Торий - это будущее атомной энергетики и арктики. Торий: история открытия элемента





Торий – радиоактивный металл, обладающий парамагнитными свойствами, серебристого цвета. В периодической таблице, он расположен между актинием и протактинием и ниже церия Торий мягкий металл сопоставимый с оловом и скандием. Твердость тория аналогична мягкой стали. Чистый торий может быть свернут в виде листов и вытянут в проволоку. Ниже температуры 1,40 K торий проявляет свойства сверхпроводника. Измеренные свойства тория широко варьируют в зависимости от количества примесей, как правило диоксида торий. Самые чистые образцы обычно содержат около десятой доли процента диоксида.




Природный торий радиоактивен, наряду с ураном тория является родоначальником собственного радиоактивного семейства (трансториевых элементов) Период полураспада природного тория составляет 1,39·10 10 лет В семействе тория имеются короткоживущие изотопы 83Bi212 и 81Tl208, обладающие жёстким β- и γ-излучением






В атомной отрасли торий применяется как источник получения вторичного ядерного топлива, U Th n 1 (γ) 90 Th 233 (β) 91 Pa 233 (β) 92 U 233 Нейтроны, для реакции, образуются при расщеплении специально введённого обогащённого урана, либо плутония. После отделения U 233 и других продуктов реакции регенерированный торий возвращают в цикл


Стратегия развития ядерной энергетики как в России, так и за рубежом, предусматривает введение ядерного топливного цикла на основе тория (так называемого «смешанного топливного цикла») с использованием природных урана и тория, урана-235, искусственных плутония-239 и урана-233 в реакторах на тепловых и быстрых нейтронах. И если учесть, что запасы тория в земной коре значительно превосходят запасы урана, то открываются широкие перспективы использования его в атомной технике. К основным недостаткам металлического тория как реакторного материала относятся необходимость добавления к нему обогащённого ядерного горючего (U235, Рu239) и необходимость надёжной биологической защиты при работе с торием.


Ториевый ядерный двигатель Прототип автомобиля создан в 2009 году компанией Cadillac Компания Laser Power Systems разработала лазер высокой тепловой энергии на тории. Теплота лазера нагревает теплоноситель, который приводит в движение турбины Вес 230 кг, мощность 250 к Вт, 1 г Th эквивалентен 7500 литрам бензина 8 г Th хватает на км пробега


Вследствие высокой электронной эмиссии и сравнительно малой работы выхода электронов металлический торий используется как электродный материал в газоразрядных и некоторых других типов лампах, которые имеют хорошие электрические характеристики и большой срок службы В электровакуумной технике для некоторых типов магнетронов применяются ториевооксидные катоды, работающие при температурах () °С Электроды из торированного вольфрама (ThO 2 0,8-1%) обладают меньшей работой выхода электронов и большей эффективностью по сравнению с чистым вольфрамом Ксеноновые дуговые лампы имеют торированные электроды


Металлический торий считается перспективной легирующей добавкой в жаропрочные сплавы Использование небольших добавок тория улучшает свойства железных, никелевых, алюминиево-магниевых и других сплавов Эти сплавы благодаря небольшой плотности, значительной прочности, высокой температуре плавления и хорошей пластичности широко применяются в авиационной промышленности


Диоксид тория химически инертен, плавится при высокой температуре (3220 °С), имеет низкую упругость диссоциации Возможно его использование в производстве огнеупорных изделий, наиболее перспективно использование в вакууме и окислительной атмосфере Однако сравнительно высокий коэффициент термического расширения и малая теплопроводность диоксида обусловливают относительно невысокую механическую прочность изделий при изменении температуры, что ограничивает масштабы применения огнеупоров на его основе Возможно применение диоксида тория в качестве элемента сопротивления в высокотемпературных электропечах (до 2000 °С)


По распространенности торий занимает 35 место. Кларк тория составляет 0,8·10 -3, его содержание По распространенности торий занимает 35 место. Кларк тория составляет 0,8·10 -3, его содержание в земной коре больше, чем сурьмы, висмута, ртути, молибдена или серебра и примерно в пять раз больше, чем урана В связи с большой склонностью тория к изоморфизму, в большинстве его минералов присутствуют U, РЗЭ, Ti, Zr, Hf, Nb, Ta и др. Торий концентрируется в верхних гранитных слоях литосферы. Кислые изверженные породы (граниты, базальты, диориты) содержат в среднем 1,810-3 % масс, тория (встречаются породы и со значительно меньшим содержанием - до (0,02- 0,03) 10-3 %). Содержание тория в осадочных породах оценивается величиной 0, % масс В свободном состоянии торий не встречается, образует соединения с другими элементами: оксиды, силикаты, фосфаты, карбонаты и фториды.


Торий входит в состав около 100 минералов, большинство содержат и уран. Собственно ториевых минералов менее десяти Все они относятся к группе устойчивых в химическом отношении компонентов кислых и щелочных магматических горных пород и пегматитов Минералы тория в природе ассоциируют с минералами редких земель и урана, а также с минералами циркония, титана, ниобия и тантала, олова и других элементов Важнейшими промышленными минералами тория являются монацит, монацит, торит, торит, торианит (ураноторианит) торианит (ураноторианит)


(Се, La, Th)PO 4 содержит от 3,5 до 10 % ТhO 2 и от сотых долей до 1 % UO 2. Сумма оксидов РЗЭ в монаците в пределах от 55 до 68 % масс.; иттрий и элементы его подгруппы присутствуют до (3 - 5) %. Содержание фосфора в пересчёте на оксид изменяется от 18,4 до 31,5 % масс. Плотность монацита колеблется в пределах от 4,9 до 5,5 т/м 3, твёрдость - от 5 до 5,5 по шкале Мооса. Цвет минерала изменяется от светло-жёлтого до красно-бурого, но встречаются разновидности другой окраски (зеленоватые, коричневатые, чёрные) и почти бесцветные. Минерал умеренно парамагнитен. Это свойство монацита широко используется в обогатительной практике при электромагнитной сепарации тяжёлых минералов.


ThSiO 4 содержит до 77 % ТhO 2 Практически все ториты имеют в своем составе уран, железо, редкие земли и радиогенный свинец. В небольших количествах в торите присутствуют кальций, магний, фосфор, титан, тантал, цирконий, олово. Разновидность торита: уранторианит, содержащий от 5 до 20 % урана; ферриторит (железистая разновидность, содержащая до 14% Fе 2Oз); гидроторит ThSiO 4 4H 2 O и др. Твёрдость торита (4,5 - 5,5), Плотность (4 - 5,4) до 6,7 т/м 3. Цвет минерала от оранжево-жёлтого (оранжит) до чёрного. В промышленных количествах торит встречается главным образом в жильных месторождениях, генетически связанных со щелочными изверженными породами, а также как попутный компонент в некоторых россыпях, в частности - оловянных.


(Th,U)O 2 содержит от 45 до 93 % ТhO 2 и до 50 % UO 2. Изоморфен с уранинитом. К разновидностям торианита относятся ураноториацит, содержащий до 50 % UO 2 и алданит, в составе которого () % UO 2. Клевеит и бреггерит, являющиеся разновидностями уранинита, содержат от 3 до 14 % ТhO 2. В состав торианита и его разновидностей, кроме тория и урана, входят редкоземельные элементы до (8-13)% и радиогенный свинец (до 13 %). Кроме того, в нём присутствуют примеси железа и циркония. Плотность торианита составляет (8,9 - 9,9) т/м 3, твердость - (6 - 7,5). Цвет торианита изменяется от тёмно-серого до коричнево-чёрного и чёрного. Распространён торианит значительно меньше, чем монацит и торит. Он встречается в пегматитах, связанных с гранитами и сиенитами, иногда в карбонатитах и россыпях.


