Научно-технический энциклопедический словарь Что такое эмбриология, что означает и как правильно пишется. Эмбриология


ЭМБРИОЛОГИЯ
наука, изучающая развитие организма на самых ранних стадиях, предшествующих метаморфозу, вылуплению или рождению. Слияние гамет - яйца (яйцеклетки) и сперматозоида - с образованием зиготы дает начало новой особи, но прежде чем стать таким же существом, как родители, ей предстоит пройти определенные стадии развития: клеточное деление, образование первичных зародышевых листков и полостей, возникновение осей зародыша и осей симметрии, развитие целомических полостей и их производных, образование внезародышевых оболочек и, наконец, появление систем органов, функционально интегрированных и образующих тот или иной узнаваемый организм. Все это составляет предмет изучения эмбриологии. Развитию предшествует гаметогенез, т.е. образование и созревание сперматозоида и яйца. Процесс развития всех яиц данного вида протекает в общем одинаково.
Гаметогенез. Зрелые сперматозоид и яйцо различаются по своему строению, сходны у них только ядра; однако обе гаметы образуются из одинаковых на вид первичных половых клеток. У всех организмов, размножающихся половым путем, эти первичные половые клетки обособляются на ранних стадиях развития от других клеток и развиваются особым образом, готовясь к выполнению своей функции - продуцированию половых, или зародышевых, клеток. Поэтому их называют зародышевой плазмой - в отличие от всех других клеток, составляющих соматоплазму. Совершенно очевидно, однако, что и зародышевая плазма и соматоплазма происходят из оплодотворенного яйца - зиготы, давшей начало новому организму. Таким образом, в своей основе они одинаковы. Факторы, определяющие, какие клетки станут половыми, а какие - соматическими, до сих пор не установлены. Однако в конечном итоге половые клетки приобретают достаточно четкие отличия. Эти отличия возникают в процессе гаметогенеза. У всех позвоночных и некоторых беспозвоночных первичные половые клетки возникают вдали от гонад и мигрируют к гонадам зародыша - яичнику или семеннику - с током крови, с пластами развивающихся тканей или посредством амебоидных движений. В гонадах из них образуются зрелые половые клетки. Ко времени развития гонад сома и зародышевая плазма функционально уже обособлены одна от другой, и, начиная с этого времени, на протяжении всей жизни организма половые клетки совершенно независимы от каких бы то ни было воздействий сомы. Именно поэтому признаки, приобретенные индивидом на протяжении его жизни, не оказывают влияния на его половые клетки. Первичные половые клетки, находясь в гонадах, делятся с образованием мелких клеток - сперматогониев в семенниках и оогониев в яичниках. Сперматогонии и оогонии продолжают многократно делиться, образуя клетки таких же размеров, что свидетельствует о компенсаторном росте как цитоплазмы, так и ядра. Сперматогонии и оогонии делятся митотически, и, следовательно, у них сохраняется первоначальное диплоидное число хромосом. Спустя некоторое время эти клетки прекращают делиться и вступают в период роста, в течение которого в их ядрах происходят очень важные изменения. Хромосомы, полученные исходно от двух родителей, соединяются попарно (конъюгируют), вступая в очень тесное соприкосновение. Это делает возможным последующий кроссинговер (перекрест), в ходе которого гомологичные хромосомы разрываются и соединяются в новом порядке, обмениваясь эквивалентными участками; в результате кроссинговера в хромосомах оогониев и сперматогониев возникают новые комбинации генов. Предполагается, что стерильность мулов обусловлена несовместимостью хромосом, полученных от родителей - лошади и осла, из-за которой хромосомы не способны выжить при тесном соединении друг с другом. В результате созревание половых клеток в яичниках или семенниках мула прекращается на стадии конъюгации. Когда ядро перестроилось и в клетке накопилось достаточное количество цитоплазмы, возобновляется процесс деления; вся клетка и ядро подвергаются двум разного типа делениям, определяющим собственно процесс созревания половых клеток. Одно из них - митоз - приводит к образованию клеток, аналогичных исходной; в результате другого - мейоза, или редукционного деления, в ходе которого клетки делятся дважды, - образуются клетки, каждая из которых содержит лишь половинное (гаплоидное) число хромосом по сравнению с исходным, а именно по одной из каждой пары (см. также КЛЕТКА). У некоторых видов эти клеточные деления происходят в обратном порядке. После роста и реорганизации ядер в оогониях и сперматогониях и непосредственно перед первым делением мейоза эти клетки получают названия ооцитов и сперматоцитов первого порядка, а после первого деления мейоза - ооцитов и сперматоцитов второго порядка. Наконец, после второго деления мейоза клетки, находящиеся в яичнике, называют яйцами (яйцеклетками), а находящиеся в семеннике - сперматидами. Теперь яйцо окончательно созрело, а сперматиде предстоит еще проделать метаморфоз и превратиться в сперматозоид. Здесь необходимо подчеркнуть одно важное различие между оогенезом и сперматогенезом. Из одного ооцита первого порядка в результате созревания получается только одно зрелое яйцо; остальные три ядра и небольшое количество цитоплазмы превращаются в полярные тельца, которые не функционируют как половые клетки и в дальнейшем дегенерируют. Вся цитоплазма и желток, которые могли бы распределиться по четырем клеткам, концентрируются в одной - в зрелом яйце. В отличие от этого один сперматоцит первого порядка дает начало четырем сперматидам и такому же числу зрелых сперматозоидов, не теряя ни одного ядра. При оплодотворении восстанавливается диплоидное, или нормальное, число хромосом.


