Галактика Млечный Путь. Строение, происхождение



Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team

Задали хороший вопрос о том, отражают ли все эти чудные снимки объектов Вселенной, которые в изобилии усеивают любой сайт астрономической направленности, то, «как видно глазу» или нет.

Ну что ж, давайте разберемся. Очень коротко, тезисно, не без упрощений, конечно.

ЦВЕТ - реакция нашего мозга на свет разной длины волны, попавший на колбочки на сетчатке глаз. Синтез миллионов цветов по сути происходит из трех основных - синего, зеленого и красного, более того, наши глаза имеют естественный встроенный фильтр с центром на длине волны около 555 нанометров, в желто-зеленой области. У каждого человека есть свои нюансы восприятия света - так, например, у меня левый глаз видит в слегка холодных, а правый - в немного теплых цветах, и, подозреваю, у других людей здесь может быть что-то свое:-/

Матрицы монохромны, лишены этих недостатков и имеют кучу своих, матричных. В бытовых фотоаппаратах, утрируя, на матрице не одна, а три точки, чья чувствительность к свету выровнена технически, условно, по основным цветам, и все миллионы цветов опять получаются сложением этих трех основных, хотя вовсе и не очевидно, что графики чувствительности матриц на разных длинах волн в точности повторяют наши глаза - по уже упомянутым выше причинам.

Любители-астрофотографы используют неплохие монохромные матрицы, вводя в поток света перед ними градуированные широкополосные фильтры RGB (красный, зеленый, синий) и, еще, иногда фильтр альфа водорода, чтобы подчеркнуть яркость отдельных областей туманностей и галактик. Процесс выглядит так: навел на объект, проверил фокус, на специальной револьверной головке поставил синий фильтр - щелк, сделал экспозицию (секунды, минуты, реже - десятки минут), убрал фильтр, проверил фокус, поставил зеленый фильтр - щелк, сделал экспозицию, и так далее... потом в специальной программе сложил многие изображения, сделанные через каждый отдельный фильтр, чтобы усилить, потом в Фотошопе приписал каждому фильтру свой цвет, сложил все вместе, и получил итоговое цветное изображение. Нелегка и неказиста...

Астрономы-профи предпочитают иметь дело с объективными, научными данными. Поэтому они используют график излучения черного тела, показывающий, сколько света на каких длинах волн пришло к нам от объекта. Из этого полного спектра узкополосными фильтрами вырезают четкие окна в диапазонах U - ультрафиолетовый (365 нм), B - синий (445 нм), V - визуальный (551 нм), R (658 нм) - красный, I (806 нм) - инфракрасный, и многие, многие другие, дополнительные полосы. В общем случае, ученых обычно интересует даже не флюксы (потоки излучения) на указанных длинах волн, а разница между ними - U-B, B-V и т.д. Теоретически можно опять таки в фотошопе приписать каждому узкому фильтру свой цвет и экспериментировать с этими изображениями до посинения. Судите сами, соответствует ли все это вашему представлению о том, «как видно глазу». Процесс калибровки узкополосных фотометрических фильтров будет похлеще Фауста Гёте, посему о нем умолчим, пощадив ваше время и нервы...

Наш любимый телескоп Хаббл, кроме фотометрического, использует еще и другой набор фильтров, пропускающих излучение строго определенной длины волны - ионизованного водорода, кислорода и серы, как основные цвета (ну, и несколько дополнительных тоже). Водороду припишем красный, кислороду - синий, а сере - зеленый, сложим опять все вместе в фотошопе, и на выходе мы получим именно то, что сейчас представляют почтеннейшей публике, как фото объектов Вселенной... называется палитра Хаббла.

Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.


Наконец, используя полный электромагнитный спектр, ученые стали приписывать условные цвета даже невидимым нам радио-, инфракрасному, рентгеновскому и гамма излучению. Очень часто теперь можно встретить снимки, где красным, например, кодированы какие-то волны из инфракрасного диапазона (скажем, от телескопа Спитцер), зеленым - визуального (Хаббл), а фиолетовым - рентгеновского (от обсерватории Чандра). Называется цветовое кодирование.