Горнорудная ториевая промышленность базируется примерно на 80 % на монацитовых рудах, добыча которых из россыпных месторождений сравнительно проста и производительна. Разведанные достоверные запасы монацита в прибрежно-морских и элювиальных россыпях составляют примерно 8 млн. т или в пересчёте на оксид тория около 670 тыс. т. Вероятные запасы оцениваются величиной 2250 тыс. т тория. Давно известны крупнейшие мировые провинции богатых монацит-содержащих комплексных прибрежно-морских месторождений Индии (Южное побережье) и Бразилии (штаты восточного побережья). Примерно до 1913 г. главным поставщиком монацита была Бразилия. Позже на первые роли вышла Индия. Затем роли Индии и Бразилии примерно выровнялись, но обе эти страны уступили первенство в добыче монацита США и ЮАР. Примерно такое положение сохраняется и до настоящего времени. В ЮАР, кроме прибрежно-морских россыпей, разрабатываются коренные руды, содержащие монацит.


Среднее содержание монацита в россыпях составляет около (0,5-1)%. Минимальное содержание в рудах разрабатываемых месторождений составляет 0,04 %, а максимальное - до () %. При крупной механизированной добыче и обогащении, например, в штате Айдахо (США), разрабатывают россыпи с содержанием монацита всего 0,004 %. При небольших масштабах добычи в США промышленными считаются россыпи с содержанием монацита не менее 0,6 %. В Бразилии разрабатывают элювиальные россыпи с содержанием монацита от 0,25 до 1,5 % и морские россыпи с содержанием от 0,2 до 2 %. В Нигерии добывают монацит из россыпей, в которых содержание его достигает 6 %. А на Цейлоне разрабатывают россыпи с содержанием монацита всего (0,3 - 0,4) %. В Индии промышленные россыпи содержат от 0,5 до 3 % монацита. Руды коренного месторождения Стинкемпс - Краал (ЮАР) содержат монацита до () %, что составляет исключение и не характерно для монацитсодержащих месторождений.




Первоначальной черновой концентрат поступает на грохот, работающий в замкнутом цикле со стержневой мельницей. Подрешетный продукт крупностью – 1,6 мм направляется в реечный классификатор, в слив уходит кварц крупностью – 0,2 мм, направляемый в отвал. Мокрые пески классификатора подвергаются магнитной сепарации на электромагнитных сеператорах. Монацит, танталито-колумбит, эвксенит - среднепарамагнитные минералы, ильменит и магнетит Fe3O4 - сильнопарамагнитные, а циркон, рутил, бадцелеит и минералы пустой породы (топаз, полевой шпат, кварц) - немагнитные. При пропускании концентрата через сепараторы различной электромагнитной интенсивности происходит разделение его по магнитной восприимчивости на три вида: продукт слабого магнитного поля: магнетит, ильменит; продукт слабого магнитного поля: магнетит, ильменит; продукт сильного магнитного поля: монацит, танталито-колумбит, эвксенит; продукт сильного магнитного поля: монацит, танталито-колумбит, эвксенит; немагнитные продукты: циркон, рутил, бадцелеит и минералы пустой породы. немагнитные продукты: циркон, рутил, бадцелеит и минералы пустой породы. Коллективный эвксенит-монацит-колумбитовый концентрат после сушки разделяется на монацитовую и эвксенит-колумбитовую фракции в электростатических сепараторах. Принцип электростатического разделения основан на различии электропроводности минералов. Различают две основные группы: проводящие: магнетит, гематит, танталито-колумбит, ильменит, рутил, бадцелеит и минералы пустой породы; проводящие: магнетит, гематит, танталито-колумбит, ильменит, рутил, бадцелеит и минералы пустой породы; не проводящие: монацит, циркон. не проводящие: монацит, циркон.


Лекция 1. Физико-химические свойства тория, применение, нахождение в природе, обогащение ториевых руд Н АЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ Т ОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Ф ИЗИКО - ТЕХНИЧЕСКИЙ ИНСТИТУТ К АФЕДРА ХТРЭ доцент каф. ХТРЭ, к.х.н., Оствальд Р.В.

1 грамм на 28 000 литров . Таково соотношения расхода топлива в автомобильных двигателях, если заменить привычное горючее торием.

Речь о 232-ом изотопе . У него самый длинный период полураспада. 8 граммов тория хватит, чтобы двигатель беспрерывно работал в течение 100 лет.

Запасов нового топлива в 3 раза больше, чем в земной коре. Специалисты Laser Power Systems уже приступили к разработке нового двигателя.

Компания американская. Работа двигателя будет напоминать цикл стандартной электростанции. Загвоздкой стала разработка подходящего лазера.

Его задача – нагревать воду, пар которой запускает мини-турбины. Пока ученые отрабатывают процесс, узнаем побольше о топливе 21-го века, а в перспективе и всего тысячелетия.

Что такое торий?

Металл торий относится к актиноидам. В это семейство входят радиоактивные . Все они располагаются в 3-ей группе 7-го периода таблицы .

Номера актиноидов – от 90-го до 103-го. Торий стоит первым. Его и открыли первым, одновременно с ураном.

В чистом виде героя выделил в 1882-ом году Ларс Нильсон. Радиоактивность элемента обнаружили не сразу.

Поэтому, торий долго не вызывал интереса общественности. Распад тория доказан лишь в 1907-ом году.

С 1907-го года изотопы тория открывались один за другим. К 2017-му насчитывается 30 модификаций металла. 9 из них получены .

Наиболее устойчива 232-я. Полураспад тория в таком виде длится 1,4*10 10 лет. Именно поэтому 232-ой изотоп повсеместно распространен, в земной коре занимает долю 8*10 -4 %.

Остальные изотопы хранятся несколько лет, а посему не представляют практического интереса и редко встречаются в природе. Правда 229-ый торий распадается за 7 340 лет. Но, этот изотоп «выведен» искусственно.

Полностью устойчивых изотопов у тория нет. В чистом виде элемент выглядит как —, пластичный .

Именно он делает столь мягким минерал торит. легко режется . Минерал изучал Йенс Берценлиус.

Шведский химик смог вычислить в составе камня неизвестный , но не смог выделить его, отдав лавры Нильсону.

Свойства тория

Торий – элемент , удельная радиоактивность которого равна 0,109 микрокюри на грамм. У 238-го урана, к примеру, показатель почти в 3 раза больше.

Соответственно, торий слаборадиоактивен. Несколько изотопов тория, кстати, являются следствием распада урана. Речь о 230-ом, 231-ом, 234-ом и 235-ом модификациях 90-го элемента.

Распад героя статьи сопровождается выделением радона. Этот газ, так же, именуют тороном. Однако, второе название не общеупотребительное.

Радон опасен при вдыхании. Однако, микродозы содержатся в минеральных водах и влияют на организм благостно.

Принципиален именно путь попадания торона в организм. Выпить можно, впитать – да, но не вдыхать.

В плане кристаллической решетки радиоактивный торий предстает всего в двух ипостасях. До 1 400-от градусов строение металла гранецентрическое.

Оно основано на объемных кубах, состоящих из 14-ти атомов. Часть из них стоят в углах фигуры. Остальные атомы располагаются посередине каждого .

При нагреве свыше 1 400-от градусов Цельсия кристаллическая решетка тория становится объемноцентрированной.

«Упаковка» таких кубов менее плотная. И без того мягковатый торий становится еще более рыхлым.

Торий – химический элемент, отнесенный к парамагнетикам. Соответственно, магнитная проницаемость металла минимальна, близка к единице.

Отличают вещества группы, так же, способность намагничиваться в направлении внешнего поля.

Мольная теплоемкость тория составляет 27,3 килоджоулей. Показатель указывает на тепловую вместимость одного моля вещества, отсюда и название.

Продолжать список сложно, поскольку основная масса свойств 90-го металла зависит от степени его загрязнения.

Так, предел прочности элемента варьируется от 150-ти до 290-та меганьютонов на квадратный метр.

Нестабильна и тория. По металлу дают от 450-ти до 700-от килограмм-силы.

Стоя в начале своей группы, торий перенял часть свойств от предшествующих ей элементов. Так, для героя статьи характерна 4-я степень окисления.

Чтобы торий быстро окислился на воздухе, нужно довести температуру до 400-от градусов. Металл моментально покроется пленкой оксида.

Дуэт тория с кислородом, кстати, самый тугоплавкий из земных оксидов, размягчается лишь при 3 200-от градуса Цельсия.

При этом, соединение еще и химически устойчиво. Чистый же металл вступает в реакцию с .

Любой радиоактивный изотоп тория взаимодействует с ним даже при комнатной температуре.