Яйцо. Яйцеклетка инертна и обычно крупнее соматических клеток данного организма. Яйцеклетка мыши составляет примерно 0,06 мм в диаметре, тогда как диаметр страусиного яйца бывает более 15 см. Яйца обычно имеют шаровидную или овальную форму, но бывают также продолговатыми, как у насекомых, миксины или ильной рыбы. Размеры и другие признаки яйца зависят от количества и распределения в нем питательного желтка, накапливающегося в виде гранул или, реже, в виде сплошной массы. Поэтому яйца делят на разные типы в зависимости от содержания в них желтка. Гомолецитальные яйца (от греч. homs - равный, однородный, lkithos - желток). В гомолецитальных яйцах, называемых также изолецитальными или олиголецитальными, желтка очень мало и он равномерно распределен в цитоплазме. Такие яйца типичны для губок, кишечнополостных, иглокожих, морских гребешков, нематод, оболочников и большинства млекопитающих. Телолецитальные яйца (от греч. tlos - конец) содержат значительное количество желтка, а цитоплазма сконцентрирована у них на одном конце, обозначаемом обычно как анимальный полюс. Противоположный полюс, на котором сконцентрирован желток, называют вегетативным. Такие яйца типичны для кольчатых червей, головоногих моллюсков, бесчерепных (ланцетник), рыб, земноводных, пресмыкающихся, птиц и однопроходных млекопитающих. У них хорошо выражена анимально-вегетативная ось, определяемая градиентом распределения желтка; ядро обычно располагается эксцентрически; в яйцах, содержащих пигмент, он также распределяется по градиенту, но, в отличие от желтка, его больше на анимальном полюсе.
Центролецитальные яйца. В них желток расположен в центре, так что цитоплазма сдвинута к периферии и дробление поверхностное. Такие яйца типичны для некоторых кишечнополостных и членистоногих.
Сперматозоид. В отличие от крупной и инертной яйцеклетки, сперматозоиды мелкие, от 0,02 до 2,0 мм в длину, они активны и способны проплыть большое расстояние, чтобы добраться до яйца. Цитоплазмы в них мало, а желтка нет вообще. Форма сперматозоидов разнообразна, однако среди них можно выделить два главных типа - жгутиковые и безжгутиковые. Безжгутиковые формы сравнительно редки. У большинства животных активная роль в оплодотворении принадлежит сперматозоиду. См. также СПЕРМАТОЗОИД .
Оплодотворение. Оплодотворение - сложный процесс, в ходе которого сперматозоид проникает в яйцо и их ядра сливаются. В результате слияния гамет образуется зигота - по существу уже новая особь, способная развиваться при наличии необходимых для этого условий. Оплодотворение вызывает активацию яйца, стимулируя его к последовательным изменениям, приводящим к развитию сформированного организма. При оплодотворении происходит также амфимиксис, т.е. смешение наследственных факторов в результате слияния ядер яйца и сперматозоида. Яйцо обеспечивает половину необходимых хромосом и обычно все питательные вещества, необходимые для ранних стадий развития. При соприкосновении сперматозоида с поверхностью яйца желточная оболочка яйца изменяется, превращаясь в оболочку оплодотворения. Это изменение считается доказательством того, что произошла активация яйца. Одновременно на поверхности яиц, содержащих мало желтка или не содержащих его вовсе, возникает т.н. кортикальная реакция, не допускающая проникновения в яйцо других сперматозоидов. У яиц, содержащих очень много желтка, кортикальная реакция возникает позднее, так что в них обычно проникает несколько сперматозоидов. Но даже в таких случаях оплодотворение совершает только один сперматозоид, первым дошедший до ядра яйца. У некоторых яиц в месте соприкосновения сперматозоида с плазматической мембраной яйца образуется выпячивание мембраны - т.н. бугорок оплодотворения; он облегчает проникновение сперматозоида. Обычно в яйцо проникают головка сперматозоида и центриоли, находящиеся в его средней части, а хвост остается снаружи. Центриоли способствуют образованию веретена при первом делении оплодотворенного яйца. Процесс оплодотворения можно считать завершенным, когда два гаплоидных ядра - яйцеклетки и сперматозоида - сливаются и их хромосомы конъюгируют, готовясь к первому дроблению оплодотворенного яйца.
См. также ЯЙЦО .
Дробление. Если возникновение оболочки оплодотворения считается показателем активации яйца, то деление (дробление) служит первым признаком действительной активности оплодотворенного яйца. Характер дробления зависит от количества и распределения желтка в яйце, а также от наследственных свойств ядра зиготы и особенностей цитоплазмы яйца (последние целиком определяются генотипом материнского организма). Выделяют три типа дробления оплодотворенного яйца. Голобластическое дробление характерно для гомолецитальных яиц. Плоскости дробления разделяют яйцо полностью. Они могут делить его на равные части, как у морской звезды или морского ежа, или же на неравные части, как у брюхоногого моллюска Crepidula. Дробление умеренно телолецитального яйца ланцетника происходит по голобластическому типу, однако неравномерность деления проявляется только после стадии четырех бластомеров. У некоторых клеток после этой стадии дробление становится крайне неравномерным; образующиеся при этом мелкие клетки называют микромерами, а крупные клетки, содержащие желток, - макромерами. У моллюсков плоскости дробления проходят таким образом, что начиная со стадии восьми клеток бластомеры располагаются по спирали; этот процесс регулируется ядром. Меробластическое дробление типично для телолецитальных яиц, богатых желтком; оно ограничено относительно небольшим участком у анимального полюса. Плоскости дробления не проходят через все яйцо и не захватывают желток, так что в результате деления на анимальном полюсе образуется небольшой диск клеток (бластодиск). Такое дробление, называемое также дискоидальным, свойственно пресмыкающимся и птицам. Поверхностное дробление типично для центролецитальных яиц. Ядро зиготы делится в центральном островке цитоплазмы, и получающиеся при этом клетки перемещаются на поверхность яйца, образуя поверхностный слой клеток вокруг лежащего в центре желтка. Этот тип дробления наблюдается у членистоногих.
Правила дробления. Установлено, что дробление подчиняется определенным правилам, названным именами исследователей, которые их впервые сформулировали. Правило Пфлюгера: веретено всегда тянется в направлении наименьшего сопротивления. Правило Бальфура: скорость голобластического дробления обратно пропорциональна количеству желтка (желток затрудняет деление как ядра, так и цитоплазмы). Правило Сакса: клетки обычно делятся на равные части, и плоскость каждого нового деления пересекает плоскость предшествующего деления под прямым углом. Правило Гертвига: ядро и веретено обычно располагаются в центре активной протоплазмы. Ось каждого веретена деления располагается по длинной оси массы протоплазмы. Плоскости деления обычно пересекают массу протоплазмы под прямым углом к ее осям. В результате дробления оплодотворенных яиц любого типа образуются клетки, называемые бластомерами. Когда бластомеров становится много (у земноводных, например, от 16 до 64 клеток), они образуют структуру, напоминающую ягоду малины и названную морулой.

