выгорания избытка гелия в процессе вспышки светимость гелиевого слоя падает, внешние водородные слои красного гиганта сжимаются, и происходит новый поджог водородного слоевого источника.

Ибен предположил, что пульсирующий красный гигант может сбросить оболочку, образовав планетарную туманность, как в фазе гелиевой вспышки, так и в спокойной фазе с активным слоевым водородным источником, и, поскольку поверхность отрыва оболочки зависит от фазы, то при сбросе оболочки во время гелиевой вспышки обнажается «гелиевый» белый карлик спектрального класса DB, а при сбросе оболочки гигантом с активным слоевым водородным источником - «водородный» карлик DA; длительность гелиевой вспышки составляет около 20 % от длительности цикла пульсации, что и объясняет соотношение водородных и гелиевых карликов DA:DB ~ 80:20.

Крупные звёзды (в 7-10 раз тяжелее Солнца) в какой-то момент «сжигают» водород, гелий и углерод и превращаются в белые карлики с богатым кислородом ядром. Звёзды SDSS 0922+2928 и SDSS 1102+2054 с кислородсодержащей атмосферой это подтверждают.

Поскольку белые карлики лишены собственных термоядерных источников энергии, то они излучают за счёт запасов своего тепла. Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, пропорциональна четвёртой степени температуры тела.

Как уже отмечалось, в уравнение состояния вырожденного электронного газа температура не входит - то есть радиус белого карлика и излучающая площадь остаются неизменными: в результате, во-первых, для белых карликов не существует зависимость масса - светимость, но существует зависимость возраст - светимость (зависящая только от температуры, но не от площади излучающей поверхности), и, во-вторых, сверхгорячие молодые белые карлики должны достаточно быстро остывать, так как поток излучения и, соответственно, темп остывания, пропорционален четвёртой степени температуры.

В пределе, после десятков миллиардов лет остывания любой белый карлик должен превратиться в так называемый Чёрный карлик (не излучающий видимый свет). Хотя пока таких объектов во Вселенной не наблюдается (по некоторым подсчетам минимум 1015 млрд. лет требуется для остывания белого карлика до температуры 5K), так как время, прошедшее со времени образования первых звезд во Вселенной, составляет (по современным представлениям) около 13 миллиардов лет, но некоторые белые карлики уже охладились до температур ниже 4000 градусов Кельвина (например белые карлики WD 0346+246 и SDSS J110217, 48+411315.4 с температурами 3700K - 3800K и спектральным классом M0 на расстоянии около 100 световых лет от Солнца), что, наряду с малыми размерами, делает их обнаружение весьма сложной задачей.

Снимок Сириуса в мягком рентгеновском диапазоне. Яркий компонент - белый карлик Сириус Б, тусклый - Сириус А

Температура поверхности молодых белых карликов - изотропных ядер звёзд после сброса оболочек, очень высока - более 2·10 5 К, однако достаточно быстро падает за счёт нейтринного охлаждения и излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT). В рентгеновском диапазоне светимость белых карликов превышает светимость звезд главной последовательности: иллюстрацией могут служить снимки Сириуса, сделанные рентгеновским телескопом «Чандра» - на них белый карлик Сириус Б выглядит ярче, чем Сириус А спектрального класса A1, который в оптическом диапазоне в ~10 000 раз ярче Сириуса Б.

Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвин, а температура фотосферы слишком низка для испускания рентгеновского излучения.

В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х годов профессор Самуил Каплан.

Переменная звезда Мира (ο Кита) в ультрафиолетовом диапазоне. Виден аккреционный «хвост», направленный от основного компонента - красного гиганта к компаньону - белому карлику

При эволюции звёзд различных масс в двойных системах темпы эволюции компонентов неодинаковы, при этом более массивный компонент может проэволюционировать в белый карлик, в то время как менее массивный к этому времени может оставаться на главной последовательности. В свою очередь, при сходе в процессе эволюции менее массивного компонента с главной последовательности и его переходе на ветвь красных гигантов размер эволюционирующей звезды начинает расти до тех пор, пока она не заполняет свою полость Роша. Поскольку полости Роша компонентов двойной системы соприкасаются в точке Лагранжа L1, то на этой стадии эволюции менее массивного компонента чего через точку L1 начинается переток материи с красного гиганта в полость Роша белого карлика и дальнейшая аккреция богатой водородом материи на его поверхность, что приводит к ряду астрономических феноменов:

Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к возникновению карликовых новых (звёзд типа U Gem (UG)) и новоподобных катастрофических переменных звёзд.

Аккреция на белые карлики, обладающие сильным магнитным полем, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения аккрецирующей плазмы в околополярных областях магнитного поля карлика вызывает сильную поляризацию излучения в видимой области (поляры и промежуточные поляры).

Слева - изображение в рентгеновском диапазоне остатков сверхновой SN 1572 типа Ia, наблюдавшейся Тихо Браге в 1572 году. Справа - фотография в оптическом диапазоне, отмечен бывший компаньон взорвавшегося белого карлика

Аккреция на белые карлики богатого водородом вещества приводит к его накоплению на поверхности (состоящей преимущественно из гелия) и разогреву до температур реакции синтеза гелия, что, в случае развития тепловой неустойчивости, приводит к взрыву, наблюдаемому как вспышка новой звезды.