А теперь, в эру многосигнальной астрономии, ожидайте появления на снимках еще и гравитационных волн, выраженных каким-нибудь еще цветом:)

Подобные изображения используют уже не столько для восхищения и созерцания, сколько для серьезной науки, изучая морфологию и динамику объектов - например, сравнивая распределение горячего газа в скоплениях галактик с визуальными искажениями изображений галактик, которые дает гравитация, можно судить о наличии темной материи в этих скоплениях.

Насколько все это соответствует вашему интуитивному представлению «как надо»? Нет, совсем не соответствует? Погодите бежать с чемоданами через поле, мы еще немного усугубим общую картину...

Глаз - замечательный инструмент, само совершенство (хотя и не настолько, как собачий нос), но он имеет еще недостатки - например, слепое пятно, из которого пучок проводящих нервов идет в мозг, естественные физиологические отклонения - астигматизм, близорукость/дальнозоркость, дальтонизм как неспособность различать цвета...

Есть и еще один недостаток. При низком освещении колбочки, которые дают ощущение цвета, почти не работают, мы видим так называемыми «палочками», которым цвет особо ни к чему, их задача - обеспечить вас ночным зрением. Ночью все кошки серы, правда? В отличие от матриц, умеющих накапливать фотон за фотоном, при низком освещении - сколько не гляди, сильно больше не увидишь. Под утро зрачок вследствие естественной адаптации расширяется почти до максимального предела - до 6 или 8 мм, у кого как, но такой разницы, как у матриц между экспозициями в секунду и в десятки минут, нет и близко.

Сев на космический корабль, и прилетев к какой-нибудь туманности, мы, в зависимости от ее яркости и площади, занимаемой в нашем поле зрения, вполне можем увидеть вместо шикарного разноцветного калейдоскопа форм и цветов, просто серое, невнятное и непривлекательное скопление пыли и газа... разочарование? Гнев? Отрицание? Отчаяние?

И как вам теперь с этим знанием? Умножил вашу скорбь?

Истинная красота Вселенной заключена даже не в зрелищах, коими она насыщена чуть более, чем полностью, а в том, что она дает пытливому уму возможность понимать красоту законов, ей управляющих...

Like Love Haha Wow Sad Angry

3 1 1

В ясную ночь вы можете наблюдать за полосой Млечного Пути в небе. На протяжении тысячелетий астрономы смотрели на него с трепетом, медленно приближаясь к осознанию того, что наше Солнце – всего лишь одна из миллиардов звезд в Галактике. С течением времени улучшались наши инструменты и методы, и мы пришли к пониманию, что сам Млечный Путь всего лишь одна из миллиардов галактик, составляющих Вселенную.

Благодаря теории относительности и открытию скорости света мы также поняли, что, когда мы смотрим сквозь пространство, мы смотрим назад во времени. Увидев объект в одном миллиарде световых лет от нас, мы знаем, что так он выглядел миллиард лет назад. Эффект машины времени позволил астрономам изучить эволюцию галактик.

Процесс формирования и развития галактик остается предметом интенсивного внимания и по-прежнему скрывает долю тайн.

Формирование галактик

Текущий научный консенсус заключается в том, что вся материя во Вселенной была создана примерно 13,8 миллиарда лет назад во время события, известного как Большой Взрыв. Изначально вся материя была сжата в очень маленький шарик с бесконечной плотностью и огромной температурой, называемый сингулярностью. Вдруг сингулярность начала расширяться. Так началась Вселенная.

После быстрого расширения и охлаждения все вещество было почти однородно распределено. В течение нескольких миллиардов лет более плотные участки Вселенной стали гравитационно притягиваться друг к другу. Поэтому они стали плотнее, образовав газовые облака и большие сгустки материи.

Спиральная галактика Messier 74, расположенная в 32 миллионах световых лет от нас, содержит около 100 миллиардов звезд. Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration

Облака газообразного водорода внутри протогалактик претерпели гравитационный коллапс, чтобы стать первыми звездами. Некоторые из этих ранних объектов были крошечными карликовыми галактиками, в то время как другие приняли привычную спиральную форму, как и наш Млечный Путь.