Остальные реакции с героем статьи проходят при повышенных температурах. При 200-от градусах идет реакция с .

Образуются гидриды порошкообразной формы. Нитриды получаются, если торий нагреть в атмосфере .

Потребуется температура в 800-от градусов Цельсия. Но, для начала нужно добыть реактив. Узнаем, как это делают.

Добыча и месторождения тория

350 000 000 долларов. Примерно такую сумму ежегодно выделяют в на развитие ториевой энергетики. В стране масса месторождений 232-го изотопа.

Это настораживает , которая рискует потерять лидерство на топливном , если основным энергоресурсом в мире станет 90-ый элемент.

Запасы в отечестве есть. Миллионы тонн металла, к примеру, расположились под Новокузнецком.

Однако, нужно отстоять приоритетное право на применение ториевых , а за них в мире ведется борьба. Все понимают, за чем будущее.

Обычно, торий находят в виде , блестящего песка. Это минерал монацит. Пляжи из него часто входят в курортные зоны.

На побережье Азовского моря, к примеру, стоит задуматься не только о солнечной радиации, но и той, что исходит от земли. Жильный торий встречается только в ЮАР. Рудные залежи там зовутся Стинкасмкрааль.

Если добывать торий из руд, то проще получать элемент попутно с . Осталось выяснить, где торий может пригодиться, не считая автомобильных двигателей будущего.

Применение тория

Поскольку ядро тория неустойчиво, естественно применение элемента в атомной энергетике. Для ее нужд закупают , фторид и оксид тория.

Помните температуру, которую выдерживает окись 90-го металла? Только такое соединение и сдюжит в жидкосолевых реакторах.

Окись тория пригождается и в авиационной промышленности. Там 90-ый металл служит упрочнителем. Служба торию находится и в организме .

Ежедневно с пищей поступает около 3 миллиграммов радиоактивного элемента. Он участвует в регулировке процессов системы, усваивается, в основном, печенью.

Закупают торий, так же, металлурги, но не для еды. Чистый металл используют в качестве , то есть добавки, улучшающей качество , в частности, магниевых. С лигатурой они становятся жаропрочными и лучше сопротивляются разрыву.

Напоследок дополним информацию о новом автомобильном двигателе. Торий в нем – не ядерное топливо, а лишь сырье для него.

Сам по себе 90-ый элемент не способен давать энергию. Все меняют нейтронная среда и водный реактор.

С ними торий преобразуется в 233-ий уран. Вот он – эффективное топливо. Почем платят за сырье для него? Попробуем узнать.

Цена тория

Цена тория разнится на чистый металл и его соединения. Это общая фраза из . Из частностей — лишь ценник за кило оксида тория примерно в 7 500 .

На этом открытые запросы заканчиваются. Продавцы просят уточнять стоимость, поскольку реализуют радиоактивный элемент.

Предложений чистого тория в интернете нет, как нет и данных о за грамм металла. Меж тем, заинтересованным новым видом автомобильного топлива вопрос не дает покоя, как не дает покоя и то, не подскочат ли запросы за 90-ый элемент в случае его повсеместного использования.

Изначально, ради вытеснения с рынка бензиновых двигателей, торий сделают максимально выгодным. Но, что будет потом, когда возврат к былому будет уже маловероятен?

Вопросов много. Конкретики мало, впрочем, как и во всем новом, неизведанном, кажущемся на первых парах авантюрой.

Хотя, первые варианты ториевого двигателя уже готовы. Весят они около 200-от килограммов. Такой аппарат легко поместить под капот средних размеров.

В нынешнее время трудно себе представить нашу повседневную жизнь без энергии. Без ее использования и применения ее производных. Энергетика красной нитью проходить через все существование человечества. Во все времена, «ученые мужи», стремились использовать полученные знания и окружающие нас природные источники, элементы для получения и преобразование энергии и использования ее для удовлетворения своих потребностей.

В связи с этим рассматривались и изучались разные научные направления. Непосредственно широкие исследования проводились , в изучении различных химических элементов их реакции при взаимодействии и при определенных условиях. Остановим свой выбор на таком на первый взгляд «неприметном» радиоактивном химическом элементе, как торий.

Преимущества ториевой энергетики

Торий

Скромный торий при более глубоком рассмотрении раскрывает достаточно интересных фактов об истории своего появления в научном химическом мире.

  1. Первым фактом, будем считать, что элемент торий, был открыт задолго до появления самого понятия «радиоактивность»;
  2. Вторым, то, что название элемента «Торий» появилось на 13 лет раньше открытия самого химического элемента;
  3. Третьим интересным фактом, можно считать то, что элемент торий получил свое название в честь древнего скандинавского всемогущего божества Тора. Скандинавы считали Тора богом войны, грома и молнии;
  4. Следующим историческим фактом идет получение чистого тория, а именно то, что изначально торий был открыт не в чистом виде, а в сплаве, в который впоследствии получил название торит в 1828 году – некоронованным королем химиков Берцелиусом. Сам элемент торий в чистом виде был впервые получен в 1882 году известным шведским химиком Нильсоном;
  5. Еще одно важное событие в истории появления тория происходит в 1898 году в момент определения радиоактивности чистого тория, которая по утверждению Марии Склодовской-Кюри даже превышает радиоактивность урана.

И все же – торий, что это за элемент: радиоактивный химический элемент, находящийся в таблице Менделеева под номером 90 и входящий в ІІІ группу периодической системы. Внешние характеристики его – это серебристо-белый мягкий метал, который при взаимодействии с воздухом комнатной температуры незначительно окисляется и покрывается черной защитной пленочкой.

Ториевые электростанции -- энергетика будущего

Применение тория в быту

Как уже говорилось, любые исследования и научные открытия делаются для блага человечества. Для использования их в бытовой и социальной сферах. Изначально торий начали использовать еще в 19 веке для освещения.

Для того что бы освещение было ровнее и ярче на газовые рожки надевались колпачки в составе которых, присутствовали оксиды тория и церия.

В дальнейшем при развитии электроники, торий стали использовать в электронных лампах и . Так же ториевая добавка к вольфраму помогает стабилизировать структуру нити лампы накаливания.

Ториевая энергетика

В современном научном и техническом мире торий используется в разных областях, где он играет часто незаменимую роль. В металлургии, торий с успехом, используется, в качестве метала для повышения жаропрочности и сопротивления разрыву, также он используется в авиационной промышленности как упрочнитель, в оптической промышленности торий используют как добавку к стеклу, что позволяет увеличить показатель преломления.

Но самая перспективна ветвь развития использования тория это все, же атомная энергетика. Хотя сейчас. После Чернобыля и Фукусимы, ядерная гонка потеряла свою актуальность, все же имеет смысл развивать и исследовать ториевую атомных электростанций.

Поскольку при сравнении нынешних АЭС и атомных электростанций, работающих на ториевых генераторах, ториевые АЭС сразу же выгодно выделяются по нескольким параметрам.

  • Запасы тория в земной коре в несколько раз превышают запасы урана и обнаруживаются в большинстве горных пород, а также и присутствие тория обнаруживается и в морской воде.
  • Следующим преимуществом есть то, что торий можно загружать сразу в реактор непосредственно после его добычи не обогащая, что снижает утечку материала и значительно увеличивается уровень безопасности;
  • Сравнение количества получаемой энергии, тоже не в пользу урана. При прохождении цикла из одной тоны тория получают в двести раз больше энергии, чем из такого же количества урана;
  • Так же бесспорным преимуществом ториевого реактора является то, что его создание возможно в различных масштабах, то есть на лицо возможность и соответственно выгода создания малых ;
  • Ну и главным, преимуществом ториевого реактора является его безопасность. Он может работать как при нормальном, так и при пониженном давлении. Если вдруг возникает ситуация, которая ведет к повышению давления, происходит увеличение объема ториевой смеси, что вызывает уменьшение плотности и замедление ядерной реакции, а соответственно и остановку роста давления. Из чего видно, что взрыв такого реактора исключается по всем физическим законам.

