Электронные самоделки для радиолюбителей и начинающих электриков. Радиосхемы своими руками для дома


С момента публикации первой статьи по моему проекту домашних микросхем прошел (скорее пролетел) год, пора поделится прогрессом и новыми проблемами.

Изначальная цель проекта - научиться изготавливать микросхемы в домашних условиях, состоящие из сотен/тысяч транзисторов (уровня КР580ВМ80А / Z80).

Из-за того, что проект получился достаточно большим по требуемым ресурсам и времени - я решил получить в качестве дополнительного результата - документированный, максимально простой open-source техпроцесс, позволяющий создавать микросхемы в ограниченных условиях. В США, возможно, это было бы хорошим поводом для проекта на kickstarter, но видимо не судьба.

О решении сложных проблем и человеческой ограниченности

Первые полгода задача, стоящая передо мной, иногда казалась просто неподъемной. Не везде все ясно, список вещей, которые необходимо сделать или с которыми нужно разобраться - был нескончаемым. Лишь позднее я понял основной принцип решения сложных проблем:
Человек - в принципе не способен решать сложные проблемы. Все что ему под силу - сделать один следующий простой и очевидный шаг по длинной лестнице, ведущей к решению проблемы. Если стоящая проблема не очевидная чтобы решить её за один шаг - остаётся только изучать и разбивать её на подзадачи, пока она не станет очевидной. После этого она в худшем случае превращается в логистическую проблему - проблему управления большим количеством простых подзадач.

Именно так и случилось, по мере изучения и проработки - задача стала логистической, и свелась к поиску всех необходимых компонент и выбору из известных вариантов решения каждой технологической проблемы исходя из имеющихся ограничений по габаритам, финансам и безопасности.

О технологических решениях

  • Техпроцесс - NMOS (или PMOS в крайнем случае), с одним типом транзисторов и одним легированием. Как там все работает и проектируется - понятно. CMOS достаточно сложен для диффузионного легирования, и его оставляю на потом.
  • Из сжатых газов - будет только Аргон для высокотемпературного отжига и распыления металлов. Но буду пробовать обойтись без него - водородом / азотом.
  • Кислород (для выращивания слоя окисла на кремнии) и водород (для отжига) - будут получаться электролизом воды на никелевых электродах в щелочном электролите. Небольшое загрязнение щелочными металлами не должно стать большой проблемой. Я думаю понятно, что баллоны с кислородом и тем более водородом тащить домой я бы не хотел.
  • Не будет эпитаксиальных слоев (т.е. выращивания слоя кремния), т.к. моносилан (газ, из которого растят слой кремния) слишком опасен для дома в силу своей взрывоопасности, и получать его «на месте» в микроскопических количествах не выйдет. Соответственно, транзисторы будут с металлическим затвором, т.е. относительно медленные.
  • Фотолитография - все мои старые и наивные мысли о кварцевой оптике, жестком 253/184нм УФ - уходят на свалку. Будут стандартные объективы и 365/405нм ближний УФ свет. Это снимает вопросы и с относительно экзотическими фоторезистами.
  • Распыление металлов в вакууме - плазмой, а не нагреванием в вольфрамовой лодочке. Это намного проще и гибче, не требует собственно лодочек и сложной электроники нагрева и контроля температуры. Металл - алюминий. Про желательный 1% сплав с кремнием я знаю, но пока точно не знаю что с этим буду делать. Прокола pn перехода из-за использования чистого алюминия можно избежать разными способами, а электромиграция не значимая проблема для данной задачи.
  • Печка - банальный нихром на кварцевой трубке. Контроль температуры - по изменению сопротивления Нихрома или в худшем случае - по выдаваемой на спираль мощности (т.е. вслепую). Термопары высокотемпературные я купил - но они слишком большие для моих сверхкомпактных размеров.
  • Фоторезист - банальный новолачный фоторезист с щелочным проявителем. Опять же, загрязнение ионами щелочных металлов не фатальны для первоначальной задачи, поэтому с дорогими без-металлическими проявителями (на основе TMAH) я решил пока не заморачиваться.