А - Стадия двух бластомеров. Б - Стадия четырех бластомеров. В - Морула, состоящая примерно из 16 бластомеров (возраст зародыша ок. 84 часов). Г - Бластула; более светлая центральная область свидетельствует о формировании бластоцеля (возраст зародыша ок. 100 часов). 1 - Полярные тельца.


Бластула. По мере продолжения дробления бластомеры становятся все мельче и все плотнее прилегают друг к другу, приобретая гексагональную форму. Такая форма повышает структурную жесткость клеток и плотность слоя. Продолжая делиться, клетки раздвигают друг друга и в итоге, когда их число достигает нескольких сотен или тысяч, формируют замкнутую полость - бластоцель, в который поступает жидкость из окружающих клеток. В целом это образование носит название бластулы. Ее формированием (в котором клеточные движения не участвуют) завершается период дробления яйца. В гомолецитальных яйцах бластоцель может располагаться в центре, но в телолецитальных яйцах он обычно бывает сдвинут желтком и располагается эксцентрически, ближе к анимальному полюсу и прямо под бластодиском. Итак, бластула обычно представляет собой полый шарик, полость которого (бластоцель) заполнена жидкостью, но в телолецитальных яйцах с дискоидальным дроблением бластула представлена уплощенной структурой. При голобластическом дроблении стадия бластулы считается завершенной, когда в результате деления клеток соотношение между объемами их цитоплазмы и ядра становится таким же, как в соматических клетках. В оплодотворенном яйце объемы желтка и цитоплазмы совершенно не соответствуют размерам ядра. Однако в процессе дробления количество ядерного материала несколько увеличивается, тогда как цитоплазма и желток только делятся. В некоторых яйцах отношение объема ядра к объему цитоплазмы в момент оплодотворения составляет примерно 1:400, а к концу стадии бластулы - примерно 1:7. Последнее близко к соотношению, характерному и для первичной половой и для соматической клетки. Поверхности поздней бластулы оболочников и земноводных можно картировать; для этого на разные ее участки наносят прижизненные (не наносящие вреда клеткам) красители - сделанные цветные метки сохраняются в ходе дальнейшего развития и позволяют установить, какие органы возникают из каждого участка. Эти участки называют презумптивными, т.е. такими, судьбу которых при нормальных условиях развития можно предсказать. Если, однако, на стадии поздней бластулы или ранней гаструлы переместить эти участки или поменять местами, их судьба изменится. Подобные эксперименты показывают, что до какой-то определенной стадии развития каждый бластомер способен превратиться в любую из множества разнообразных клеток, составляющих организм.