Торий или уран

И кроме всего прочего, если говорить о переходе на ториевую энергетику, это не есть таким фантастическим и затратным мероприятием. Ведь даже при модернизации реакторов нынешних существующих атомных электростанций и переводе их на ториевое топливо необходимо будет затратить 100 миллионов долларов, то при этом мощность такой модернизированной атомной ториевой возрастет как минимум в два раза. Если же строить АЭС на ториевом реакторе с нуля – новую, то на ее возведение необходимо будет выделить около 2-3 миллиардов долларов.

Но при более детальном анализе эти суммы не кажутся таким заоблачными потому что во-первых, эти затраты очень быстро окупятся в связи выросшей на несколько прядкой отдачей энергии. Во-вторых, срок службы ториевого реактора не менее 100 лет, при работе без перезагрузки топлива до пятидесяти лет (для сравнения урановые реакторы перезагружают каждые полтора-два года). Ну и, в-третьих, если все мировое сообщество сориентируется в направлении перехода ядерной энергетики на ториевое топливо, то себестоимость электроэнергии значительно снизится, а также позволит избежать неотвратимо приближающегося энергетического кризиса.

К посту на СЛ - http://сайт/blog/news/241694.php

- Почему собака чешет себе яйца? Потому что может!
- Почему Россия продаёт нефть? Потому что может!
- Почему нельзя спать на потолке? Неудобно. Одеяло сползает.

Классическая фраза «железного канцлера» Отто фон Бисмарка, данное им «Петербургской газете», издававшейся в Санкт-Петербурге на немецком языке, гласит следующее: «Политика есть учение о возможном».

Впоследствии «учение» заменили на «искусство», но смысл фразы не поменялся - политика имеет дело только с реальностью, с достижимыми целями, а всё то, что лежит за гранью возможного (реального), - это не политика, это благие пожелания, пустые декларации, фата-моргана и бесполезная трата времени.

Я стараюсь в своём журнале не писать о политике в её чистом, незамутнённом виде. Броуновское движение политических партий столь же осмысленно, как и поведение молекул идеального газа. Все они куда-то спешат и преисполнены своей важности. По факту же мы всегда можем измерять температуру и давление в колбе и всё рассказать о бесконечно сложной судьбе всех молекул этого газа.

Ведь экономика и наука - есть вещи, гораздо более детерминированные, нежели эфемерная и непостоянная политика. И да, экономика и наука - это тоже искусство возможного.
В науке есть вещи, невозможные по определению, такие как «вакуумная акустика», в экономике тоже есть "невозможная троица ", однако, на деле, границы возможного и в науке, и в экономике гораздо уже, нежели оксюмороны, невозможность которых интуитивно понятна всем и каждому.

Засим, у нас воспоследует первая КДПВ (картинка для привлечения внимания):


Девушка, монацитовый песок, солнечный ожог. Холст, масло, неизвестный автор.

Начнём наш рассказ с разговора о нашем старом знакомом - суперстабильном, дважды ордена Ленина дважды чётном, радиоактивном изотопе тория 232Th.
Разговор о тории, как и в случае урана, лучше начать с его получения из неживой природы - то есть с повествования о его добыче.

В небольших количествах торий присутствует во всех горных породах (например, в граните), в грунтах и в почвах. Торий концентрируется в природе в нескольких минералах, в основном - в монаците - смешанном фосфате редкоземельных элементов (в основном – церия) и тория (до 12% ThО2).
В жизни монацит выглядит, как блестящий мелкий чёрный «песочек», и товарищи отдыхающие часто даже не понимают, что отдыхая где-нибудь на бразильской Копакабане, они, кроме яркого солнышка сверху, одновременно получают и живительную альфу, бету и гамму радиацию непосредственно снизу, прямо из весёлого песочка пляжа. Вот так - загорал на спине, а жопа почему-то тоже сгорела.
Именно по данному минералу оцениваются промышленные, рентабельные к отработке запасы тория в той или иной стране. Монацит в довольно больших прибрежных отложениях найден в Индии и в Южной Америке (привет, Бразилия!)

В силу вышеизложенного момента сам торий обычно не добывается. Его в качестве побочного продукта извлекают при добыче редкоземельных элементов или урана . Во многих минералах, в том числе и в монаците, торий легко замещает атом редкоземельного элемента, что и объясняет сродство тория с месторождениями редких земель.

Монацит – минерал прочный, устойчивый против выветривания. При выветривании горных пород, особенно интенсивном как раз в тропической и субтропической зонах, когда почти все другие минералы разрушаются и растворяются водой, монацит не изменяется.
Ручьи и реки уносят его к морю вместе с другими устойчивыми минералами – цирконом, кварцем и минералами титана. Волны морей и океанов довершают работу по разрушению и сортировке минералов, накопившихся в прибрежной зоне. Под их влиянием происходит концентрирование тяжелых минералов, отчего пески морских пляжей, рядом с которыми с континента вытекали реки, выносившие монацит и другие минералы, приобретают темную окраску.
Так на пляжах формируются монацитовые россыпи – «чёрные пески» на картинке сверху.
Индийские монациты содержат в среднем 9,9% ThО2, бразильские - всего 6,8%.
Наиболее крупные месторождения этого типа находятся на южном и восточном побережьях Индии (штаты Керала, Мадрас, Андхра-Прадеш, Орисса) и на восточном берегу Бразилии (штаты Минас-Жераис, Баия, Эспирпту-Санту, Рио-де-Жанейро).
В песке пляжа содержание самого монацита в индийских россыпях варьирует от 0,5 до 2,0%, в бразильских, более богатых - от 2,0 до 5,0%, но кое-где попадаются участки практически сплошного «чёрного пляжа».

Единственным же в мире коренным месторождением ториевых руд, имеющим промышленное значение, на котором торий сумел таки обмануть свою природу и собраться в рудные жилы в сколь-либо пристойном количестве, является жильное месторождение Стинкасмкрааль в ЮАР.

Есть свои собственные «чёрного пляжи» и на территории бывшего СССР. Причём - в самой что ни на есть курортной зоне. На побережье Азовского моря - начиная от Бердянска и заканчивая Таганрогом. Каждый год тысячи отдыхающих в буквальном смысле «едут на юг за свежей дозой». Ну и детишек везут оздоравливать. Так что - очередной фактик Вам в копилочку концепции «мирного атома, который в каждый дом».

Не буду голословным - благо по некоторым монацитовым песочкам под Бердянском я походил буквально своими ногами. Активность «чёрных пляжей» составляет: Таганрог - 9 938 мкР/ч , Мариуполь - 2 236 мкР/ч , Бердянск - 1 908 мкР/ч . Радиационный фон в районе 4-го энергоблока ЧАЭС, если что, можно посмотреть .
Сейчас на промплощадке ЧАЭС 68 мкР/ч . Фонит не по-детски. Ловите последние тёплые деньки уходящего сезона на Азове!

Возможно кто-нибудь, когда-нибудь и будет добывать эти пески, хотя бы для того, чтобы не облучать отдыхающих. Но добывать их будут скорее из-за ферротитана, циркона или рутила, а не для извлечения тория. Почему - расскажу чуть ниже.

Вторая КДПВ:


В этих ящиках сосредоточено 6000 тонн тория. Определите страну по фотографии.


В СССР поиск ториевых руд начался ещё до Второй Мировой войны. В 1937 была организована Красноярская поисково-тектоногеохимическая партия №3 Западносибирского отделения Союзредметразведки.
Партией были подсчитаны первые тория, которые относились к Таракскому месторождению и составили 2763 тонн нашего старого знакомого - минерала монацита. Ведь, кроме концентрации россыпей на побережьях современных морей, часто россыпи устойчивых минералов ассоциированы с морями древними, уже давным-давно пересохшими и погребёнными. Например, именно такой погребённой россыпью является знаменитое Малышевское месторождение титановых и циркониевых руд под Днепропетровском, расположенное в районе Вольногорска.

Полномасштабная геологическая разведка ториевых руд была начата в СССР после окончания Второй Мировой войны, в рамках проекта создания ядерного оружия.

В августе 1946 Лаврений Берия направляет Иосифу Сталину письмо с представлением на утверждение проекта постановления Совета Министров СССР об организации в Министерстве цветной металлургии Второго главного управления. Задачей этого управления было руководство предприятиями по добыче ториевых руд, получению окиси тория и металлического тория для наработки 233U в специальных ядерных реакторах. Постановление было утверждено 13 августа 1946 года. В 1949 на месторождении монацитовых песков (запасы тория более 1000 тонн) в Алданском районе Якутской АССР была начата промышленная добыча тория.