Достаточно длительная и интенсивная аккреция на массивный белый карлик приводит к превышению его массой предела Чандрасекара и гравитационному коллапсу, наблюдаемому как вспышка сверхновой типа Ia.

Откуда берутся белые карлики?

Что станет со звездой в конце ее жизненного пути зависит от массы, которую звезда имела при рождении. Звезды, которые изначально имели большую массу, заканчивают свою жизнь как черные дыры и нейтронные звезды. Звезды малой или средней массы (с массами менее 8 масс Солнца) станут белыми карликами. Типичный белый карлик имеет приблизительно массу Солнца, а по размеру немного превосходит Землю. Белый карлик представляет собой одну из наиболее плотных форм материи, которую по плотности превосходят только нейтронные звезды и черные дыры.

Звезды средней массы, как наше Солнце, живут благодаря переработке водорода в их ядрах в гелий. Этот процесс происходит на Солнце в настоящий момент. Энергия, которую вырабатывает Солнце посредством термоядерного синтеза гелия из водорода, создает внутреннее давление. В следующие 5 миллиардов лет Солнце израсходует запас водорода в ядре.

Звезду можно сравнить со скороваркой. При нагревании герметичного контейнера в нем повышается давление. Похожая вещь происходит в Солнце, конечно, строго говоря, Солнце нельзя назвать герметичным контейнером. Гравитация действует на вещество звезды, пытаясь сжать его, а давление, создаваемое горячим газом в ядре пытается расширить звезду. Баланс между давлением и гравитацией очень тонкий.
Когда у Солнца закончится запас водорода, в этом балансе начнет доминировать гравитация и звезда начнет сжиматься. Однако при сжатии происходит нагревание и часть водорода, оставшаяся во внешних слоях звезды начинает гореть. Эта горящая оболочка водорода расширяет внешние слои звезды. Когда это произойдет, наше Солнце станет красным гигантом, оно станет таким большим, что Меркурий будет полностью поглощен. Когда звезда увеличивается в размерах, она охлаждается. Однако температура ядра красного гиганта увеличивается до тех пор, пока не станет достаточно высокой, чтобы загорелся гелий (синтезированный из водорода). В конце концов, гелий превратится в углерод и более тяжелые элементы. Стадия, в которой Солнце будет красным гигантом, займет 1 миллиард лет, в то время как стадия горения водорода занимает 10 миллиардов.

Шаровое скопление М4. Оптическое изображение с наземного телескопа(слева) и снимок телескопа Хаббла (справа). Белые карлики отмечены кружками. Ссылка:Harvey Richer (University of British Columbia, Vancouver, Canada), M. Bolte (University of California, Santa Cruz) and NASA/ESA

Мы уже знаем, что звезды средней массы как наше Солнце станут красными гигантами. Но что произойдет потом? Наш красный гигант будет производить углерод из гелия. Когда закончится гелий, ядро будет еще не достаточно горячим, чтобы запустить горение углерода. Что теперь?

Поскольку Солнце не будет достаточно горячим для того, чтобы пошел процесс горения углерода, за дело снова возьмется гравитация. При сжатии звезды высвободится энергия, которая приведет к дальнейшему расширению оболочки звезды. Теперь звезда станет еще больше, чем прежде! Радиус нашего Солнца станет больше, чем радиус орбиты Земли!

В этот период Солнце станет нестабильным и будет терять свое вещество. Это продолжится до тех пор, пока звезда полностью не сбросит свои внешние слои. Ядро звезды останется целым и станет белым карликом. Белый карлик будет окружен расширяющейся оболочкой из газа, которая называется планетарная туманность. Туманности называются планетарными, потому что первые наблюдатели считали их похожими на планеты Уран и Нептун. Существует несколько планетарных туманностей, которые можно увидеть в любительский телескоп. Примерно в половине из них в центре можно увидеть белый карлик, при использовании телескопа достаточно скромного размера.

Планетарная туманность является признаком перехода звезды средней массы из стадии красного гиганта в стадию белого карлика. Звезды, сравнимые по массе с нашим Солнцем, превратятся в белые карлики примерно за 75000 лет, постепенно сбрасываю свои оболочки. В конце концов, они, как и наше Солнце, будут постепенно охлаждаться и превратятся в черные глыбы углерода, это процесс займет примерно 10 миллиардов лет.

Наблюдения белых карликов

Существует несколько способов наблюдать белые карлики. Первый открытый белый карлик – звезда компаньон Сириуса, яркой звезды в созвездии большого пса. В 1844 году астроном Фридрих Бессель заметил у Сириуса слабые поступательные и попятные движения, как если бы вокруг него вращался невидимый объект. В 1863 оптики и конструктор телескопов Элван Кларк обнаружил этот таинственный объект. Звезда-компаньон была позже отождествлена с белым карликом. В настоящее время эта пара известна как Сириус А и Сириус B, где В – белый карлик. Орбитальный период этой системы 50 лет.