Гаструла. Гаструлой называют стадию эмбрионального развития, на которой зародыш состоит из двух слоев: наружного - эктодермы, и внутреннего - энтодермы. У разных животных эта двуслойная стадия достигается разными способами, поскольку яйца разных видов содержат разное количество желтка. Однако в любом случае главную роль в этом играют перемещения клеток, а не клеточные деления.
Инвагинация. В гомолецитальных яйцах, для которых типично голобластическое дробление, гаструляция обычно происходит путем инвагинации (впячивания) клеток вегетативного полюса, что приводит к образованию двуслойного зародыша, имеющего форму чаши. Первоначальный бластоцель сокращается, но при этом образуется новая полость - гастроцель. Отверстие, ведущее в этот новый гастроцель, называется бластопором (название неудачное, поскольку оно открывается не в бластоцель, а в гастроцель). Бластопор расположен в области будущего анального отверстия, на заднем конце зародыша, и в этой области развивается большая часть мезодермы - третьего, или среднего, зародышевого листка. Гастроцель называют также архентероном, или первичной кишкой, и он служит зачатком пищеварительной системы.
Инволюция. У пресмыкающихся и птиц, телолецитальные яйца которых содержат большое количество желтка и дробятся меробластически, клетки бластулы на очень небольшом участке приподнимаются над желтком и затем начинают вворачиваться внутрь, под клетки верхнего слоя, образуя второй (нижний) слой. Этот процесс вворачивания клеточного пласта называют инволюцией. Верхний слой клеток становится наружным зародышевым листком, или эктодермой, а нижний - внутренним, или энтодермой. Эти слои переходят один в другой, а место, где происходит переход, известно под названием губы бластопора. Крыша первичной кишки у зародышей этих животных состоит из вполне сформировавшихся энтодермальных клеток, а дно - из желтка; дно из клеток образуется позднее.
Деламинация. У высших млекопитающих, в том числе у человека, гаструляция происходит несколько иначе, а именно путем деламинации, но приводит к тому же результату - образованию двуслойного зародыша. Деламинация - это расслоение исходного наружного слоя клеток, приводящее к возникновению внутреннего слоя клеток, т.е. энтодермы.
Вспомогательные процессы. Существуют также дополнительные процессы, сопровождающие гаструляцию. Описанный выше простой процесс - исключение, а не правило. К вспомогательным процессам относятся эпиболия (обрастание), т.е. перемещение клеточных слоев по поверхности вегетативного полушария яйца, и конкресценция --объединение клеток на обширных участках. Один из этих процессов или они оба могут сопровождать как инвагинацию, так и инволюцию.
Результаты гаструляции. Конечный результат гаструляции заключается в образовании двуслойного зародыша. Наружный слой зародыша (эктодерма) образован мелкими, часто - пигментированными клетками, не содержащими желтка; из эктодермы в дальнейшем развиваются такие ткани, как, например, нервная, и верхние слои кожи. Внутренний слой (энтодерма) состоит из почти не пигментированных клеток, сохраняющих некоторое количество желтка; они дают начало главным образом тканям, выстилающим пищеварительный тракт и его производные. Следует, однако, подчеркнуть, что глубоких различий между этими двумя зародышевыми листками не существует. Эктодерма дает начало энтодерме, и если у некоторых форм границу между ними в области губы бластопора можно определить, то у других она практически неразличима. В экспериментах по трансплантации было показано, что различие между этими тканями определяется только их местоположением. Если участки, которые в норме оставались бы эктодермальными и дали бы начало производным кожи, пересадить на губу бластопора, они вворачиваются внутрь и становятся энтодермой, которая может превратиться в выстилку пищеварительного тракта, легкие или щитовидную железу. Часто с появлением первичной кишки центр тяжести зародыша смещается, он начинает поворачиваться в своих оболочках, и в нем впервые устанавливаются передне-задняя (голова - хвост) и дорсо-вентральная (спина - живот) оси симметрии будущего организма.
Зародышевые листки. Эктодерму, энтодерму и мезодерму различают на основании двух критериев. Во-первых, по их местоположению в зародыше на ранних стадиях его развития: в этот период эктодерма всегда расположена снаружи, энтодерма - внутри, а мезодерма, появляющаяся последней, - между ними. Во-вторых, по их будущей роли: каждый из этих листков дает начало определенным органам и тканям, и их нередко идентифицируют по их дальнейшей судьбе в процессе развития. Однако напомним, что в период возникновения этих листков никаких принципиальных различий между ними не существует. В опытах по пересадке зародышевых листков было показано, что первоначально каждый из них обладает потенциями любого из двух других. Таким образом, их разграничение искусственно, но им очень удобно пользоваться при изучении эмбрионального развития. Мезодерма, т.е. средний зародышевый листок, образуется несколькими способами. Она может возникать непосредственно из энтодермы путем образования целомических мешков, как у ланцетника; одновременно с энтодермой, как у лягушки; или путем деламинации, из эктодермы, как у некоторых млекопитающих. В любом случае вначале мезодерма представляет собой слой клеток, лежащих в пространстве, которое первоначально занимал бластоцель, т.е. между эктодермой с наружной и энтодермой с внутренней стороны. Мезодерма вскоре расщепляется на два клеточных слоя, между которыми образуется полость, называемая целомом. Из этой полости в последующем образуются полость перикарда, окружающая сердце, плевральная полость, окружающая легкие, и брюшная полость, в которой лежат органы пищеварения. Наружный слой мезодермы - соматическая мезодерма - образует вместе с эктодермой т.н. соматоплевру. Из наружной мезодермы развиваются поперечнополосатые мышцы туловища и конечностей, соединительная ткань и сосудистые элементы кожи. Внутренний слой мезодермальных клеток называется спланхнической мезодермой и вместе с энтодермой образует спланхноплевру. Из этого слоя мезодермы развиваются гладкие мышцы и сосудистые элементы пищеварительного тракта и его производных. В развивающемся зародыше много рыхлой мезенхимы (эмбриональной мезодермы), заполняющей пространство между эктодермой и энтодермой. У хордовых в процессе развития образуется продольный столбик плоских клеток - хорда, основной отличительный признак этого типа. Клетки хорды происходят из эктодермы у одних животных, из энтодермы у других и из мезодермы у третьих. В любом случае эти клетки уже на очень ранней стадии развития можно отличить от остальных, и расположены они в виде продольного столбика над первичной кишкой. У зародышей позвоночных хорда служит центральной осью, вокруг которой развивается осевой скелет, а над ней - центральная нервная система. У большинства хордовых это чисто эмбриональная структура, и только у ланцетника, круглоротых и пластиножаберных она сохраняется в течение всей жизни. Почти у всех других позвоночных клетки хорды замещаются костными клетками, образующими тело развивающихся позвонков; из этого следует, что наличие хорды облегчает формирование позвоночного столба.
Производные зародышевых листков. Дальнейшая судьба трех зародышевых листков различна. Из эктодермы развиваются: вся нервная ткань; наружные слои кожи и ее производные (волосы, ногти, зубная эмаль) и частично слизистая ротовой полости, полостей носа и анального отверстия. Энтодерма дает начало выстилке всего пищеварительного тракта - от ротовой полости до анального отверстия - и всем ее производным, т.е. тимусу, щитовидной железе, паращитовидным железам, трахее, легким, печени и поджелудочной железе. Из мезодермы образуются: все виды соединительной ткани, костная и хрящевая ткани, кровь и сосудистая система; все типы мышечной ткани; выделительная и репродуктивная системы, дермальный слой кожи. У взрослого животного очень мало таких органов энтодермального происхождения, которые не содержали бы нервных клеток, происходящих из эктодермы. В каждом важном органе содержатся и производные мезодермы - кровеносные сосуды, кровь, часто и мышцы, так что структурная обособленность зародышевых листков сохраняется только на стадии их образования. Уже в самом начале своего развития все органы приобретают сложное строение, и в них входят производные всех зародышевых листков.
ОБЩИЙ ПЛАН СТРОЕНИЯ ТЕЛА
Симметрия. На ранних стадиях развития организм приобретает определенный тип симметрии, характерный для данного вида. Один из представителей колониальных протистов, вольвокс, обладает центральной симметрией: любая плоскость, проходящая через центр вольвокса, делит его на две равноценные половины. Среди многоклеточных нет ни одного животного, обладающего симметрией такого типа. Для кишечнополостных и иглокожих характерна радиальная симметрия, т.е. части их тела расположены вокруг главной оси, образуя как бы цилиндр. Некоторые, но не все плоскости, проходящие через эту ось, делят такое животное на две равноценные половинки. Все иглокожие на личиночной стадии обладают двусторонней симметрией, но в процессе развития приобретают радиальную симметрию, характерную для взрослой стадии. Для всех высокоорганизованных животных типична двусторонняя симметрия, т.е. их можно разделить на две симметричные половины только в одной плоскости. Поскольку такое расположение органов наблюдается у большинства животных, его считают оптимальным для выживания. Плоскость, проходящая по продольной оси от вентральной (брюшной) к дорсальной (спинной) поверхности, делит животное на две половины, правую и левую, являющиеся зеркальными отображениями друг друга. Почти все неоплодотворенные яйца обладают радиальной симметрией, но некоторые теряют ее в момент оплодотворения. Например, в яйце лягушки место проникновения сперматозоида всегда сдвинуто к переднему, или головному, концу будущего зародыша. Эта симметрия определяется только одним фактором - градиентом распределения желтка в цитоплазме. Двусторонняя симметрия становится очевидной, как только в ходе эмбрионального развития начинается формирование органов. У высших животных практически все органы закладываются попарно. Это относится к глазам, ушам, ноздрям, легким, конечностям, большинству мышц, частей скелета, кровеносных сосудов и нервов. Даже сердце закладывается в виде парной структуры, а затем ее части сливаются, образуя один трубчатый орган, который впоследствии перекручивается, превращаясь в сердце взрослой особи с его сложной структурой. Неполное слияние правой и левой половинок органов проявляется, например, в случаях расщелины неба или заячьей губы, изредка встречающихся у человека.