Продвижение по материалам

В дополнение к пластинам из унылого кремния - кремний на сапфире (на производстве - используется для радиационно-стойких микросхем). В моём случае - техпроцесс на некоторых шагах может быть упрощен:

Приехал из Китая двухступенчатый вакуумный насос с фурнитурой (краники с электроприводом, вакуумные шланги, манометры и проч.) - его должно быть достаточно для напыления металлов:

Кислоты - серная, соляная, азотная, борная, ортофосфорная… Многих беспокоят прекурсоры и госнаркоконтроль - у меня все приобретено легально, с прохождением соответствующих бюрократических процедур.

И заморская, плавиковая. Это - моя самая большая в жизни ошибка. В магазине отказались разливать (из-за её опасности), и сказали, что могут продать только целиком, 24кг. Тогда я не видел других вариантов, и согласился. А ведь её я реально боялся - после того, как я давно посмотрел видео о работе с плавиковой кислотой - потом кошмар приснился, что я ей отравился, антидота нет и всё, конец (что недалеко от истины, тема раскрыта в 20-й серии 4-го сезона ER/Скорой помощи). Идея была «гениальна» - хрен с ним, сам разолью и продам лишнюю. Но после первых 2-х килограммов, которые переливать пришлось 20-и кубовым шприцем, в противогазе и проч., когда у ног задорно шипит бетон, растворяясь в тех местах, где я пару капель пролил - я решил - ну его нафиг. Получился своего рода чемодан без ручки, который не просто жалко выкидывать - нельзя, т.к. чертовски опасен.

В итоге, этот чемодан я подарил продавцу химией с самовывозом, оставив себе минимально необходимое количество. Это был хороший урок.

После этого, самые опасные вещества в производстве микросхем, которые мне придется использовать - источники фосфора и бора для легирования: BBr3 и POCl3 - их я купил самым минимальным необходимым объемом. Есть и более безопасные альтернативы - так называемые spin-on dopants - но производители не хотят мне его продавать, из-за liability issues. Если не выйдет с процессом по старинке, буду додавливать производителей.

Кварцевая посуда для микро-печки до 1000C

Нихромовая проволока (диаметр 0.4 и 0.8мм), никелевый прокат для электродов электролизера:

Промышленный фоторезист для микроэлектронного применения. Я решил не гнаться за максимально тонким резистом, этот - достаточно дубовый 2-х микронный. Толще слой - проще работать, по началу его должно быть достаточно. Пока нет промотора адгезии (HMDS) - его не оказалось в наличии, буду пробовать без него:

Как заметили некоторые люди, помогавшие мне советами - сделать микросхемы можно только в лаборатории. Сделать их дома можно только если дома - лаборатория. Похоже к этому дело и идет

В целом, самые необходимые вещи по логистике уже все есть.
Есть вещи, к которым меня пока не пускает жаба:

  1. Металлографический микроскоп - в России китайские микроскопы перепродают по 100-300 тыс рублей, на родине слонов они - 1500$-3000$. Это пожалуй тоже необходимая вещь, не могу пока только найти китайцев, которые бы с Escrow его мне продали.
  2. Лабораторный генератор азота - чертовки хитрая штука. Азот получает из воздуха, расходников нет. С ним можно было бы сделать бескислородный бокс и снять проблему инертного газа. Но стоит порядка 190 тыс рублей. Буду обходиться без него.
  3. Генератор деионизированной воды - тоже полезная вещь в хозяйстве, но очень уж простая для ~45тыс рублей. Буду пробовать «колхозить» свою на ионообменных смолах (исключительно из интереса, понятно, что ДИ воду можно и покупать)

Остающиеся проблемы и что я ищу

  • Подробные описания (старых) техпроцессов с конкретными цифрами. Один я нашел, и он очень мне помог, но еще на 1-2 взглянуть было бы крайне полезно.
  • «Открытые» (т.е. когда непосредственно видны по слоям содержимое standard cells) цифровые библиотеки для относительно толстых техпроцессов
  • Ищу, кто поможет настроить софт для проектирования микросхем и подскажет как там что - чтобы иметь общее представление, и я мог синтезировать простые тестовые схемы. Понятно, что сдвиговой регистр я и на бумажке нарисовать могу, а вот что-то чуть сложнее...
  • Пока не удалось купить вакуумную резину для камеры напыления металлов.
  • Также буду неспешно искать где купить образцы spin-on dopants и spin-on glass для ILD (диэлектрика, который разделяет уровни металлической разводки).
  • Небольшие объемы

Когда нужно получить 12 Вольт для светодиодной ленты , или еще для каких то целей, есть вариант сделать такой блок питания своими руками.