Однако, уже к середине 1950-х годов быстрая наработка плутония позволила СССР отказаться от более затратного в добыче и более капризного в дальнейшем превращении в изотоп урана 233U тория.
Торий был отставлен в сторону, но, как и всегда у этих «запасливых русских», был аккуратно сложен в Красноуфимске, на складах, сейчас принадлежащих государственной компании «Урал-монацит»., тогда входившего в предприятие со скромной вывеской «Средне-Уральский машиностроительный завод».


Вот так выглядит ториевый склад снаружи. Заботливые люди подпёрли падающие стены.
Экономика - искусство возможного.

Сейчас на складах предприятия хранится 82 653 тонны монацитового концентрата. Монацитовый песок был аккуратно собран на месторождениях России, Монголии, Китая и Вьетнама. Кроме того, огромные запасы тория в качестве военного трофея были вывезены из гитлеровской Германии. Немцы экспериментировали с торием, рассматривая его в качестве потенциального компонента для создания ядерного оружия. Советская армия конфисковала ториевый монацит у гитлеровской Германии и вывезла в СССР. Сейчас он также находится в красноуфимских складах.

В среднем, монацит, хранящийся на этих складах, имеет следующий состав: сумма редкоземельных оксидов Ln2О3 - 54%, оксид фосфора P2О5 - 22,2%, оксид тория ThО2 - 7,8% , оксид урана U3О8 - 0,6%, оксид циркония ZrО2 - 3,0%, оксид титана TiО2 - 2,2%.

То есть, около 6 000 тонн тория уже находится буквально «на складе» в полностью готовом к дальнейшей переработке виде.

Монацитовый песок находится в деревянных ящиках (1 620 000 штук!), складированных в деревянных складах. Именно эти ящики и это здание приведены на фотографиях выше.
К началу XXI века и тара, и склады сильно разрушились, что создало радиационную опасность для населения.
В 2002 принято решение о строительстве завода по переработке монацита с целью улучшения экологической обстановки в этом районе. Однако из-за протестов, это решение было отменено.

В настоящее время над старыми складами строят металлические ангары.


Новая страна, новая экономика, новые границы возможного.

В начале 2000-х годов в Красноуфимске предполагалось строительство на территории складов небольшой фабрики по переносу монацитового концентрата в новую герметичную тару. Тогда концентрат можно было бы хранить ещё сто лет, вплоть до появления потребности в тории. Однако и вопрос строительства такой фабрики был торпедирован усилиями местных «зелёных» и подогреваемой слухами о «жутких опасностях тория» общественностью.

Поэтому в 2010 году было принято другое решение - ОАО «Уральский электрохимический комбинат» станет головным предприятием в «кластере производства редкоземельных металлов», который создается в Свердловской области. Об этом журналистам сообщил министр промышленности и науки Свердловской области Александр Петров. По его словам, накануне подписано соглашение между правительством региона и Ростатом по переработке монацитового концентрата, который находится в Красноуфимске. А 25 ноября будет подготовлен план мероприятий реализации проекта. «В состав кластера мы привлекаем предприятия, производящие электродвигатели, различную приводную технику, топливные элементы и накопители энергии. Также проявили интерес металлурги, в частности, ОАО УК «Росспецсплав», так как редкоземельные металлы являются основой для получения спецсплавов и спецсталей» - сообщил Александр Петров.
В общем, ничего с переработкой монацита не заржавело и процесс, как говорится, пошёл .

Поэтому, скоро красноуфимцы смогут избавится от опасного соседства с торием.
Ведь как пишут : «внутри «саркофагов» уровень излучения зашкаливает: стены старых деревянных хранилищ рассыпались, мешки порвались, ящики развалились от старости. Монацитовый концентрат лежит на поверхности: дозиметр пищит и показывает отметку в 3 500 мкР/час.»

Красноуфимцы! Надо ехать на Азов. Там под Таганрогом на диких пляжах веселее, чем у вас в неусыпно охраняемых и контролируемых складах.


Азовское море - суровый песок!

Хорошо, скажут внимательные читатели. А почему идут такие непонятные пляски вокруг тория? Что мешает взять - и разом освоить хотя бы 80 000 тонн монацитового песка в Красноуфимске? Ведь там уже всё, как в старой песне «взорвано, уложено, сколото». «Чёрное золото» монацита лежит и буквально просит - переработайте меня!

Всё дело в том, что торий - это Неуловимый Джо ядерной энергетики. Его никто не хочет ловить. И, если в период «ядерной гонки» разные страны ещё вели эксперименты с торием и с получаемым из него233U, то теперь торий просто лежит - и ждёт своего часа. Просто он пока невыгоден - ни в добыче, ни в извлечении, ни в наработке из него делящегося материала. 238U удобнее добывать, удобнее нарабатывать из него плутоний. Да, наука говорит, что ториевая энергетика возможна и, более того энергетически даже выгодна. Но - ториевая энергетика практически по всем статьям проигрывает ураново-плутониевой. Поэтому младшая сестрёнка науки - экономика, ненавязчиво говорит нам: подождите со своим торием, разберитесь с ураном в конце-то концов.

Вы хотите цифр? Их есть у меня.

Мировое производство тория в период 1978-2010 годов составило примерно 150-200 тонн ThО2 в год.
В 2000-м году мировое производство монацитового концентрата для извлечения всех металлов, содержащихся в нём, составляло около 12 000 тонн в год.
Торий, который в монаците, как мы помним, составляет не много, ни мало, а 6-12% по массе, исходя из уровня производства монацитового концентрата в мире и реальной мировой потребности в тории - в большей степени отправлялся в отвалы .

Мировая потребность в тории на современном этапе достаточно низкая, во всем мире в 2000 году его потребление составило 200 тонн, и то - при производстве специальных сплавов. К середине 1990-х годов рыночная продажа монацитового концентрата практически прекратилась - ввиду отсутствия спроса на него. Весь добываемый монацитовый концентрат перерабатывается в мире теми же компаниями, которые его и извлекают из недр - причём, как вы поняли не с целью извлечения тория, а для получения оксидов постоянно сопутствующих ему редкоземельных минералов.

В 1997 году базисная цена на оксид тория составляла 65.55$ за килограмм, 82.50$ за 99.9% чистоту и 107.25$ за килограмм металлического тория 99.99% чистоты . Налетай - подешевело?

Состояние же редкоземельной промышленности России показывает ещё более жёсткий экономический подход к добыче тория и редкоземельных металлов. Экономика - это искусство возможного и в экономике каждый процент имеет значение. Особенно - если это процент содержания минерала в породе, а не банковский процент по невозвратному потребительскому кредиту. С физической экономикой шутки плохи, она хоть и младшая сестра науки, но с идиотами в кино не ходит.

Рассеянный торий в России, как и везде в мире, основном концентрируется там же, где и редкоземельные минералы. По количеству запасов РЗЭ Россия занимает второе место в мире после Китая. Причём речь идёт именно о месторождениях, то есть о геологических структурах, рентабельных к освоению.
Более 68% этих объектов находится в Мурманской области, кроме того они разведаны в Республике Саха (Якутия) и в Иркутской области.

Содержание редкоземельных элементов в рудах большинства российских месторождений значительно ниж е, чем китайских: на разрабатываемых месторождениях Китая средние содержания оксидов редкоземельных металлов в рудах достигают 5% , в российских объектах – редко превышают 1% .
Основная часть балансовых запасов редкоземельных металлов (и тория!) России (почти 82%) связана с апатитовыми рудами , причём 70% запасов заключено в апатит-нефелиновых рудах Хибинской группы месторождений в Мурманской области.
Среднее содержание суммы оксидов редкоземельной группы здесь не превышает 0,4% . Многие из этих месторождений активно разрабатываются, однако при применяемой сегодня технологии из руд извлекается только фосфор и в небольших количествах - титан; редкоземельные же элементы, а тем более - торий, остаются в материале складируемых отвалов обогатительных фабрик.

Когда-нибудь настанет время извлечь и РЗМ, и торий из этих отвалов. Его там, мягко говоря, дохрена и больше.