Стрелка указывает на белый карлик, Сириус B, рядом с большим Сириусом А. Ссылка:McDonald Observatory,NASA/SAO/CXC)

Поскольку белые карлики очень малы и, поэтому труднообнаружимы, двойные системы – один из способов их обнаружить. Как и в случае Сириуса, если звезда имеет необъяснимое движение определенного вида, можно обнаружить, что одиночная звезда на самом деле является кратной системой. При более подробном изучении можно определить, является ли звезда-компаньон белым карликом. Космический телескоп Хаббла с 2.4-метровым зеркалом и улучшенной оптикой успешно наблюдал белые карлики с помощью широкоугольной планетарной камеры. В августе 1995 с помощью этой камеры были проведены наблюдения более 75 белых карликов в шаровом скоплении M4 в созвездии Скорпиона. Эти белые карлики были настолько слабы, что самые яркие из них светили не ярче, чем лампочка 100 Вт находящаяся на расстоянии Луны. М4 находится на расстоянии 7000 световых лет от нас и является ближайшим к нам шаровым скоплением. Его возраст примерно 14 миллиардов лет, вот почему большая часть звезд этого скопления находится в завершающей стадии свой жизни.

Белые карлики - проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара (максимальная масса, при которой звезда может существовать как белый карлик), лишённые собственных источников термоядерной энергии. Белые карлики представляют собой компактные звёзды с массами, сравнимыми или большими, чем масса Солнца, но с радиусами в 100 раз меньшими и, соответственно, болометрическими светимостями в ~10 000 раз меньшими солнечной. Средняя плотность вещества белых карликов в пределах их фотосфер 105-109 г/см 3 , что почти в миллион раз выше плотности звёзд главной последовательности. По распространённости белые карлики составляют, по разным оценкам, 3-10 % звёздного населения нашей Галактики. Неопределённость оценки обусловлена трудностью наблюдения удалённых белых карликов из-за их малой светимости.
Белые карлики представляют собой конечную стадию эволюции небольшой звезды с массой, сравнимой с массой Солнца. Когда в центре звезды, например, как наше Солнце, выгорает весь водород, ее ядро сжимается до больших плотностей, тогда как внешние слои сильно расширяются, и, сопровождаясь общим потускнением светимости, звезда превращается в . Пульсирующий красный гигант затем сбрасывает свою оболочку, поскольку внешние слои звезды слабо связаны с центральным горячим и очень плотным ядром. Впоследствии эта оболочка становится расширяющейся планетарной туманностью. Как видите красные гиганты и белые карлики очень тесно взаимосвязаны. Сжатие ядра происходит до крайне малых размеров, но, тем не менее, не превышает предела Чандрасекара, то есть верхний предел массы звезды, при котором она может существовать в виде белого карлика.

Первым открытым белым карликом стала звезда 40 Эридана B в тройной системе 40 Эридана, которую ещё в 1785 году Вильям Гершель включил в каталог двойных звёзд. В 1910 году Генри Норрис Расселл обратил внимание на аномально низкую светимость 40 Эридана B при её высокой цветовой температуре, что и послужило впоследствии выделению подобных звёзд в отдельный класс белых карликов.

Вторым открытым белым карликом стал Сириус Б — ярчайшая звезда земного неба. В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении Сириуса обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника. Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами.

Третьим открытым белым карликом стал Процион B. В 1844 году директор Кёнигсбергской обсерватории Фридрих Бессель, анализируя данные наблюдений, обнаружил, что Процион периодически, хотя и весьма слабо, отклоняется от прямолинейной траектории движения по небесной сфере. Бессель пришёл к выводу, что у Проциона должен быть близкий спутник. Слабый спутник оставался ненаблюдаемым, а его масса должна была быть достаточно велика - сравнимой с массой Сириуса и Проциона, соответственно. В 1896 году американский астроном Д. М. Шеберле открыл Процион B, подтвердив тем самым предсказание Бесселя.

Происхождение белых карликов

В объяснении генезиса белых карликов ключевую роль сыграли две идеи: мысль астронома Эрнста Эпика, что красные гиганты образуются из звёзд главной последовательности в результате выгорания ядерного горючего, и предположение астронома Василия Фесенкова, сделанное вскоре после Второй мировой войны, что звёзды главной последовательности должны терять массу, и такая потеря массы должна оказывать существенное влияние на . Эти предположения полностью подтвердились.

Белые карлики состоят из углерода и кислорода с небольшими добавками водорода и гелия, однако у массивных сильно проэволюционировавших звезд ядро может состоять из кислорода, неона или магния. В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода - нуклеосинтез с образованием гелия. Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатию и, соответственно, к повышению температуры и плотности в её ядре. Рост температуры и плотности в звёздном ядре ведёт к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.

Белые карлики имееют чрезвычайно высокую плотность(106 г/cм 3). Белый карлик находится в состоянии гравитационного равновесия и его давление определяется давлением вырожденного электронного газа. Поверхностные температуры белого карлика высокие — от 100,000 К до 200,000 К. Массы белых карликов близки к Солнечной. Для белых карликов существует зависимость «масса-радиус», причем чем больше масса, тем меньше радиус. Радиусы большинства белых карликов сравнимы с радиусом Земли.

Жизненный цикл белого карлика, после этого, остается стабилен до самого своего остывания, когда звезда теряет свою светимость и становится невидимой, входя в стадию так называемого « », - конечный результат эволюции, хотя в современной литературе этот термин используется все реже.