Метамерия (расчленение тела на сходные сегменты). Наибольшего успеха в длительном процессе эволюции достигли животные с сегментированным телом. Метамерное строение кольчатых червей и членистоногих отчетливо видно на протяжении всей их жизни. У большинства позвоночных первоначально сегментированное строение в дальнейшем становится мало различимым, однако на эмбриональных стадиях метамерия у них ясно выражена. У ланцетника метамерия проявляется в строении целома, мышц и гонад. Для позвоночных характерно сегментарное расположение некоторых частей нервной, выделительной, сосудистой и опорной систем; однако уже на ранних стадиях эмбрионального развития на эту метамерию накладывается опережающее развитие переднего конца тела - т.н. цефализация. Если рассмотреть выращенного в инкубаторе 48-часового зародыша цыпленка, то можно выявить у него одновременно и двустороннюю симметрию и метамерию, наиболее отчетливо выраженную на переднем конце тела. Например, группы мышц, или сомиты, сначала появляются в области головы и образуются последовательно, так что наименее развитыми сегментированными сомитами оказываются задние.
Органогенез. У большинства животных одним из первых дифференцируется пищеварительный канал. В сущности, зародыши большинства животных представляют собой трубку, вставленную в другую трубку; внутренняя трубка - это кишка, от ротового до анального отверстия. Другие органы, входящие в систему пищеварения, и органы дыхания закладываются в виде выростов этой первичной кишки. Присутствие крыши архентерона, или первичной кишки, под дорсальной эктодермой вызывает (индуцирует), возможно совместно с хордой, образование на спинной стороне зародыша второй важнейшей системы организма, а именно центральной нервной системы. Это происходит следующим образом: сначала утолщается дорсальная эктодерма и образуется нервная пластинка; затем края нервной пластинки приподнимаются, образуя нервные валики, которые растут навстречу друг другу и в конечном счете смыкаются, - в результате возникает нервная трубка, зачаток центральной нервной системы. Из передней части нервной трубки развивается головной мозг, а остальная ее часть превращается в спинной мозг. Полость нервной трубки по мере разрастания нервной ткани почти исчезает - от нее остается лишь узкий центральный канал. Головной мозг формируется в результате выпячиваний, впячиваний, утолщений и утоньшений передней части нервной трубки зародыша. От образовавшегося головного и спинного мозга берут начало парные нервы - черепные, спинномозговые и симпатические. Мезодерма тоже претерпевает изменения сразу после своего возникновения. Она образует парные и метамерные сомиты (блоки мышц), позвонки, нефротомы (зачатки органов выделения) и части репродуктивной системы. Таким образом, развитие систем органов начинается сразу после образования зародышевых листков. Все процессы развития (при нормальных условиях) происходят с точностью самых совершенных технических устройств.
МЕТАБОЛИЗМ ЗАРОДЫШЕЙ
Зародышам, развивающимся в водной среде, не требуется иных покровов, кроме студнеобразных оболочек, покрывающих яйцо. Эти яйца содержат достаточное количество желтка, чтобы обеспечить зародыш питанием; оболочки до некоторой степени защищают его и помогают сохранять метаболическое тепло и вместе с тем достаточно проницаемы, чтобы не препятствовать свободному газообмену (т.е. поступлению кислорода и выходу диоксида углерода) между зародышем и средой.
Внезародышевые оболочки. У животных, откладывающих яйца на суше или живородящих, зародышу необходимы дополнительные оболочки, защищающие его от обезвоживания (если яйца откладываются на суше) и обеспечивающие питание, удаление конечных продуктов обмена и газообмен. Эти функции выполняют внезародышевые оболочки - амнион, хорион, желточный мешок и аллантоис, образующиеся в процессе развития у всех пресмыкающихся, птиц и млекопитающих. Хорион и амнион тесно связаны между собой по происхождению; они развиваются из соматической мезодермы и эктодермы. Хорион - самая наружная оболочка, окружающая зародыш и три другие оболочки; эта оболочка проницаема для газов и через нее происходит газообмен. Амнион предохраняет клетки зародыша от высыхания благодаря амниотической жидкости, секретируемой его клетками. Желточный мешок, наполненный желтком, вместе с желточным стебельком поставляет зародышу подвергшиеся перевариванию питательные вещества; эта оболочка содержит густую сеть кровеносных сосудов и клетки, вырабатывающие пищеварительные ферменты. Желточный мешок, как и аллантоис, образуется из спланхнической мезодермы и энтодермы: энтодерма и мезодерма распространяются по всей поверхности желтка, обрастая его, так что в конце концов весь желток оказывается в желточном мешке. У пресмыкающихся и птиц аллантоис служит резервуаром для конечных продуктов обмена, поступающих из почек зародыша, а также обеспечивает газообмен. У млекопитающих эти важные функции выполняет плацента - сложный орган, образуемый ворсинками хориона, которые, разрастаясь, входят в углубления (крипты) слизистой оболочки матки, где вступают в тесный контакт с ее кровеносными сосудами и железами. У человека плацента полностью обеспечивает дыхание зародыша, питание и выделение продуктов обмена в кровоток матери. Внезародышевые оболочки не сохраняются в постэмбриональном периоде. У пресмыкающихся и птиц при вылуплении высохшие оболочки остаются в скорлупе яйца. У млекопитающих плацента и остальные внезародышевые оболочки выбрасываются из матки (отторгаются) после рождения плода. Эти оболочки обеспечили высшим позвоночным независимость от водной среды и, несомненно, сыграли важную роль в эволюции позвоночных, особенно в возникновении млекопитающих.
БИОГЕНЕТИЧЕСКИЙ ЗАКОН
В 1828 К. фон Бэр сформулировал следующие положения: 1) наиболее общие признаки любой крупной группы животных появляются у зародыша раньше, чем менее общие признаки; 2) после формирования самых общих признаков появляются менее общие и так до появления особых признаков, свойственных данной группе; 3) зародыш любого вида животных по мере развития становится все менее похожим на зародышей других видов и не проходит через поздние стадии их развития; 4) зародыш высокоорганизованного вида может обладать сходством с зародышем более примитивного вида, но никогда не бывает похож на взрослую форму этого вида. Биогенетический закон, сформулированный в этих четырех положениях, часто истолковывают неверно. Закон этот просто утверждает, что некоторые стадии развития высокоорганизованных форм обладают явным сходством с некоторыми стадиями развития нижестоящих на эволюционной лестнице форм. Предполагается, что это сходство можно объяснить происхождением от общего предка. О взрослых стадиях низших форм ничего не говорится. В данной статье сходство между зародышевыми стадиями подразумевается; в противном случае развитие каждого вида пришлось бы описывать отдельно. По-видимому, в длительной истории жизни на Земле среда играла главную роль в отборе зародышей и взрослых организмов, наиболее приспособленных для выживания. Узкие рамки, создаваемые средой в отношении возможных колебаний температуры, влажности и снабжения кислородом, сокращали разнообразие форм, приводя их к относительно общему типу. В результате возникло то сходство строения, которое лежит в основе биогенетического закона, если речь идет о зародышевых стадиях. Разумеется, у ныне существующих форм в процессе зародышевого развития проявляются особенности, соответствующие времени, месту и способам размножения данного вида. Онтогенез, т.е. развитие отдельной особи, предваряет филогенез, т.е. развитие группы, потому что мутации обычно возникают в половых клетках до оплодотворения. Изменения в эмбрионе естественно предшествуют изменениям взрослой особи, имеющим эволюционное значение, а часто и вызывают их. Новая особь "закладывается" в момент оплодотворения, а зародышевое развитие только подготавливает его к превратностям взрослого существования и созданию будущих зародышей.
См. также