Регулятор скорости вентилятора своими руками

Данный регулятор позволяет плавно регулировать переменным резистором скорость вращения вентилятора .

Схема регулятора скорости напольного вентилятора вышла простейшей. Чтобы влезть в корпус от старой зарядки телефона Nokia. Туда же влезли клеммы от обычной электро розетки.

Монтаж довольно плотный, но это было обусловлено размерами корпуса..

Освещение для растений своими руками

Освещение для растений своими руками

Бывает проблема в недостатке освещения растений , цветов или рассады,и возникает необходимость в искусственном свете для них,и вот такой свет мы сможем обеспечить на светодиодах своими руками .

Регулятор яркости своими руками

Регулятор яркости своими руками

Всё началось с того,что после того как я установил дома галогенные лампы на освещение. При включении которые не редко перегорали. Иногда даже 1 лампочка в день. Поэтому и решил сделать плавное включение освещения на основе регулятора яркости своими руками,и прилагаю схему регулятора яркости.

Термостат для холодильника своими руками

Термостат для холодильника своими руками

Всё началось с того, что вернувшись с работы и открыв холодильник обнаружил там тепло. Поворот регулятора термостата не помог - холод не появлялся. Поэтому решил не покупать новый блок, который к тому же редкий, а сам сделать электронный термостат на ATtiny85. С оригинальным термостатом разница в том, что датчик температуры лежит на полке, а не спрятан в стенке. Кроме того, появились 2 светодиода - они сигнализируют что агрегат включен или температура выше верхнего порога.

Датчик влажности почвы своими руками

Датчик влажности почвы своими руками

Данное устройство можно использовать для автоматического полива в теплицах, цветочных оранжереях, клумбах и комнатных растениях. Ниже представлена схема, по который можно изготовить простейший датчик (детектор) влажности (или сухости) почвы своими руками. При высыхании почвы,подается напряжение,силой тока до 90мА,чего вполне хватит,включить реле.

Так же подойдет,для автоматического включения капельного полива,что бы избежать избытка влаги.

Схема питания люминесцентной лампы

Схема питания люминесцентной лампы.

Часто при выхода из строя энергосберегающих ламп,в ней сгорает схема питания,а не сама лампа. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов. В данной статье мы рассмотрим пуск лдс лампы своими руками .

USB клавиатура для планшета

USB клавиатура для планшета

Как-то вдруг, чего-то взял и удумал купить для своего ПК новую клавиатуру. Желание новизны не поборимо. Поменял цвет фона с белого на чёрный, а цвет букв с красно - чёрного на белый. Через неделю желание новизны закономерно ушло как вода в песок (старый друг лучше новых двух) и обновка была отправлена в шкаф на хранение – до лучших времён. И вот они для неё наступили, даже не предполагал, что это случиться так быстро. И поэтому название даже лучше подошло бы не которое есть,а как подключить usb клавиатуру к планшету.

Часы на ИН-14 лампах своими руками

Часы на ИН-14 лампах своими руками

Давно хотел выложить статью,по изготовлению своими руками часов на лампах ИН-14 ,или как еще отзываются-часы в стиле стим-панк.

Постараюсь поэтапно и останавливаясь на ключевых моментах изложить только самое главное. Индикация часов хорошо видна как днем так и ночью, и сами по себе очень красиво смотрятся,особенно в хорошем деревянном корпусе.Общем,приступаем. Подробнее...

Плавное включение лампы своими руками

Плавное включение лампы накаливания своими руками.