Галактические слияния

Однажды сформировавшись, эти галактики развивались в более крупные галактические структуры, называемые группами, скоплениями и сверхскоплениями. С течением времени, галактики притягивались друг к другу силой тяжести и объединялись. Результат этих слияний зависел от массы столкнувшихся галактик.

Малые галактики поглощаются крупными соседями, увеличивая их массу. Так Млечный Путь недавно слопал несколько карликовых галактик, превратив их в потоки звезд, которые вращаются вокруг галактического ядра. Но галактики сходного размера объединяются и становятся гигантскими эллиптическими галактиками.

Когда это происходит, тонкие спиральные структуры исчезают. Эллиптические галактики являются одними из крупнейших звездных объединений. Еще одним последствием этих слияний является то, что сверхмассивные черные дыры в их центрах становятся еще больше.

Столкновение двух спиральных галактик, которое если и не создаст одну огромную эллиптическую галактику, так уж точно изменит их стройные структуры. Credit: ESA/Hubble & NASA, Acknowledgement: Luca Limatola

Хотя не все слияния приводят к эллиптическим структурам, все они значительно изменяют строение объединенной галактики.

Во время слияний реальные столкновения звездных систем маловероятны, учитывая огромные расстояния между светилами. Однако, слияние может привести к гравитационным ударным волнам, которые способны спровоцировать образование новых звезд. Это то, что по прогнозам произойдет, когда Млечный Путь сольется с галактикой Андромеды через 4 миллиарда лет.

Смерть галактик

В конечном счете в галактиках перестают формироваться звезды, когда истощается запас холодного газа и пыли. Звездообразование замедляется в течение миллиардов лет, пока полностью не прекратится. Однако, продолжающиеся слияния гарантируют, что все новые и новые звезды, газ и пыль оседают в старых галактиках, тем самым продлевая их жизнь.

В настоящее время считается, что наша Галактика имеет почти полный запас водорода, и формирование звезд продолжится, пока он истощается. Звезды, подобные Солнцу, могут просуществовать около 10 миллиардов лет, но самые маленькие красные карлики смогут жить несколько триллионов лет. Благодаря наличию карликовых галактик и предстоящему слиянию с Андромедой Млечный Путь сможет существовать еще дольше.

В итоге все галактики во Вселенной со временем становятся гравитационно связанными друг с другом и объединяются в гигантские эллиптические галактики. Астрономы встречали подобные «ископаемые», хорошим примером которых является Messier 49, сверхмассивная эллиптическая галактика.

Эллиптическая галактика Messier 49. Credit: Siggi Kohlert

Галилео Галилей заметил, что Вселенная - это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время - от микрокосма субатомных частиц к макрокосму Вселенной.

Согласно первой точке зрения, пространство не меняется, а галактики движутся сквозь него, как шоколадные крошки на поднимающейся сдобной булке под действием добавленного в тесто разрыхлителя. Все галактики (шоколадные крошки) удаляются друг от друга, и чем больше расстояние между ними - тем быстрее. В частности, если вы встанете на конкретную крошку (галактику), вы увидите, что движение всех остальных относительно неё подчиняется закону Хаббла: все они удаляются от вас радиально, и с увеличением расстояния вдвое их скорость также удваивается. Примечательно, что всё выглядит совершенно одинаково независимо от того, с какой шоколадной крошки (галактики) вести наблюдение, так как если у распределения галактик нет границы, то расширение не имеет центра - оно кажется одинаковым отовсюду.

Согласно второй точке зрения, пространство подобно тесту сдобной булки: оно расширяется так, что шоколадные крошки относительно теста неподвижны, а галактики не двигаются сквозь пространство. То есть можно считать галактики покоящимися в пространстве (рис. 3.2 , справа), при этом все расстояния между ними изменяются. Это всё равно, что поменять отметки на воображаемых линейках, соединяющих галактики, сделав их из миллиметровых сантиметровыми, отчего все межгалактические расстояния станут в 10 раз больше прежних.