Наука биология включает в себя массу различных разделов, более мелких, но очень важных, специализирующихся на каких-то конкретных проблемах дисциплин. Это делает ее столь обширной и глобально значимой для человечества, что переоценить ее влияние просто невозможно.

Одной из таких важных наук стала эмбриология. Это достаточно старая дисциплина, понятие о которой и историю формирования мы и рассмотрим в данной статье.

Понятие о науке эмбриологии

Эмбриология - это не просто биологическая дисциплина. Это целая наука, которая занимается изучением образования, развития и формирования эмбрионов живых существ с момента появления половых клеток и их слияния до появления на свет нового организма.

Все эти процессы очень необходимо их правильное и нормальное протекание. Поэтому цель, которую ставит перед собой данная наука - изучить все вопросы и механизмы, связанные с зародышами, их жизнью, образованием и развитием.

Исходя из поставленной цели, задачами эмбриологии являются следующие пункты.

  1. Рассмотреть процессы клеточного деления.
  2. Выявить закономерности образования у зародышей первичных лепестков и полостей тела.
  3. Проследить варианты формирования тела будущего организма.
  4. Особенности образования полостей целома и производных от них.
  5. Формирование оболочек вокруг эмбриона.
  6. Образование целой системы органов, по которым в итоге идентифицируется тот или иной организм.

    Таким образом, становится понятно, что же такое эмбриология. Это узко специализированная наука о внутриутробном развитии эмбрионов от момента их образования и до выхода на свет. А также изучение вопросов, связанных с процессами гаметогенеза, то есть формирования половых клеток.

    Этимология слова

    Значение слова "эмбриология" достаточно простое. Ведь на латыни слово "зародыш" произносится как embryon, а вторая часть слова logos - учение. Вот и получается, что в названии науки отражен весь ее глубокий смысл, кратко выражен предмет изучения.