В ходе непрекращающегося перегорания ламп накаливания, и в том числе на лестничн ой площадке было реализовано несколько схем защиты ламп накаливания в интернете.Их применение дало положительный результат – лампы приходится менять гораздо реже. Однако не все реализованные схемы устройств работали «как есть» - в процессе эксплуатации приходилось производить подбор оптимального набора элементов. Параллельно производился поиск других интересных схем. Как известно, плавное включение ламп накаливания увеличивает срок их службы и исключает броски тока и помехи в сети. В устройстве, которое реализует такой режим, удобно использовать мощные полевые переключательные транзисторы. Среди них можно выбрать высоковольтные, с рабочим напряжением на стоке не менее 300 В и сопротивлением канала не более 1 Ом.

Кто занимается радиоэлектроникой дома, обычно очень любознателен. Радиолюбительские схемы и самоделки помогут найти новое направление в творчестве. Возможно, кто-то найдет для себя оригинальное решение той или иной проблемы. Некоторые самоделки используют уже готовые устройства, соединяя их различным образом. Для других нужно самому полностью создавать схему и производить необходимые регулировки.

Одна из самых простых самоделок. Больше подходит тем, кто только начинает мастерить. Если есть старый, но рабочий сотовый кнопочный телефон с кнопкой включения плеера, из него можно сделать, например, дверной звонок в свою комнату. Преимущества такого звонка:

Для начала нужно убедиться, что выбранный телефон способен выдавать достаточно громкую мелодию, после чего его необходимо полностью разобрать. В основном детали крепятся винтами или скобами, которые осторожно отгибаются. При разборке нужно будет запомнить, что за чем идет, чтобы потом можно было все собрать.

На плате отпаивается кнопка включения плеера, а вместо нее припаиваются два коротких провода. Затем эти провода приклеиваются к плате, чтобы не оторвать пайку. Телефон собирается. Осталось соединить телефон с кнопкой звонка через двужильный провод.

Самоделки для автомобилей

Современные автомобили снабжены всем необходимым. Однако бывают случаи, когда просто необходимы самодельные устройства. Например, что-то сломалось, отдали другу и тому подобное. Вот тогда умение создавать электронику своими руками в домашних условиях будет очень полезно.

Первое, во что можно вмешаться, не боясь навредить авто, - это аккумулятор. Если в нужный момент зарядки для аккумулятора не оказалось под рукой, ее можно быстро собрать самостоятельно. Для этого потребуется:

Идеально подходит трансформатор от лампового телевизора. Поэтому те, кто увлекается самодельной электроникой, никогда не выбрасывают электроприборы, в надежде, что они когда-нибудь понадобятся. К сожалению, трансформаторы использовались двух видов: с одной и с двумя катушками. Для зарядки аккумулятора на 6 вольт пойдет любой, а для 12 вольт только с двумя.

На оберточной бумаге такого трансформатора показаны выводы обмоток, напряжение для каждой обмотки и рабочий ток. Для питания нитей накаливания электронных ламп используется напряжение 6,3 В с большим током. Трансформатор можно переделать, убрав лишние вторичные обмотки, или оставить все как есть. В этом случае первичные и вторичные обмотки соединяют последовательно. Каждая первичная рассчитана на напряжение 127 В, поэтому, объединяя их, получают 220 В. Вторичные соединяют последовательно, чтобы получить на выходе 12,6 В.

Диоды должны выдерживать ток не менее 10 А. Для каждого диода необходим радиатор площадью не менее 25 квадратных сантиметров. Соединяются они в диодный мост. Для крепления подойдет любая электроизоляционная пластина. В первичную цепь включается предохранитель на 0,5 А, во вторичную - 10 А. Устройство не переносит короткого замыкания, поэтому при подключении аккумулятора нельзя путать полярность.

Простые обогреватели

В холодное время года бывает необходимо подогреть двигатель. Если автомобиль стоит там, где есть электрический ток, эту проблему можно решить с помощью тепловой пушки. Для ее изготовления потребуется:

Диаметр асбестовой трубы выбирается по размеру вентилятора, который будет использоваться. От его мощности будет зависеть производительность обогревателя. Длина трубы - предпочтение каждого. Можно в ней собрать нагревательный элемент и вентилятор, можно только нагреватель. При выборе последнего варианта придется продумать, как пустить воздушный поток на обогревательный элемент. Это можно сделать, например, поместив все составляющие в герметичный корпус.