В природных водах содержится особенно мало тория: в пресной воде 2 на 10 в минус 9 степени % , в морской воде 1 на 10 в минус 9 степени % . То есть - в море у нас 1 атом тория на сто миллиардов других атомов, а пресной воде таких атомов - аж вдвое больше. Та же фигня у нас и с другими редкоземельными металлами.

Поэтому, если Вы читаете, что «японцы налаживают производство РЗМ из морской воды», то знайте - вас дурят. Причём - самым наглым образом. Легче наладить такое производство в пресном водоёме. В два раза легче.
А на отвалах апатитов такое производство наладить в сто миллионов раз легче.
А вот «доедят» китайцы последние богатые месторождения РЗМ во Внутренней Монголии - будет праздник редкоземелья и на нашей улице.

Вот ведь они, лежат, апатитовые отвалы, природу своим непотребным видом портят. Бери - не хочу, вас ещё и экологи в попу поцелуют поддержат:


Хотите тория? Да вот же он!

Вот такие пирожки с торием.

А господина Острецова с его энергией-то - надо послать на красноуфимские склады. Осваивать торий.
Там тория целых 6000 тонн - хватит на постройку любого исследовательского реактора, ещё и на ускорители разные останется. И содержание там не 0,4% по сумме оксидов, как в апатитовых отвалах, не две миллиардных доли процента, как в пресной воде, а целых 7,8% только по торию!
Бери, пользуйся, твори, пробуй.

Ведь наука - это искусство возможного. Сможет непризнанный гений доказать свои идеи - честь ему и хвала.
Самое главное при этом - лишь не впасть в ересь вакуумной акустики.
Поскольку есть вещи, невозможные по определению.

И в экономике этих вещей, к сожалению, гораздо больше, чем в науке.

Один из ведущих мировых специалистов по ториевой энергетике, член экспертного совета журнала «Редкие земли», доктор технических наук, экс-генеральный директор нескольких самых крупных предприятийСредмаша, Валерий Константинович Ларин - о кодексе доверия, новых возмож-ностях в освоении Арктики, об эволюции и светлом будущем атомной энергетики, которое невозможно представить без использования уникального элемента - тория. Что такое торий? В чем его плюсы и минусы? Почему в других странах уже выбрали торий? финальные звонки перед большим спектаклем, приглашение на который мы можем не получить, если сегодня упустим свой шанс создать ториевую сверхтехнологию для новой технологической эпохи.

Торий как альтернатива урану
По распространению в земной коре тория в несколько раз больше, чем природного урана. Торий и присутствующий в нем один из изотопов, уран-232, могут являться достаточно эффективным источником в ядерной энергетике взамен широко применяемого топлива на основе 235-го изотопа урана. Ториевая энергетика обладает рядом колоссальных преимуществ. Каких? Во-первых, безопасность: в реакторе, работающем с использованием тория как элемента питания, нет избыточной реактивности. Это гарантия неповторения таких жутких катастроф, как Три-Майл-Айленд в Америке, как Чернобыль, как Фокусима. Еще академик Лев Феоктистов писал, что любой атомный реактор, работающий в сегодняшней конфигурации и технологии, обладает сумасшедшей избыточной активностью. По сути, в одном реакторе несколько десятков, а то и сотен бомб, что вынуждает нас принимать очень серьезные меры для защиты: ловушки, специальные конструкции и так далее, что, естественно, сильно удорожает производство и обслуживание. Второе преимущество ториевой энергетики - нет проблем с утилизацией отходов. Мы вынуждены осуществлять перезагрузку топлива в нынешних ВВЭРовских реакторах раз в полтора года. Это 66 тонн активного вещества, которое надо загрузить разово. Причем степень выгорания не такая уж высокая, остается достаточно много отходов, что сопряжено с рядом трудностей. Я имею в виду вторичное захоронение активных элементов, в больших объемах нарабатывается плутоний. В ториевой энергетике всего этого нет. Почему? Цикл полураспада у тория длится намного дольше - на практике десять лет и больше. Это обеспечивает более эффективное использование, меньше затрат на выгрузку-разгрузку, повышение КИУМ и так далее. Да, надо признать, что из-за другого периода полураспада тория образуются другие актиноиды, более активные, но на нынешнем этапе эта проблема вполне решаемая. Но существуют и большие плюсы. Согласитесь, есть разница: полтора года и десять лет?
Основной минерал, содержащий торий, - это монацит, который содержит редкие земли. Поэтому, когда мы говорим о тории как о топливе для будущей энергетики, как о следующем этапе развития атомной энергетики, речь, естественно, пойдет о комплексной переработке монацитового сырья и разделении редких земель - это существенным образом делает применение тория коммерчески более экономичным и привлекательным. Здесь существует очень серьезный потенциал для развития и энергетики, и экономики, и горнодобывающей промышленности. Торий в России есть в виде монацитовых песков. Эта технология должна быть промышленно освоенной, опробованной и, самое главное, рентабельной. В лаборатории можно делать все.
Проблема поиска месторождений тория сходна с проблемой поиска месторождений редкоземельных металлов - его способность к концентрации слабая, и торий весьма неохотно собирается в сколь-либо значительные залежи, являясь очень рассеянным элементом земной коры. В небольших количествах торий присутствует в граните, грунтах и почве. Обычно отдельно торий не добывается, в качестве побочного продукта его извлекают при добыче редкоземельных элементов или урана. Во многих минералах, в том числе и в монаците, торий легко замещает атом редкоземельного элемента, что и объясняет сродство тория с редкими землями.

Торий (Thorium), Th - химический элемент III группы Периодической системы, первый член группы актиноидов. В 1828 году, анализируя редкий минерал, найденный в Швеции, Йёнс Якоб Берцелиус обнаружил в нем окись нового элемента. Этот элемент был назван торием в честь всемогущего скандинавского божества Тора (Тор - коллега Марса и Юпитера, бог войны, грома и молнии). Получить чистый металлический торий Берцелиусу не удалось. Чистый препарат тория был получен лишь в 1882 году другим шведским химиком, первооткрывателем скандия Ларсом Нильсоном. Радиоактивность тория была открыта в 1898-м независимо друг от друга одновременно Марией Склодовской-Кюри и Гербертом Шмидтом.


Надо развивать собственное производство
В свое время писались докладные на имя Ефима Павловича Славского и Игоря Васильевича Курчатова о том, что надо переходить на ториевый цикл. И ториевая энергетика в экспериментальном исполнении была: работали реакторы на «Маяке» и в Германии. Но в то же время необходимо было развивать военное направление, связанное с энергетикой, и, соответственно, работать на плутонии, и ториевая программа была заморожена. Поэтому решение, которое принято нашим Президентом, что надо работы в этом направлении начать, усилить и, быть может, даже форсировать, очень правильное и своевременное. Сегодня второго шанса нам никто не даст. В Китае, Индии, Скандинавских странах есть очень серьезная ториевая программа. Скоро все так далеко уйдут, что мы уже никого не догоним. Китай настолько далеко ушел в развитии редкоземельной промышленности со своей рудной базой, что мы Китай этим сегодня не испугаем. Мы могли догнать Китай и обязаны были делать все, чтобы Китай от нас, по крайней мере, на шаг, на два держался на втором плане в атомном машиностроении, в атомных технологиях. Но, к сожалению, мы и здесь потихоньку уступаем. Китай рвется на рынок со своими атомными реакторами, со своей технологией. И я могу заверить, при той позиции, которая у нас сейчас, мы проиграем эту борьбу.
Они вот уже предлагают реакторы малой мощности и, как ни грустно это признавать, они и плавучие реакторные установки быстрее нас промышленно освоят - наши министерские товарищи очень заинтересованы в этих реакторах, вместо того чтобы развивать собственное производство. Нам надо развиваться. Например, газовые реакторы, высокотемпературные реакторы с газовым охлаждением - это, вообще-то, очень перспективное направление. Но это мы тоже почему-то очень медленно, робко, инертно делаем.
К сожалению, на протяжении всех 1990-х годов у нас господствовала идеология, что проще и дешевле купить редкие земли, например, в Китае, чем сделать собственный продукт.