Это даёт ответ ещё на один вопрос: не нарушают ли галактики, удаляющиеся быстрее света, теорию относительности? Закон Хаббла v = Hd говорит, что галактики будут удаляться от нас быстрее скорости света c , если расстояние до них больше c /H ? 14 млрд световых лет, и у нас нет оснований сомневаться, что такие галактики существуют. Не противоречит ли это утверждению Эйнштейна о том, что никакой объект не может двигаться быстрее света? Ответ - и да, и нет. Это нарушает специальную теорию относительности 1905 года, но не противоречит общей теории относительности 1915 года, которая стала последним словом Эйнштейна по данному вопросу. Следовательно, всё в порядке. Общая теория относительности ослабила световой барьер: если специальная теория относительности утверждает, что никакие два объекта не могут двигаться быстрее света друг относительно друга ни при каких обстоятельствах , то общая говорит, что они не могут двигаться быстрее света друг относительно друга, когда они находятся в одном и том же месте . Однако галактики, удаляющиеся со сверхсветовой скоростью, находятся очень далеко от нас. Если настаивать на том, что пространство расширяется, можно перефразировать это соображение: ничему не позволено двигаться быстрее света сквозь пространство , но само пространство может растягиваться с какой ему угодно скоростью.

Кстати, о далёких галактиках. Я видел газетные статьи, где говорилось о галактиках, отстоящих от нас на 30 млрд световых лет. Если возраст нашей Вселенной всего 14 млрд лет, то как мы видим объекты в 30 млрд световых лет? Каким образом их свету хватило времени, чтобы добраться до нас? Более того, они удаляются от нас быстрее света, что делает абсурдным сам разговор о возможности их увидеть. Ответ в данном случае состоит в том, что мы видим эти далёкие галактики не там, где они находятся теперь, а там, где они были, когда испускали свет, который сейчас доходит до нас. Точно так же, как Солнце мы видим таким, каким оно было 8 минут назад, и в том месте, где оно было 8 минут назад, далёкие галактики мы можем видеть такими, какими они были 13 млрд лет назад, и в тех местах, где они были тогда, - примерно в 8 раз ближе к Земле, сравнительно с их нынешним положением. Так что свету из таких галактик достаточно пройти сквозь пространство всего 13 млрд световых лет, а разница добирается за счёт растяжения пространства. Это похоже на то, как по бегущей дорожке в аэропорту можно пройти 20 метров, сделав всего 10 шагов.

Как расширяется Вселенная?

Не случится ли там, вдали, куда направлено разбегание галактик, какого-нибудь космического ДТП, когда они врежутся в то, что находится там, куда они расширяются? Если наша Вселенная расширяется согласно уравнениям Фридмана, такой проблемы не существует: как показано на рис. 3.2, расширение выглядит одинаково повсюду в космосе, так что подобных проблемных мест быть не может. Если принять ту точку зрения, что далёкие галактики удаляются сквозь статическое пространство, причина, по которой они никогда не сталкиваются с более далёкими галактиками, состоит в том, что те удаляются ещё быстрее: вам не удастся врезаться сзади в разгоняющийся «Порше», если сами вы сидите за рулём ископаемого «Форда-Т». Если же считать, что пространство расширяется, то объяснение состоит просто в том, что его объём не сохраняется. Новости с Ближнего Востока приучили нас к той мысли, что нельзя получить больше места иным путём, кроме как отобрав его у кого-нибудь. Однако общая теория относительности утверждает прямо противоположное: дополнительный объём может быть создан в определённой области между некоторыми галактиками без того, чтобы он расширялся в другие области. Этот объём просто остаётся между галактиками (рис. 3.2 , справа).

Космическая классная комната

Как бы безумно это ни звучало, представление о расширении Вселенной логически последовательно и поддерживается астрономическими наблюдениями. Со времени Эдвина Хаббла подтверждающих эту теорию наблюдений стало гораздо больше благодаря современным технологиям и новым открытиям. Самый фундаментальный вывод состоит в том, что изменениям подвержена вся Вселенная: отодвинув рубеж наших знаний на миллиарды лет, мы обнаружили Вселенную, которая ещё не настолько сильно расширилась и поэтому была плотнее и гуще населена. Таким образом, мы обитаем не в скучном статическом пространстве, аксиоматизированном Евклидом, а в динамичном эволюционирующем пространстве, которое пережило своего рода детство и даже, возможно, рождение - около 14 млрд лет назад.