2 Происхождение белых карликов

    2.1 Тройная гелиевая реакция и изотермические ядра красных гигантов 2.2 Потеря массы красными гигантами и сброс ими оболочки
3 Физика и свойства белых карликов
    3.1 Зависимость масса-радиус и предел Чандрасекара 3.2 Особенности спектров
4 Классификация белых карликов 5 Астрономические феномены с участием белых карликов
    5.1 Рентгеновское излучение белых карликов 5.2 Аккреция на белые карлики в двойных системах

Примечания
Литература

Введение

Белые карлики - звезды низкой светимости с массами, сопоставимыми с массой Солнца, и высокими эффективными температурами. Название белые карлики связана с цветом первых открытых представителей этого класса - Сириуса B и 40 Эридана B. На диаграмме Герцшпрунга-Рассела они расположены на 10-12 m ниже зрение главной последовательности такого же спектрального класса .

Радиусы белых карликов примерно в 100 раз меньше солнечного, соответственно, их светимость в ~раз меньше солнечной. Плотность вещества белых карликов составляетг / см 3, в миллионы раз больше плотности вещества в звездах главной последовательности. По численности белые карлики составляют 3-10% зрение Галактики. Однако известна лишь небольшая их часть, потому что из-за низкой светимостью обнаружены лишь те, расстояние до которых не превышает 200-300 пк.

По современным представлениям белые карлики - конечный продукт эволюции нормальных звезд с массами от солнечной массы до 8-10 солнечных масс. Они образуются после исчерпания источников термоядерной энергии в недрах звезды и сброса оболочки.

1. История открытия

1.1. Открытия белых карликов

темный" спутник, причем период вращения обоих зрение вокруг общего центра масс должно быть около 50 лет. Сообщение было встречено скептически, поскольку темный спутник оставался невидимым, а его масса должна быть достаточно большой - сравнимой с массой Сириуса.

Я был у своего друга... профессора Э. Пикеринга с деловым визитом. Со свойственной для него добротой он предложил взять спектры всех звезд, Хинксом и я наблюдали с целью... определения их параллаксов. Эта часть работы, казавшейся медленно, оказалась весьма плодотворной - она привела к открытию того, что все звезды очень малой абсолютной величины (т. е. низкой светимости) имеют спектральный класс M (т. е. очень низкую поверхностную температуру). Я вспоминаю, как обсуждая этот вопрос, я спросил у Пикеринга о некоторых других слабые звезды, вспомнил числе 40 Эридана B. Поводя себя характерным для него образом, он сразу же послал запрос в офис (Гарвардской) обсерватории, и вскоре был получен ответ (я считаю, миссис Флеминг), что спектр этой звезды - A (т. е. высокая поверхностная температура). Даже в те "палеозойские" времена я знал об этих вещах достаточно, чтобы сразу же понять, что здесь есть существенное несоответствие между тем, что мы тогда назвали бы "возможными" значениями поверхностной яркости и плотности. Я, пожалуй, не скрыл, что не только удивлен, а просто поражен этим исключением из правила, которое казалось вполне нормальным для характеристики звезд. Пикеринг улыбнулся мне и сказал: "именно такие исключения и приводят к расширению наших знаний" - и белые карлики вошли в мир изучаемого "

Удивление Рассела вполне понятно: 40 Эридана B относится к сравнительно близких звезд, и за параллаксом можно достаточно точно определить расстояние до нее и, соответственно, светимость. Светимость 40 Эридана B оказалась аномально низкой для ее спектрального класса - белые карлики образовали новую область на диаграмме Герцшпрунга-Рассела. Такое сочетание светимости, массы и температуры было непонятным и не находило объяснения в рамках стандартной модели строения звезд главной последовательности, разработанную в 1920-х годах.

Высокая плотность белых карликов оставалась необъяснимой с точки зрения классической физики, однако нашла объяснение в квантовой механике после появления статистики Ферми-Дирака. 1926 года Фаулер в статье "Густая материя" ("Dense matter", Monthly Notices R. Astron. Soc . 87, 114-122 ) Доказал, что, в отличие от звезд главной последовательности, для которых уравнения состояния построено на модели идеального газа (стандартная модель Едингтона), для белых карликов плотность и давление вещества определяются свойствами вырожденного электронного газа (Ферми-газа).

Следующим этапом в объяснении природы белых карликов стали работы и Чандрасекара. 1928 года Френкель указал, что для белых карликов должен существовать верхний предел массы, и 1930 года Чандрасекар в работе "Максимальная масса идеального белого карлика" (" The maximum mass of ideal white dwarfs", Astroph. J. 74, 81-82 ) Доказал, что белые карлики с массой свыше 1,4 солнечной неустойчивые (предел Чандрасекара) и имеют коллапсировать .

2. Происхождение белых карликов

Решение Фаулера объяснил внутреннее строение белых карликов, но не объяснил механизма их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи:

    мнение Е. Эпика, что красные гиганты образуются из звезд главной последовательности в результате выгорания ядерного топлива предположение, сделанное вскоре после Второй мировой войны, что звезды главной последовательности должны терять массу, и такая потеря массы должна существенно влиять на эволюцию звезд.