Прогноз мирового производства ядерной энергии с использованием реакторов различных типов


Сколько стоит новое топливо
Производственники - консерваторы. И их консерватизм оправдан. Философия производственника понятна: у меня отлаженное производство, я работаю, отвечаю за план, за производство, за людей, которые работают. Всякое новшество приносит мне риски. Риски нового, которое надо испытывать, а при этом всегда возможны какие-то неполадки, накладки и так далее. Оно мне надо? Я буду лучше спокойно жить. Поэтому конфликт таких интересов: развития, продвижения нового и точки зрения производственника-консерватора, он всегда был, есть и будет. Другое дело, что надо это разумно преодолевать.
Сегодня существуют разновидности уранового топлива: нитридное, керамическое, топливо с добавкой редких земель. Очень большое количество вариантов. И разве это производится без всяких затрат, без всяких денег? Совершенно не так. Чтобы получить новое топливо, в основе которого будет торий, надо наработать технологию изготовления этих материалов. И прежде чем говорить, что ториевая энергетика намного дороже урановой, надо сделать простую вещь - сравнительный экономический анализ. Например, если в качестве топлива для реактора будет использоваться расплав фторида тория, то получить фториды тория, как мне кажется, не так уж и дорого. Если мы будем получать топливо в виде шаровых элементов - это второй вариант, керамика - третий вариант. Тем более речь здесь идет, прежде всего, о сырье, о монаците, и вопрос цены будет определяться с учетом комплексного использования. То есть выделение из монацита всей суммы редких земель, урана и циркония - все это серьезным образом снизит затраты на производство топлива на основе тория.


Дизайн первого в мире ториевого ядерного реактора, разработанного в Центре исследования ядерной энергетики Бхаба в Мумбаи (Индия) и предназначенного для использования ториевых топливных ячеек для коммерческой выработки энергии.

Немного о реакторах на быстрых нейтронах. Неважно, по какой технологии, на каком реакторе, в каком конструкторском исполнении использовать быстрые нейтроны, зажигать природный материал - в том или ином количестве все равно будут образовываться отходы. И отходы надо перерабатывать. Если говорить о чистоте методологии и понятий, как такового замкнутого цикла нет и не может быть. Но в варианте ториевой энергетики будет меньше активных отходов, которые надо перерабатывать.
Я убежден, что мы в любом случае перейдем постепенно на ториевую энергетику, тем более что последние исследования и расчеты физиков Томского политехнического университета, теоретический расчет активной зоны, показывают, что возможен эволюционный переход на ториевую энергетику применительно и к легководным реакторным установкам. То есть не сразу революция, а постепенный перевод активной зоны существующих легководных реакторов с частичной заменой активной зоны с уранового топлива на ториевое.


Центр исследования ядерной энергетики Бхаба (Индия).

Прежде чем вешать штампы, что это - плохо, а это - хорошо, надо серьезно заняться реальным делом. Допустим, изготовить парочку твэлов и на опытных стендах это все погонять. Снять все ядерно-физические характеристики. Много исследований нужно провести, причем долговременных. И чем дальше мы оттягиваем, отговариваясь, что это сложно и тяжело, тем больше мы будем отставать в развитии. Нужно все делать вовремя. В свое время в Средмаше этим занимались, получали металлический торий на наших предприятиях, и эти технологии были. Надо поднять старый опыт, старые отчеты, они все, наверное, в архивах сохранились, и специалисты это найдут. С учетом того, что было сделано, и новых возможностей необходимо все это дело продолжить.

Некоторые месторождения тория в России:
Туганское и Георгиевское (Томская область)
Ордынское (Новосибирская область)
Ловозерское и Хибинское (Мурманская область)
Улуг-Танзекское (Республика Тыва)
Кийское (Красноярский край)
Тарское (Омская область)
Томторское (Якутия)

Торий для Арктики и не только
Существует огромная потребность в серийных мобильных и стационарных энергетических установках сверхмалой и малой мощности (от 1 до 20 МВт), которые могут быть использованы в качестве источников энергии и тепла при освоении северных территорий, разработке там новых месторождений, а также в обеспечении электроэнергией удаленных воинских гарнизонов и крупных военно-морских баз на Северном и Тихоокеанском флотах. Эти установки должны обладать как можно большим периодом работы без перегрузки ядерного топлива, при их эксплуатации не должен накапливаться плутоний, их должно быть легко обслуживать. Они не могут работать в уран-плутониевом цикле, потому что при его использовании накапливается плутоний. Перспективной альтернативой урану в данном случае является использование тория.
Проблема энергетики в Арктике - это проблема номер один. И этим надо абсолютно четко заниматься. Вот сейчас в Жодино наши уважаемые белорусские друзья сделали самый большой в мире «БелАЗ», грузоподъемность 450 тонн. Для того чтобы этот «БелАЗ» работал нормально, все его колесные пары приводятся отдельно, на каждое колесо стоит отдельный двигатель. Но для того чтобы получить электроэнергию, стоят два огромных дизеля, которые приводят в движение электрогенераторы, они распределяют все на эти электродвигатели. Давайте сделаем маленький ториевый реактор, причем не обязательно его ставить прямо на этот «БелАЗ». Можно сделать разные варианты. Например, очень эффективно будет использовать ториевые реакторы малой мощности для производства водорода. И перевести все двигатели на водородные. В этом плане у нас теоретически получается блестящая картина, потому что при сжигании водорода мы получим воду. Абсолютно «зеленая» энергетика, о которой мечтают все. Или мы сделаем атомные станции на основе реакторов малой мощности. С дальнейшим развитием и освоением Арктики передвижные локальные реакторы, реакторные установки малой мощности дадут, с моей точки зрения, сумасшедший народнохозяйственный эффект. Просто сумасшедший. Они должны быть вот именно передвижными, локальными, мобильными. И я думаю, что не так сложно сделать реакторы малой мощности на тории с периодом перегрузки в десять и более лет в условиях Арктики. Да, можно сделать реакторы малой мощности и на существующих технологиях: возьмем реакторы, которые у нас есть в военно-морском флоте, на подводных лодках, атомоходах. Поставим их. Начнем эксплуатировать. Все это можно сделать. Но сложности в эксплуатации и выводе из эксплуатации, загрузка, выгрузка и вывоз в суровых условиях северных широт сильно усложнят применение такого типа установок.
Еще один показательный пример. В громадных якутских карьерах «Алроса», на горных подразделениях Лебединского ГОКа при добыче железной руды мы используем большегрузные «БелАЗы» или «Катерпиллеры», и существует большая проблема проветривания карьеров от выхлопов и после массовых взрывов для отбойки руды. Что применяется? Вплоть до авиационных вертолетных двигателей, но они еще тоже работают на органическом топливе, на керосине и прочее, в свою очередь происходит вторичное загрязнение карьера. При переходе на транспортные средства с реакторными установками на основе тория отпадает необходимость в проветривании карьеров, не нужны склады ГСМ и т. д.
Для меня шок, когда Россия, правопреемница Советского Союза, не в силах обеспечить свою атомную отрасль природным компонентом, урановым сырьем. Я этого не понимаю, а я воспитан на старой школе и нигде, кроме Средмаша, не работал. Шутка ли, некоторое время назад, судя по официальным источникам Росатома, мы были вынуждены закупать сырье в Австралии.
Российские предприятия, говорят, убыточны, но в таком случае, почему же аналогичные предприятия на Украине, где тоже подземная добыча и содержание металла в руде аналогичное нашему, прибыльны? Наверное, настала потребность, государственная потребность иметь госрезервы стратегических материалов для развития атомной энергетики, а также в целом для промышленности. С учетом вот таких фокусов, которые происходят (санкции и прочее), нас в любой момент могут поставить в очень-очень неудобное, зависимое положение.
Там, где речь идет о принципиальных вещах, о безопасности государства, не только с точки зрения обороноспособности, государственная безопасность - понятие емкое и громадное, и это не только вооружение. Это и продукты питания, и другие стратегические вещи.