Радикально усовершенствованные телескопы усилили наше зрение настолько, что теперь мы можем непосредственно наблюдать за эволюцией пространства. Представьте, что вы выступаете с презентацией перед большой аудиторией. Внезапно вы замечаете нечто забавное. Ближайший к вам ряд кресел занят людьми примерно вашего возраста. Однако в десятом ряду вы видите лишь подростков. За ними - кучку маленьких детей, а ряд позади них занят младенцами. Вглядываясь во Вселенную, мы видим нечто подобное. Вблизи множество больших, зрелых галактик, похожих на нашу, а очень далеко мы видим в основном маленькие юные галактики, которые не кажутся вполне развитыми. А за ними и вовсе нет галактик, лишь темнота. Поскольку свету требуется больше времени, чтобы прийти издалека, заглядывание на большие расстояния равносильно наблюдению прошлого. Темнота позади галактик - это эпоха до образования всех галактик. В то время пространство было заполнено водородом и гелием в виде газа, тяготение которого ещё не успело превратить его сгущения в галактики, а поскольку этот газ прозрачен, как гелий в воздушных шарах, он невидим в телескоп.

Но есть загадка: во время презентации вы неожиданно замечаете, что из-за последнего пустого ряда поступает энергия - задняя стена аудитории не вполне тёмная, а испускает слабое излучение в виде микроволн! Почему? Мы видим именно такое свечение, когда заглядываем очень далеко во Вселенной.

<<< Назад
Вперед >>>

Введение

Процесс эволюции Вселенной происходит очень медленно. Ведь Вселенная во много раз старше астрономии и вообще человеческой культуры. Зарождение и эволюция жизни на земле является лишь ничтожным звеном в эволюции Вселенной. И все же исследования проведенные в нашем веке, приоткрыли занавес, закрывающий от нас далекое прошлое.

Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был на столько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом.

На протяжении десяти миллиардов лет после “большого взрыва” простейшее бесформенное вещество постепенно превращалось в атомы, молекулы, кристаллы, породы, планеты. Рождались звезды, системы, состоящие из огромного количества элементарных частиц с весьма простой организацией. На некоторых планетах могли возникнуть формы жизни.

Начало Вселенной

Вселенная постоянно расширяется. Тот момент с которого Вселенная начала расширятся, принято считать ее началом. Тогда началась первая и полная драматизма эра в истории вселенной, ее называют “большим взрывом” или английским термином Big Bang.

Под расширением Вселенной подразумевается такой процесс, когда то же самое количество элементарных частиц и фотонов занимают постоянно возрастающий объем. Средняя плотность Вселенной в результате расширения постепенно понижается. Из этого следует, что в прошлом Плотность Вселенной была больше, чем в настоящее время. Можно предположить, что в глубокой древности (примерно десять миллиардов лет назад) плотность Вселенной была очень большой. Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “большого взрыва” вся материя была сильно раскаленной и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы.

Рождение сверхгалактик и скоплений галактик

С возникновением атомов водорода начинается звездная эра - эра частиц, точнее говоря, эра протонов и электронов.

Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была также и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной - сверхгалактики - являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной.

Рождение галактик

Колоссальные водородные сгущения - зародыши сверх галактик и скоплений галактик - медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, т.е. зародышами галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение.

Астрономические исследования показывают, что скорость вращения завихрения предопределила форму галактики, родившейся из этого вихря. Выражаясь научным языком, скорость осевого вращения определяет тип будущей галактики. Из медленно вращающихся вихрей возникли эллиптические галактики, в то время как из быстро вращающихся родились сплющенные спиральные галактики.