Эти предположения полностью подтвердились.

2.1. Тройная гелиевая реакция и изотермические ядра красных гигантов

В процессе эволюции звезд главной последовательности происходит "выгорание" водорода - нуклеосинтез с образованием гелия (см. цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатия и, соответственно, к повышению плотности и температуры в ее ядре. Рост плотности и температуры в звездном ядре приводит к условиям, в которых активизируется новый источник термоядерной энергии: выгорания гелия (тройная гелиевая реакция или тройной альфа-процесс), характерное для красных гигантов и сверхгигантов.

При температурах около 10 8 K кинетическая энергия ядер гелия становится достаточной для преодоления кулоновского барьера: два ядра гелия (альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия Be 8:

He 4 + He 4 = Be 8

Большая часть Be 8 еще распадается на две альфа-частицы, но если за короткое время существования ядро Be 8 зиткнется с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C 12:

Be 8 + He 4 = C 12 + 7,3 м эВ.

Несмотря на довольно низкую равновесную концентрацию Be 8 (например, при температуре ~ 10 8 K отношение концентраций / ~, скорость такой тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно сильна, так, для диапазона температур ~ 1-2 ? 10 8 K энерговыделения http://*****/images/ukbase_2__1234.jpg" alt="\ Varepsilon _ {3 \ alpha} = 10 ^ 8 \ rho ^ 2 Y ^ 3 * \ left ({{T \ over {10 ^ 8}}} \ right) ^ {30}" width="210 height=46" height="46">

где выгорания" водорода она близка к единице).

Стоит, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете в пересчете на единицу массы: энерговыделения при "горении" гелия более чем в 10 раз ниже, чем при "горении" водорода. По мере выгорания гелия и исчерпания этого источника энергии в ядре становятся возможными сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются все более высокие температуры и, во-вторых, энерговыделение на единицу массы таких реакций падает с ростом массовых чисел ядер, вступающих в реакцию.

http://*****/images/ukbase_2__519.jpg" alt="\" width="84" height="20 src=">, Т. е. выполняются условия вырождения электронного газа. Расчеты показывают, что плотность изотермических ядер соответствует плотности белых карликов, то есть ядрами красных гигантов есть белые карлики.

нормальные" белые карлики с высоким содержанием углерода.

На фотографии шаровидного звездного скопления NGC 6397 (Рис. 5) идентифицируются белые карлики обоих типов: и гелиевые белые карлики, возникшие при эволюции менее массивных звезд, и углеродные белые карлики - результат эволюции звезд с большей массой.

2.2. Потеря массы красными гигантами и сброс ими оболочки

Ядерные реакции в красных гигантах происходят не только в ядре: по мере выгорания водорода в ядре, нуклеосинтез гелия распространяется на еще богатые водородом области звезды, образуя сферический слой на границе бедных и богатых водород областей. Аналогичная ситуация возникает и с утроенной гелиевой реакции: по мере выгорания гелия в ядре она также сосредотачивается в сферическом слое на границе между бедными и богатыми гелий областями. Светимость звезд с такими "двухслойными" областями нуклеосинтеза значительно возрастает, достигая нескольких тысяч светимости Солнца, звезда при этом "раздувается", увеличивая свой диаметр до размеров земной орбиты. Зона нуклеосинтеза гелия поднимается к поверхности звезды: доля массы внутри этой зоны составляет ~ 70% массы звезды. "Раздувание" сопровождается довольно интенсивным утечкой вещества с поверхности звезды, такие объекты наблюдаются как протопланетарного туманности (см. рис. 6).

Шклов" href="/text/category/shklov/" rel="bookmark">Шкловский предложил механизм образования планетарных туманностей путем сброса оболочек красных гигантов, при этом обнажение изотермических вырожденных ядер таких звезд приводит к образованию белых карликов. Точные механизмы потери массы и последующего сброса оболочки для таких звезд пока неизвестны, но можно предложить такие факторы, которые могут привести к потере оболочки:

    В протяженных звездных оболочках могут развиваться неустойчивости, приводящие к сильным колебательных процессов, сопровождающихся изменением теплового режима звезды. На Рис. 6 четко заметны волны плотности выброшенной звездной материи, которые могут быть последствиями таких колебаний. Вследствие ионизации водорода в областях, лежащих ниже фотосферы может развиться сильная конвективная неустойчивость. Аналогичную природу имеет солнечная активность, в случае красных гигантов мощность конвективных потоков имеет значительно превосходить солнечную. Из-за слишком высокой светимостью существенным становится световое давление потока излучения звезды на ее внешние слои, по расчетным данным, может привести к потере оболочки за несколько тысяч лет.

избытка массы" красных гигантов.

Предложенный Шкловским сценарий эволюции красных гигантов является общепризнанным и подкреплен данным многочисленных наблюдений.