Плавучие АЭС - один из перспективных проектов развития Арктики - вполне могли бы оснащаться ториевыми реакторами, небольшими и «долгоиграющими»

Где штаб аналитиков и специалистов?
Мне кажется, при любом министерстве должен существовать этакий штаб аналитиков, советников, серых кардиналов, если хотите, как угодно их назовите, которые должны анализировать громадный массив информации и отделять зерна от плевел, определяя стратегию развития. К сожалению, особенно сегодня, решения зачастую принимаются без должного анализа. Руководство отрасли должно заниматься аналитикой и стратегическим планированием, четко понимать, в каком направлении дальше развиваться отрасли. А это должно основываться на правильной аналитике.
Плохо то, что мы действительно забыли о понятии «критичные металлы», о том, что нужно для развития атомной отрасли, для ее бесперебойной работы. В моем понимании, очень нужен иттрий, бериллий, литий, очень нужна средняя тяжелая группа - это неодим, празеодим, диспрозий. Эти элементы действительно нужны ближайшие 5–10–15 лет. Да, мы определили, что эти элементы нам нужны. Я задам простой вопрос: господа начальники, господа технологи, мы получили эти элементы. А что мы с ними будем делать? У нас вторичная промышленность готова, чтобы делать изделия из этих элементов? Кто будет делать, есть ли эти предприятия? Первое, могут нам сказать, что да, мы делали опытные образцы. Вопрос в другом. Вы сделали что-то, а это конкурентоспособно? Этот продукт русский и это будет продукт, который по своим характеристикам лучше, чем немецкий, и так далее? Это как с телевизором. Вам, как потребителю, поставим русский телевизор и поставим японский. Я уверен, вы купите японский. Вот в чем вопрос - готова ли промышленность правильно использовать редкие земли и в нужном направлении. Готовы ли мы делать из них конкурентоспособный продукт или мы произвели редкие земли, чтобы продать на рынке? Нас не пустит Китай с нашими редкими землями на рынок. Здесь комплекс проблем, которые мы должны комплексно решать, а мы же только декларируем.
Но гораздо хуже то, что идет старение кадрового персонала, потенциала в министерстве, в госкорпорации. И это, к сожалению, особенно наглядно в сырьевом дивизионе. А сырьевой дивизион - это основа основ. Если у вас не будет сырья, то не из чего будет что-то делать. Железо-то можно понастроить, а чем железо питать? Мы не зря говорим о том, что нам надо думать и рассматривать многообразие источников сырья, в том числе и тория. Наряду с этим не надо забывать об уране, не надо забывать о накопленных запасах (природный компонент 238 в разных формах). Все это надо использовать в узконаправленном, грамотном, нормальном, обоснованном сегменте, в разных вариантах. Выпускника Гарварда в шахту не отправишь, юриста в металлургический цех тоже. Не пойдут они туда. А кто сейчас готовит таких специалистов? На Урале существовала целая отрасль, связанная непосредственно с Минсредмашем, - это химическое машиностроение. Мощнейшие заводы химического машиностроения на Урале.

Плюсы использования тория:
+ Экономичность. Тория нужно примерно в два раза меньше, чем урана, для производства того же количества энергии.
+ Безопасность. Ядерные реакторы на ториевом топливе более безопасны, чем на урановом, поскольку ториевые реакторы не обладают запасом реактивности. Поэтому никакие разрушения аппаратуры реактора не способны вызвать неконтролируемую цепную реакцию.
+ Удобство. На базе тория возможно создание реактора, не требующего перезагрузок топлива.

Три недостатка использования тория:
- Торий - рассеянный элемент, не образующий собственных руд и месторождений, добыча его дороже, чем урана.
- Вскрытие монацита (минерала, в котором содержится торий) - процесс намного более сложный, чем вскрытие большинства урановых руд.
- Нет налаженной технологии.

Парадоксальная вещь - сегодня специалистов по химическому машиностроению не готовит ни один вуз в России. А как вообще будут проектироваться аппараты, не имея специалистов? Старики уйдут. Привезите сейчас пробу во ВНИИХТ, ее некому разделать. Если я не прав, так и напишите, что Валерий Константинович заблуждается. Это будет корректно и правильно. Вот сообщаем, вот такой-то вуз готовит. Я буду только рад, что я ошибся, искренне рад. Я говорю это на основе личного опыта. Я был недавно на Урале и встречался с людьми, которые работают в этой отрасли, это их слова. Они мне сказали: «Через пять лет можете забыть, что такая отрасль, как химическое машиностроение, в России была». Это люди, которые имеют опыт проектирования и создания аппаратов для химического машиностроения: специальные сушилки, специальные печи, агрегаты для разложения, для химического разложения. Это специальная отрасль техники, которая подразумевает работу с кислотами, в термических условиях, на аппаратах под давлением.

Где еще используется торий?
1 Оксид тория используется для производства огнеупорной керамики.
2 Металлический торий применяется для легирования легких сплавов, особо широко используемых в авиации и ракетной технике.
3 Многокомпонентные сплавы на магниевой основе, содержащие торий, применяют для деталей реактивных двигателей, управляемых снарядов, электронной и радарной аппаратуры.
4 Торий применяется как катализатор в процессах органического синтеза, крекинга нефти, при синтезе жидкого топлива из каменного угля, гидрирования углеводородов.
5 Торий используют как электродный материал для некоторых типов электронных ламп.

Зачем нужен директор?
Я был генеральным директором на трех самых крупных предприятиях Средмаша. Я горжусь этим и знаю, как выстраивались отношения между мной, как директором предприятия, начальником главка и министром. Я принимал решения в тех рамках финансирования и компетенции, которые у меня были. И я за это отвечал. Мы принимали решения, мы проводили испытания. Обосновывали? Да. Но мы это делали. Потом уже на основе всего этого мы обосновывали и доказывали необходимость подобных решений. Нам надо это делать, нам надо это внедрять, это в логику развития отрасли, это нужно, и так далее. Сейчас все ждут, какая будет команда из Москвы, что нам делать?
Любая система взаимоотношений, любая система в отрасли, в народном хозяйстве и где угодно - это есть система доверия. Если ты поставил директора, то а) значит, ты ему доверяешь, б) если ты ему доверяешь, ты даешь ему определенные рамки свободного плавания. Но нельзя директору, командиру, который отвечает за производство, за людей, за технику безопасности, за выполнение плана, миллион всяких функций, постоянно звонить из Москвы и одергивать: «так не делай, сюда не смотри, туда не ходи». Если что-то случится на производстве, отвечать будет директор, а не тот, кто его из Москвы дергает. Сейчас же директор предприятия, извините меня, кусок мыла не может купить. Все идет через Москву, через тендеры. Но если это так, то зачем вам директор нужен? Уберите его и командуйте из Москвы, что надо сделать.


Индонезийское Национальное агентство по атомной энергии (BATAN) планирует строительство экспериментального реактора (RDE) для тестирования с использованием ториевого топлива (фото из открытых источников).

Вопрос времени
Ученые, которые всерьез занимаются реакторами на быстрых нейтронах, совершенно четко говорят, что реальный пуск запланирован на 2030 год. Раньше никто ничего не планирует. Проблем куча. Расплавленный свинец - агрессивная жидкость. Течение свинца в трубках охлаждения - вопрос вопросов: что происходит на границе раздела фаз, какие особенности граничных слоев, как меняются массоперенос и теплоперенос, вопросы, вопросы, вопросы. Дело в том, что граничные слои обладают совершенно другими физико-химическими свойствами, там совсем другие коэффициенты массопереноса, теплопереноса и т. д. Свинец должен быть определенного качества, с нужным содержанием кислорода. Вопросов много. Есть ли на эти вопросы ответы? Не знаю. Нужны цифры, расчеты.
Что касается тория, то все зависит от того, как мы это организуем, как конструктивно все это оформим, какая логистика и кто будет управлять проектом. Если мы сумеем это грамотно сделать, подберем специалистов, увлеченных идеей ториевой энергетики, выделим финансирование, специальный исследовательский реактор только для этих целей, с наработкой топлива, я думаю, мы уложимся в практический результат за достаточно сжатые сроки, как было в сороковые–пятидесятые годы. В лабораториях уже проделана значительная часть работ по физике активной зоны, по переработке монацита с селективным выделением тория и получением редких земель. Надо все, что сделано раньше, аккумулировать, проанализировать, собрать вместе в рамках рабочей группы по развитию ториевой энергетики. И работать.