    Во всех современных толковых словарях значение слова "эмбриология" схоже. Оно практически такое же, как и в переводе с латинского. Добавить что-то новое сложное. Что значит эмбриология? Во всех источниках ответ один - наука о предзародышевом и эмбриональном развитии животных, человека и растений.

    История развития науки

    Свое начало история эмбриологии берет еще с древности. Одним из первых об исследованиях в этой области заговорил Аристотель. Его наблюдения заключались в исследовании формирования зародыша куриного яйца. Так было положено начало развития рассматриваемой науки.

    Позже, уже к XVI-XVII столетиям ученые, которые были представителями данной дисциплины, разделились на два лагеря по теоретическим взглядам на вопросы формирования зародышей, и вообще происхождения новых организмов.

    Так, существовали:

    • теория преформизма;
    • эпигенеза.

    Суть первой заключается в следующем: все структуры будущего организма не развиваются со временем, а уже существуют в очень уменьшенном виде либо в яйцеклетке (овисты), либо в сперматозоиде (анималькулисты). А с течением жизни и развитием зародыша они просто увеличиваются в размерах за счет получаемых питательных веществ.

    Такие взгляды были, конечно, ошибочными. Однако именно они просуществовали практически до середины XIX века. Приверженцами данных взглядов среди ученых разных временных периодов были:

    • Марчело Мальпиги.
    • Я. Сваммердам.
    • Ш. Бонне.
    • А. Галлер.
    • А. Левенгук.
    • И. Н. Либеркюн и другие.

    Вторая теория в истории развития эмбриологии, которой придерживалось также значительное количество светлых голов разного времени, называется эпигенезом. Сторонники ее считали, что организм начинает свое развитие только после попадания половых клеток друг в друга. При этом в образующемся зародыше нет ничего готового. Структуры, будущие органы формируются постепенно, из внутренних тканей.

    Представителями, которые придерживались данных взглядов, были:

    • У. Гарвей.
    • Г. Лейбниц.
    • Фридрих Вольф.
    • Карл Бэр и другие.

    В противостоянии этих двух лагерей копились многочисленные данные эмбриологии, ведь учеными постоянно проводились исследования, эксперименты, собирался теоретический материал.

    Начиная с середины XIX века, по взглядам преформистов были нанесены сокрушительные удары благодаря следующим открытиям.

    1. Закон о сходстве зародышей Карла Бэра. В нем он говорит о том, что на чем более ранней стадии находится эмбрион, тем больше он похож на аналогичные структуры у других представителей живой природы.
    2. Вольф описал основы формообразования в курином зародыше , доказав их постепенное образование.
    3. Труд Ч. Дарвина, в котором он описывает свои взгляды по проблеме происхождения видов.

      Результатом стало постепенное формирование науки такой, какой мы видим ее сегодня. Большой вклад в развитие дисциплины внесли следующие ученые XIX-XX века:

      • Ковалевский.
      • Мечников.
      • Геккель.
      • Вильгельм Ру и другие.

      Классификация

      Основные разделы рассматриваемой науки можно обозначить следующими пунктами.

      По типу исследуемых организмов эмбриология также подразделяется на:

      • растительную;
      • животную;
      • человека.

      У каждого раздела есть свои цели, задачи и объекты исследования, которые имеют большое теоретическое и практическое значение в понимании механизмов жизнедеятельности. Эмбриология животных - очень значимый раздел науки в сельском хозяйстве, животноводстве.

      Структура общей эмбриологии

      Общая эмбриология занимается исследованием и эмбрионов всех организмов на разных эволюционных этапах развития планеты. В результате получается множество фактического материала, доказывающего единство происхождения всего живого на нашей планете.

      В область исследования данной дисциплины входит изучение процессов гаметогенеза. Данные эмбриологии имеют важное значение в вопросах здоровья будущего поколения, поэтому этой науке уделяется особенное внимание.

      Характеристика сравнительной эмбриологии

      Основной метод сопоставления данных в этой дисциплине - анализ. Сравнительная эмбриология занимается изучением эмбрионов животных, растений или человека с целью выяснения схожести или истоков развития.

      Основоположником ее стал Карл Бэр, открывший яйцеклетку человека и сформулировавший первый закон о зародышах. Большой вклад в развитие знаний дисциплины был внесен Геккелем. Его был универсальным долгое время. Сравнительная эмбриология копила доказательства, подтверждающие эту особенность.

      Если говорить проще, то суть сводилась к следующему: каждый эмбрион в процессе своего развития проходит множество стадий. Все они в совокупности являются повторением общего течения эволюции, которую проходили все организмы во время формирования живых существ на планете.

      Отсюда такая схожесть в строении зародышей у всех классов животных: рыб, амфибий, пресмыкающихся, птиц и млекопитающих. Однако, по современным данным, закон Геккеля универсальным не является. Ведь он не объясняет, почему так сильно различаются между собой личинки насекомых и их взрослые особи, особенно когда речь идет о неполном превращении.

      Еще одним пунктом, который тщательно изучается эмбриологами, являются мутации. Так, было доказано, что чем раньше возникают хромосомные неполадки, тем больший эффект их будет во внешнем проявлении после формирования организма. То есть чем более поздняя стадия подвергнется мутации, тем меньше это будет заметно фенотипически у взрослой особи.

      Эмбриология животных

      Данный раздел имеет важное значение в развитии сельского хозяйства. Предметом изучения являются стадии формирования животных эмбрионов. Они следующие:

      • имплантация;
      • гаструляция;
      • морула;
      • бластула;
      • нейрула;
      • инвагинация.