3. Физика и свойства белых карликов

Как уже отмечалось, массы белых карликов близки к солнечной, но их размеры составляют лишь сотую (и даже меньше) часть солнечного, то есть плотность вещества в белых карликах чрезвычайно высока и составляет г / см 3. При такой плотности электронные оболочки атомов разрушаются и вещество становится электронно-ядерной плазмой, причем ее электронная составляющая является вырожденным электронным газом. Давление P такого газа подчиняется зависимости:

где http://*****/images/ukbase_2__17665.jpg" width="180" height="283 src=">

Рис. 8. Зависимость масса-радиус для белых карликов. Вертикальная асимптота соответствует пределу Чандрасекара.

Приведенное выше уравнение состояния действительно для холодного электронного газа, но температура даже в несколько миллионов градусов мала по сравнению с характерной ферми-энергией электронов (). Вместе с тем, при росте плотности вещества через запрет Паули (два электрона не могут иметь одинаковый квантовое состояние, то есть одинаковую энергию и спин), энергия и скорость электронов возрастают настолько, что начинают действовать эффекты теории относительности - вырожденный электронный газ становится релятивистским. Зависимость давления релятивистского вырожденного электронного газа от плотности уже другая:

Для такого уравнения состояния возникает интересная ситуация. Средняя плотность белого карлика http://*****/images/ukbase_2__270.jpg" width="21" height="14 src=">- Масса, а - Радиус белого карлика. Тогда давление http://*****/images/ukbase_2__716.jpg" alt="{P \ over R} \ sim {{M ^ {4/3}} \ over {R ^ 5}}" width="89 height=46" height="46">

Гравитационные силы, противодействующие давления:

есть, хотя перепад давления и гравитационные силы одинаково зависят от радиуса, но они по разному зависят от массы - как ~ и ~ disc"> DA - в спектре есть линии и нет линий гелия. Этот тип ~ 75% белых карликов, они встречаются во всем диапазоне температур; DB - линию ионизированного гелия сильные, линий водорода нет. Гелия в 10 раз больше, температуры - свыше? K; DC - непрерывный спектр, немее линий поглощения с интенсивностью менее 90% от интенсивности непрерывные спектра, температура - до? K; DF - есть линии кальция, нет линий водорода; DG - есть линии кальция, железа, нет линий водорода; DO - линии ионизированного гелия сильные, есть линии нейтрального гелия и (или) водорода. Это горячие белые карлики, их температуры достигает? K

5. Астрономические феномены с участием белых карликов

5.1. Рентгеновское излучение белых карликов

Температура поверхности молодых белых карликов - изотропных ядер звезд после сброса оболочек, очень высока - более 2 ? 10 5 K, однако довольно быстро падает благодаря нейтринных охлаждению и излучению с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT).

Температура поверхности горячих белых карликов - 7 ? 10 4 K, холодных - ~ 5 ? 10 3 K.

Особенностью излучения белых карликов в рентгеновском диапазоне является то, что основным источником рентгеновского излучения в них фотосфера, что очень отличает их от "нормальных" звезд: в последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низкая для образования рентгеновского излучения (см. рис. для них 9).

При отсутствии аккреции белых карликов есть запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию охлаждения белых карликов построил конце 1940-х гг.

5.2. Аккреция на белые карлики в двойных системах

disc"> Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к образованию карликовых новых (звезд типа U Gem (UG)) или новоподобные переменных звезд. Аккреция на белые карлики, имеют сильное магнитное поле, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения акрециюючои плазмы в приполярная областях вызывает сильную поляризацию излучения в видимой области спектра (поляры и промежуточные поляры). Аккреция на белые карлики богатой водородом вещества приводит к его накоплению на поверхности (состоящий преимущественно из гелия) и разогрева до температур реакции синтеза гелия, что в случае развития тепловой неустойчивости, приводит к взрыву, который наблюдается как вспышка новой звезды. Довольно длительная и интенсивная аккреция на массивный белый карлик приводит к превосходит его массой предела Чандрасекара и гравитационного коллапса, который наблюдается как вспышка сверхновой типа Ia (см. рис. 10).

См.. также

    Аккреция Идеальный газ Вырожденный газ Звезда Нуклеосинтез Планетарная туманность Сверхновая Сириус

Примечания

1. ^ а б в Белые карлики - www. franko. / publish / astro / bukvy / b. pdf / / Астрономический энциклопедический словарь - www. franko. / publish / astro / Под общей редакцией и. - Львов: ЛНУ-ГАО НАНУ, 2003. - С. 54-55. - ISBN -X, УДК

Литература

    Deborah Jean Warner. Alvan Clark and Sons: Artists in Optics, Smithsonian Press, 1968 Шкловский, И. С. О природе планетарных туманностей и их ядер / / Астрономический журнал. - Том 33, № 3, 1956. - Сс. 315-329. , . Физические основы строения и эволюции звезд, М., 1981 - nature. ***** / db / msg. html? mid = 1159166 & uri = index. html Звезды: их рождение, жизнь и смерть, М.: Наука, 1984 - shklovsky-ocr. *****/online/shklovsky. htm Киппенхан г. 100 млрд солнц. Рождение, жизнь и смерть звездах, М.: Мир, 1990 - . ru / astro / index. html Физика космоса. Маленькая энциклопедия, М.: Советская Энциклопедия, 1986 - www. *****/db/FK86/

Немецкий астроном Фридрих Вильгельм Бессель в течение ряда лет наблюдал собственные движения на небе двух ярких звёзд - Сириуса и Проциона - и в 1844 г. установил, что обе они движутся не по прямым, а по характерным волнистым траекториям. Открытие натолкнуло учёного на мысль, что каждая из этих звёзд обладает невидимым для нас спутником, т. е. является физически двойной звёздной системой.