В результате силы тяготения очень медленно вращающийся вихрь сжимался в шар или несколько сплюнутый эллипсоид. Размеры такого правильного гигантского водородного облака были от нескольких десятков до нескольких сотен тысяч световых лет. Нетрудно определить, какие из водородных атомов вошли в состав рождающейся эллиптической, точнее говоря эллипсоидальной галактики, а какие остались в космическом пространстве вне нее. Если энергия связи сил гравитации атома на периферии превышала его кинетическую энергию, атом становился составной частью галактики. Это условие называется критерием Джинса. С его помощью можно определить, в какой степени зависела масса и величина протогалактики от плотности и температуры водородного газа.

Протогалактика, которая вообще не вращалась, становилась родоначальницей шаровой галактики. Сплющенные эллиптические галактики рождались из медленно вращающихся протогалактик. Из-за недостаточной центробежной силы преобладала сила гравитационная. Протогалактика сжималась и плотность водорода в ней возрастала. Как только плотность достигала определенного уровня, начали выделятся и сжимается сгустки водорода. Рождались протозвезды, которые позже эволюционировали в звезды. Рождение всех звезд в шаровой или слегка приплюснутой галактике происходило почти одновременно. Этот процесс продолжался относительно недолго, примерно сто миллионов лет. Это значит, что в эллиптических галактиках все звезды приблизительно одинакового возраста, т.е. очень старые. В эллиптических галактиках весь водород был исчерпан сразу же в самом начале, примерно в первую сотую существования галактики. На протяжении последующих 99 сотых этого периода звезды уже не могли возникать. Таким образом, в эллиптических галактиках количество межзвездного вещества ничтожно.

Спиральные галактики, в том числе и наша, состоят из очень старой сферической составляющей (в этом они похожи на эллиптические галактики) и из более молодой плоской составляющей, находящейся в спиральных рукавах. Между этими составляющими существует несколько переходных компонентов разного уровня сплюснутости, разного возраста и скорости вращения. Строение спиральных галактик, таким образом, сложнее и разнообразнее, чем строение эллиптических. Спиральные галактики кроме этого вращаются значительно быстрее, чем галактики эллиптические. Не следует забывать, что они образовались из быстро вращающихся вихрей сверхгалактики. Поэтому в создании спиральных галактик участвовали и гравитационная и центробежная силы.

Если бы из нашей галактики через сто миллионов лет после ее возникновения (это время формирования сферической составляющей) улетучился весь межзвездный водород, новые звезды не смогли бы рождаться, и наша галактика стала бы эллиптической.

Но межзвездный газ в те далекие времена не улетучился, и, таким образом гравитация и вращение могли продолжать строительство нашей и других спиральных галактик. На каждый атом межзвездного газа действовали две силы - гравитация, притягивающая его к центру галактики и центробежная сила, выталкивающая его по направлению от оси вращения. В конечном итоге газ сжимался по направлению к галактической плоскости. В настоящее время межзвездный газ сконцентрирован к галактической плоскости в весьма тонкий слой. Он сосредоточен прежде всего в спиральных рукавах и представляет собой плоскую или промежуточную составляющую, названную звездным населением второго типа.

На каждом этапе сплющивания межзвездного газа во все более утончающийся диск рождались звезды. Поэтому в нашей галактике можно найти, как старые, возникшие примерно десять миллиардов лет назад, так и звезды родившиеся недавно в спиральных рукавах, в так называемых ассоциациях и рассеянных скоплениях. Можно сказать, что чем более сплющена система, в которой родились звезды, тем они моложе.

Вселенная развивается и в наше время. В спиральных галактиках рождаются и умирают звезды. Вселенная продолжает расширятся.

Газово-пылевые комплексы - колыбель звезд

Откуда же берутся в нашей Галактике молодые и "сверхмолодые" звезды? С давних пор, по установившейся традиции, восходящей к гипотезе Канта и Лапласа о происхождении Солнечной системы, астрономы предполагали, что звезды образуются из рассеянной диффузной газово-пылевой среды. Было только одно строгое теоретическое основание такого убеждения - гравитационная неустойчивость первоначально однородной диффузной среды. Дело в том, что в такой среде неизбежны малые возмущения плотности, то есть отклонения от строгой однородности. в дальнейшем, однако, если массы этих конденсаций превосходят некоторый предел, под влиянием силы всемирного тяготения малые возмущения будут нарастать и первоначально однородная среда разобьется на несколько конденсаций. Под действием силы гравитации эти конденсации будут продолжать сжиматься и, как можно полагать, в конце концов превратятся в звезды.