Нихромовую проволоку также подбирают по вентилятору. Чем мощнее последний, тем большего диаметра можно использовать нихром. Проволока скручивается в спираль и размещается внутри трубы. Для крепления используются болты, которые вставляются в заранее просверленные отверстия в трубе. Длина спирали и их количество выбираются опытным путем. Желательно, чтобы спираль при работающем вентиляторе не нагревалась докрасна.

От выбора вентилятора будет зависеть, какое напряжение нужно подать на обогреватель. При использовании электровентилятора на 220 В не нужно будет использовать дополнительный источник питания.

Весь обогреватель подключается к сети через шнур с вилкой, но он сам должен иметь свой выключатель. Это может быть как просто тумблер, так и автомат. Второй вариант более предпочтителен, он позволяет защищать общую сеть. Для этого ток срабатывания автомата должен быть меньше тока срабатывания автомата помещения. Выключатель еще нужен для быстрого отключения обогревателя в случае неполадок, например, если вентилятор не будет работать. У такого обогревателя есть свои минусы:

  • вредность для организма от асбестовой трубы;
  • шум от работающего вентилятора;
  • запах от пыли, попадающей на нагретую спираль;
  • пожароопасность.

Некоторые проблемы можно решить, применив другую самоделку. Вместо асбестовой трубы, можно использовать банку из-под кофе. Чтобы спираль не замыкалась на банку, ее крепят к текстолитовой рамке, которую фиксируют с помощью клея. В качестве вентилятора используется кулер. Для его питания нужно будет собрать еще одно электронное устройство - небольшой выпрямитель.

Самоделки приносят тому, кто ими занимается, не только удовлетворение, но и пользу. С их помощью можно экономить электроэнергию, например, отключая электроприборы, которые забыли отключить. Для этой цели можно использовать реле времени.

Самый простой способ создать задающий время элемент - это использовать время заряда или разряда конденсатора через резистор. Такая цепочка включается в базу транзистора. Для схемы потребуются следующие детали:

  • электролитический конденсатор большой емкости;
  • транзистор типа p-n-p;
  • электромагнитное реле;
  • диод;
  • переменный резистор;
  • постоянные резисторы;
  • источник постоянного тока.

Для начала необходимо определить, какой ток будет коммутироваться через реле. Если нагрузка очень мощная, для ее подключения понадобится магнитный пускатель. Катушку пускателя можно подключать через реле. Важно, чтобы контакты реле могли работать свободно не залипая. По выбранному реле подбирается транзистор, определяется, с каким током и напряжением он может работать. Ориентироваться можно на КТ973А.

База транзистора соединяется через ограничительный резистор с конденсатором, который, в свою очередь, подключается через двухполярный выключатель. Свободный контакт выключателя соединяется через резистор с минусом питания. Это необходимо для разряда конденсатора. Резистор исполняет роль ограничителя тока.

Сам конденсатор подключается к положительной шине источника питания через переменный резистор с большим сопротивлением. Подбирая емкость конденсатора и сопротивление резистора, можно менять интервал времени задержки. Катушка реле шунтируется диодом, который включается в обратном направлении. В этой схеме используется КД 105 Б. Он замыкает цепь при обесточивании реле, защищая транзистор от пробоя.

Работает схема следующим образом. В исходном состоянии база транзистора отключена от конденсатора, и транзистор закрыт. При включении выключателя база соединяется с разряженным конденсатором, транзистор открывается и подает напряжение на реле. Реле срабатывает, замыкает свои контакты и подает напряжение на нагрузку.

Конденсатор начинает заряжаться через резистор, подключенный к положительной клемме источника питания. По мере того как конденсатор заряжается, напряжение на базе начинает расти. При определенном значении напряжения транзистор закрывается, обесточивая реле. Реле отключает нагрузку. Чтобы схема снова заработала, нужно разрядить конденсатор, для этого переключают выключатель.