Предположение Бесселя вскоре подтвердилось. Американский оптик-шлифовальщик Алван Кларк 31 января 1862 г. при испытании только что изготовленного объектива диаметром 46 см открыл спутник Сириуса. Позднее, в 1896 г., был обнаружен и спутник Проциона. Через некоторое время на основании уже непосредственных телескопических наблюдений взаимного обращения этих звёзд и их спутников астрономам удалось (с помощью закона всемирного тяготения) найти массы каждого из светил. Главные звёзды, названные теперь Сириусом А и Проционом А, оказались массивнее Солнца соответственно в 2,3 и 1,8 раза, а массы их спутников - Сириуса В и Проциона В - составляют 0,98 и 0.65 солнечных масс.

Но Солнце, практически равное по массе Сириусу В, сияло бы с его расстояния почти так же ярко, как Полярная звезда. Так почему же Сириус В в течение 18 лет считался «невидимым спутником»? Может быть, из-за малого углового расстояния между ним и Сириусом А? Не только. Как потом выяснилось, он заведомо недоступен невооружённому глазу из-за своей низкой светимости, в 400 раз уступающей светимости Солнца. Правда, в самом начале XX в. это открытие не показалось особенно странным, так как звёзд малой светимости было известно достаточно много, а связь массы звезды с её светимостью ещё не была установлена. Лишь когда были получены спектры излучения Сириуса В и Проциона В, а также измерений их температуры, стала очевидной «анормальность» этих звёзд.

О чем говорит эффективная температура звезд

В физике есть такое понятие - абсолютно чёрное тело . Нет, это не синоним чёрной дыры - в отличие от неё абсолютно чёрное тело может ослепительно сиять! Абсолютно чёрным оно называется потому, что, по определению, поглощает всё падающее на него электромагнитное излучение. Теория утверждает, что полный световой поток (во всём диапазоне длин волн) с единицы поверхности абсолютно чёрного тела не зависит ни от его строения, ни от химического состава, а определяется только температурой. Согласно закону Стефана-Больцмана, светимость его пропорциональна четвёртой степени температуры. Абсолютно чёрное тело, как и идеальный газ, – это лишь физическая модель, никогда строго не реализующаяся на практике. Однако спектральный состав света звёзд в видимой области спектра довольно близок к «чернотельному». Поэтому можно считать, что модель абсолютно чёрного тела в целом, верно, описывает излучение реальной звезды.

Эффективной температурой звезды называется температура абсолютно чёрного тела, излучающего одинаковое с ней количество энергии с единицы поверхности. Она, вообще говоря, не равна температуре фотосферы звезды. И тем не менее это объективная характеристика, которую можно использовать для оценки других характеристик звезды: светимости, размеров и т. д.

В 10-е гг. XX столетия американский астроном Уолтер Адамс предпринял попытку определить эффективную температуру Сириуса В. Она составила 8000 К, а позднее выяснилось, что астроном ошибся и на самом деле она ещё выше (около 10 000 К). Следовательно, светимость этой звёздочки, если бы она имела размеры Солнца, должна была как минимум в 10 раз превосходить солнечную. Наблюдаемая же светимость Сириуса В, как мы знаем, в 400 раз меньше солнечной, т. е. она оказывается ниже ожидаемой более чем в 4 тыс. раз! Единственный выход из этого противоречия - считать, что Сириус В имеет гораздо меньшую площадь видимой поверхности, а значит, и меньший диаметр. Вычисления показали, что Сириус В по размеру всего лишь в 2,5 раза больше Земли. Но массу-то он сохраняет солнечную - выходит, его средняя плотность должна быть почти в 100 тыс. раз больше, чем у Солнца! Многие астрономы отказывались верить в существование столь экзотических объектов.

Только в 1924 г., в основном благодаря стараниям английского астрофизика Артура Эддингтона, разработавшего теорию внутреннего строения звезды. Компактные спутники Сириуса и Проциона были, наконец осознаны астрономическим сообществом как реальные представители совершенно нового класса звёзд, которые известны теперь как белые карлики. «Белые» - потому что первые представители этого типа были горячими бело-голубыми светилами, «карлики» - потому что у них очень маленькие светимости и размеры.

Результаты спектральных исследований

Как мы уже выяснили, плотность белых карликов во много тысяч раз выше, чем у обычных звёзд. А значит, их вещество должно находиться в каком-то особом, ранее неизвестном физическом состоянии. На это указывали и необычные спектры белых карликов.

Во-первых, их линии поглощения во много раз шире, чем у нормальных звёзд. Во-вторых, линии водорода могут присутствовать в спектрах белых карликов при таких высоких температурах, при каких в спектрах обычных звёзд их нет, так как весь водород оказывается ионизованным. Всё это удалось теоретически объяснить очень высоким давлением вещества в атмосферах белых карликов.