Характерное время сжатия облака до размеров протозвезды можно оценить по простой формуле механики, описывающей свободное падение тела под влиянием некоторого ускорения. Так, к примеру, облако с массой, равной солнечной, сожмется за миллион лет.

В процессе только что описанной первой стадии конденсации газово-пылевого облака в звезду, которая называется "стадией свободного падения", освобождается определенное количество гравитационной энергии. Половина освободившейся при сжатии облака энергии должна покинуть облако в виде инфракрасного излучения, а половина пойти на нагрев вещества.

Галактика - это огромное скопление звёзд. Весь обозримый с Земли космос состоит из таких образований, в каждом из которых насчитываются миллиарды светил. Это как бы сияющие острова в бескрайней чёрной бездне. Все эти "острова" имеют сплюснутую к краям форму. То есть в центе наблюдается утолщение, а к краям звёздное скопление утончается. Звёздные "острова" располагаются на разном расстоянии друг от друга. Наиболее близкие объединяются в группы. Такие группы называются сверхскоплениями галактик .

К примеру, планета Земля входит в Солнечную систему . Та, в свою очередь, является составной частью Млечного пути , а тот считается частью Сверхскопления Девы . В это гигантское образования входят также Туманность Андромеды и галактика Треугольника. Это огромные звёздные гиганты. А помимо них существуют небольшие звёздные островки, которых на сегодняшний день насчитывается около 60. Все они принадлежат к местной группе, а всего в Сверхскопление Девы входит около 2 тыс. галактик. Пересечь из конца в коней это звёздное изобилие можно за 200 млн. световых лет.

Классификация галактик

Все, без исключения, галактики классифицируются по видам. Насчитывается их четыре: эллиптические (Е), линзообразные (SO), спиральные (S), неправильные (Ir).

Эллиптические имеют сферическую структуру с заметно уменьшающейся к краям яркостью. Между собой они различаются по степени сжатия. Чем она выше, тем быстрее скорость вращения. Примечательной чертой является отсутствие пылевых облаков. Из космоса они обычно видны в виде тёмных полос и пятен.

Спиральные состоят из ядра (балджа) и рукавов, которые представляют собой плотные скопления звёзд. Между ними простираются газопылевые облака, а также наблюдаются плотные скопления газа и звёзд. Данные образования имеют форму диска и окружены светящейся сферой (гало). Представляет она собой разреженный газ, звёзды и тёмную материю. Скорость вращения таких галактик высокая. В них наблюдаются активные процессы звёздообразования. Млечный путь относится именно к этим звёздным скоплениям. В одном из его рукавов (рукав Ориона) вращается наше Солнце.

Линзообразные напоминают спиральные. У них есть балдж, но отсутствуют рукава. Таких образований в видимой части космоса насчитывается порядка 15%. Со стороны они выглядят как яркое утолщение, окружённое слабо сияющим плоским ореолом.

Неправильные представляют собой продукт деформации спиральных либо эллиптических галактик. Огромные силы гравитации придали им хаотичную форму, в которой невозможно обнаружить чётко выраженное ядро и рукава. Наблюдается большое скопление газопылевых облаков. Таких звёздных скоплений насчитывается порядка 25% от общего числа ярких космических «островов».

Масса галактики и тёмная материя

Масса галактики складывается из массы миллиардов звёзд, газопылевых облаков и гало. Основной вес гало составляет тёмная материя . Это загадочная сущность, которая содержит в себе гипотетические космические объекты. Их масса составляет 95% всей массы Вселенной. На их невидимое присутствие указывает гравитация. То есть тёмная материя воздействует на видимые человеческим глазом светила.

Выражается это в неестественно высокой скорости движения звёзд, расположенных у края галактического диска. Создаётся впечатление, что их ускоряет какая-то неведомая сила. А породить её может только большая масса. Стало быть, она существует, но у неё никак не проявляется электромагнитное излучение. Поэтому нет ни гамма-излучения, ни ультрафиолета, ни инфракрасного излучения, ни видимого света. Есть только сплошная чернота, которую и воспринимает человеческий глаз. Тёмная материя характерна для всех видов галактик. Различается она лишь по процентному соотношению к светящейся массе.

Огромные газопылевые облака являются теми зонами, в которых рождаются новые звёзды. Некоторые из этих облаков имеют высокую температуру, поэтому их хорошо видно в телескопы. К примеру, в созвездии Ориона существует гигантская туманность, которую видно даже невооружённым взглядом. А вот холодные газопылевые образования поглощают свет, поэтому смотрятся как чёрные провалы среди сияющих мириад звёзд.

Распределение звёзд, а стало быть, светимости и массы в звёздных скоплениях неравномерное. В центре плотность максимальная, а ближе к краям она падает. Существуют шаровые скопления звёзд, диаметры которых составляют сотни световых лет. Постоянно вспыхивают сверхновые звёзды. Много чёрных дыр, которые образуются в основном на месте погасших массивных звёзд. Например, в Млечном пути их насчитывается около 100 млн.

Возникновение галактик и их эволюция

Как возникают галактики ? Вначале существует первичное вещество или гигантское газопылевое облако. В нём под действием динамических процессов, обусловленных силами гравитации, происходит выделение галактических групп. Эти группы начинают сжиматься и постепенно превращаются в звёздные системы. Сами звёзды также образуются за счёт сжатия облаков газа и пыли.

Растёт плотность и температура. Наконец, они повышаются до такой степени, что начинается термоядерная реакция. Так на небе возникает звезда или солнце. Звёзды бывают первого, второго и третьего поколения. В звёздах первого поколения наблюдается высокое содержание водорода и гелия. А вот примесей тяжёлых элементов мало. В звёздах второго поколения концентрация тяжёлых элементов более существенная, так как они образуются позже из того газа, который уже обогащён тяжёлыми элементами.

Звёзды рождаются, а галактика сжимается. Она приобретает рукава, в которых продолжается процесс образования солнц. Это уже возникают звёзды третьего поколения. Именно к ним принадлежит и наше родное Солнце.

Наконец, звёздное скопление приобретает спиральную форму, а запасы газопылевых облаков начинают истощаться. Проходят миллиарды лет, и спиральная форма меняется на линзообразную, так как запасы газа и пыли исчерпываются. Поэтому рукава исчезают, а свечение звёзд становится слабым.

По своему возрасту галактики соответствуют возрасту Вселенной, а та, как известно, расширяется. Возраст её оценивается в 13,5 млрд. лет, а её существование началось после Большого Взрыва. Именно, благодаря ему, и образовалось большинство космических объектов.

Чем же завершится расширение нашего космического пространства ? Здесь существует два прогноза. В первом случае расширение через какое-то время закончится, и силы притяжения начнут стягивать звёздные системы обратно в кучу. Когда всё вещество Вселенной соберётся вместе, то опять последует Большой Взрыв, и родится новая Вселенная. Во втором случае гигантские скопления звёзд будут разбегаться вечно.

А где заканчивается Вселенная ? Здесь можно привести аналогию с Землёй. Двигаясь всё время в одну сторону, можно вернуться в начальную точку. То же самое, по всей видимости, происходит и в космосе. Только изогнуто в нём само пространство. Поэтому края, как такового, нет.

Существует ли разумная жизнь в других звёздных системах ? Во Вселенной триллионы звёзд, а возле них вращаются планеты. Вполне возможно, что на некоторых из них существует жизнь, аналогичная земной. Но, учитывая гигантские расстояния, обнаружить очаги разума очень сложно. Так что остаётся надеяться только на Его величество случай.

Может быть, "попутный ветер" занесёт представителей высокоразвитой цивилизации на просторы Млечного пути, да ещё и в рукав Ориона. Вот тогда земляне и увидят пришельцев во всём их первозданном великолепии. Это будет самое величайшее событие в истории человечества.

Cтатью написал Александр Щербаков