Следующей особенностью спектров этих экзотических звёзд является то, что линии всех химических элементов немного сдвинуты в красную сторону по сравнению с соответствующими линиями в спектрах, полученных в земных лабораториях. Это эффект так называемого гравитационного красного смещения, обусловленного тем, что ускорение силы тяжести на поверхности белого карлика во много раз больше, чем на Земле.

Действительно, из закона всемирного тяготения следует, что ускорение силы тяжести на поверхности звезды прямо пропорционально её массе и обратно пропорционально квадрату радиуса. Массы белых карликов близки к массам нормальных звёзд, а радиусы во много раз меньше. Поэтому ускорение силы тяжести на поверхности белых карликов очень велико: порядка 10 5 - 10 6 м/с 2 . Вспомним, что на Земле оно составляет 9,8 м/с 2 , т. е. в 10 000 - 100 000 раз меньше.

По отождествляемому химическому составу спектры белых карликов подразделяются на две категории: одни с линиями водорода, другие без линий водорода, но с линиями нейтрального либо ионизованного гелия или тяжёлых элементов. «Водородные» карлики подчас имеют существенно более высокую температуру (до 60 000 К и выше), чем «гелиевые» (11 000 - 20 000 К). На основании этого учёные пришли к выводу, что вещество последних практически лишено водорода.

Кроме того, были открыты белые карлики, спектры которых не поддавались отождествлению с известными науке химическими элементами и соединениями. Позднее у этих звёзд обнаружили магнитные поля, в 1000 – 100 000 раз более сильные, чем на Солнце. При таких напряжённостях магнитных полей спектры атомов и молекул неузнаваемо искажаются, поэтому их трудно отождествить.

Белые карлики - вырожденые звезды
В недрах белых карликов плотность может достигать величин порядка 10 10 кг/м 3 . При таких значениях плотности (и даже при меньших, характерных для внешних слоев белых карликов) физические свойства газа существенно меняются и законы идеального газа к нему уже неприменимы. В середине 20-х гг. итальянский физик Энрико Ферми разработал теорию, которая описывает свойства газов с плотностями, характерными для белых карликов. Оказалось, что давление такого газа не определяется его температурой. Оно остаётся высоким, даже если вещество остынет до абсолютного нуля! Газ, обладающий такими свойствами, получил название вырожденного .

В 1926 г. английский физик Ральф Фаулер с успехом применил теорию вырожденного газа к белым карликам (и только позднее теория Ферми нашла себе многочисленные приложения в «земной» физике). На основании этой теории были сделаны два важных вывода. Во-первых, радиус белого карлика при заданном химическом составе вещества однозначно определяется его массой. Во-вторых, масса белого карлика не может превышать некоторого критического значения, величина которого примерно 1,4 массы Солнца.

Дальнейшие наблюдения и исследования подтвердили эти теоретические предпосылки и позволили сделать окончательный вывод о том, что в недрах белых карликов практически нет водорода. Поскольку теория вырожденного газа хорошо объясняла наблюдаемые свойства белых карликов, их стали называть вырожденными звёздами . Следующим этапом стало построение теории их образования.

Как образуются белые карлики

В современной теории звездной эволюции белые карлики рассматриваются как конечный этап эволюции звёзд средней и малой массы (меньше 3 – 4 масс Солнца).

После того как в центральных областях стареющей звезды выгорит весь водород, её ядро должно сжаться и разогреться. Внешние слои при этом сильно расширяются, эффективная температура светила падает, и оно становится красным гигантом. Образовавшаяся разреженная оболочка звезды очень слабо связана с ядром, она в конце концов рассеивается в пространстве. На месте бывшего красного гиганта остаётся очень горячая и компактная звезда, состоящая в основном из гелия, - белый карлик. Благодаря своей высокой температуре она излучает главным образом в ультрафиолетовом диапазоне и ионизует газ разлетающейся оболочки.

Расширяющиеся оболочки, окружающие горячие звёзды, известны давно. Они называются планетарными туманностями и были открыты в XVIII в. Уильямом Гершелем. Их наблюдаемое число хорошо согласуется с числом красных гигантов и белых карликов, а, следовательно, и с тем, что основной механизм образования белых карликов - эволюция обычных звёзд со сбросом газовой оболочки на стадии красного гиганта.

В тесных двойных звёздных системах компоненты расположены настолько близко друг к другу, что между ними происходит обмен веществом. Раздувшаяся оболочка красного гиганта постоянно перетекает на соседнюю звезду, пока от него не останется только белый карлик. Вероятно, первые открытые представители белых карликов - Сириус В и Процион В - образовались именно таким путём.

В конце 40-х гг. советский астрофизик Самуил Аронович Каплан показал, что излучение белых карликов приводит к их остыванию. Это означает, что внутренних источников энергии у этих звёзд нет. Каплан построил и количественную теорию остывания белых карликов, а в начале 50-х гг. к аналогичным выводам пришли английские и французские учёные. Правда, из-за малой площади поверхности остывают эти звёзды крайне медленно.

Итак, большинство наблюдаемых свойств белых карликов удалось объяснить огромными значениями плотности их вещества и очень сильным гравитационным полем на их поверхностях. Это делает белые карлики уникальными объектами: воспроизвести условия, в которых находится их вещество, в земных лабораториях пока невозможно.