      То есть животная эмбриология - это то же самое, что и все остальные ее разделы, только более узкоспециализированная на объекте изучения область. Она также рассматривает мутации в законы и механизмы их формирования, ищет пути предотвращения и решения различных проблем. Например, заболеваний животных организмов.

      Это имеет большое значение для птицеводства, скотоводства, разведения рыбы, решения ветеринарных вопросов и проблем осеменения животных.

      Значение достижений в области эмбриологии

      Самым глобальным достижением современности, которое смогла дать человеку эмбриология, является прогнозирование бесплодия и детальное наблюдение за всеми этапами формирования человеческих эмбрионов. Ведь это позволяет либо избежать рождения обреченных на генетические заболевания детей, либо исправить медицинским вмешательством грядущие мутационные перемены.

      Сегодня каждая находится под тщательным наблюдением врачей, которые при помощи специального оборудования могут контролировать и прогнозировать любые ситуации в развитии зародыша.

      Перспективы развития данной науки

      Главные заслуги данной науки еще, конечно, впереди. Ведь развитие технических средств не стоит на месте, и современные технологии позволяют вмешиваться в течение практически всех известных жизненных процессов.

      В будущем возможно открытие таких процессов на стадии эмбрионального развития, которые помогут избежать заболеваний плода, устранят явление бесплодия и избавят людей от множества насущных проблем.

Что такое "эмбриология"? Как правильно пишется данное слово. Понятие и трактовка.

эмбриология наука, изучающая развитие организма на самых ранних стадиях, предшествующих метаморфозу, вылуплению или рождению. Слияние гамет - яйца (яйцеклетки) и сперматозоида - с образованием зиготы дает начало новой особи, но прежде чем стать таким же существом, как родители, ей предстоит пройти определенные стадии развития: клеточное деление, образование первичных зародышевых листков и полостей, возникновение осей зародыша и осей симметрии, развитие целомических полостей и их производных, образование внезародышевых оболочек и, наконец, появление систем органов, функционально интегрированных и образующих тот или иной узнаваемый организм. Все это составляет предмет изучения эмбриологии. Развитию предшествует гаметогенез, т.е. образование и созревание сперматозоида и яйца. Процесс развития всех яиц данного вида протекает в общем одинаково. Гаметогенез. Зрелые сперматозоид и яйцо различаются по своему строению, сходны у них только ядра; однако обе гаметы образуются из одинаковых на вид первичных половых клеток. У всех организмов, размножающихся половым путем, эти первичные половые клетки обособляются на ранних стадиях развития от других клеток и развиваются особым образом, готовясь к выполнению своей функции - продуцированию половых, или зародышевых, клеток. Поэтому их называют зародышевой плазмой - в отличие от всех других клеток, составляющих соматоплазму. Совершенно очевидно, однако, что и зародышевая плазма и соматоплазма происходят из оплодотворенного яйца - зиготы, давшей начало новому организму. Таким образом, в своей основе они одинаковы. Факторы, определяющие, какие клетки станут половыми, а какие - соматическими, до сих пор не установлены. Однако в конечном итоге половые клетки приобретают достаточно четкие отличия. Эти отличия возникают в процессе гаметогенеза. У всех позвоночных и некоторых беспозвоночных первичные половые клетки возникают вдали от гонад и мигрируют к гонадам зародыша - яичнику или семеннику - с током крови, с пластами развивающихся тканей или посредством амебоидных движений. В гонадах из них образуются зрелые половые клетки. Ко времени развития гонад сома и зародышевая плазма функционально уже обособлены одна от другой, и, начиная с этого времени, на протяжении всей жизни организма половые клетки совершенно независимы от каких бы то ни было воздействий сомы. Именно поэтому признаки, приобретенные индивидом на протяжении его жизни, не оказывают влияния на его половые клетки. Первичные половые клетки, находясь в гонадах, делятся с образованием мелких клеток - сперматогониев в семенниках и оогониев в яичниках. Сперматогонии и оогонии продолжают многократно делиться, образуя клетки таких же размеров, что свидетельствует о компенсаторном росте как цитоплазмы, так и ядра. Сперматогонии и оогонии делятся митотически, и, следовательно, у них сохраняется первоначальное диплоидное число хромосом. Спустя некоторое время эти клетки прекращают делиться и вступают в период роста, в течение которого в их ядрах происходят очень важные изменения. Хромосомы, полученные исходно от двух родителей, соединяются попарно (конъюгируют), вступая в очень тесное соприкосновение. Это делает возможным последующий кроссинговер (перекрест), в ходе которого гомологичные хромосомы разрываются и соединяются в новом порядке, обмениваясь эквивалентными участками; в результате кроссинговера в хромосомах оогониев и сперматогониев возникают новые комбинации генов. Предполагается, что стерильность мулов обусловлена несовместимостью хромосом, полученных от родителей - лошади и осла, из-за которой хромосомы не способны выжить при тесном соединении друг с другом. В результате созревание половых клеток в яичниках или семенниках мула прекращается на стадии конъюгации. Когда ядро перестроилось и в клетке накопилось достаточное количество цитоплазмы, возобновляется процесс деления; вся клетка и ядро подвергаются двум разного типа делениям, определяющим собственно процесс созревания половых клеток. Одно из них - митоз - приводит к образованию клеток, аналогичных исходной; в результате другого - мейоза, или редукционного деления, в ходе которого клетки делятся дважды, - образуются клетки, каждая из которых содержит лишь половинное (гаплоидное) число хромосом по сравнению с исходным, а именно по одной из каждой пары (см. также КЛЕТКА). У некоторых видов эти клеточные деления происходят в обратном порядке. После роста и реорганизации ядер в оогониях и сперматогониях и непосредственно перед первым делением мейоза эти клетки получают названия ооцитов и сперматоцитов первого порядка, а после первого деления мейоза - ооцитов и сперматоцитов второго порядка. Наконец, после второго деления мейоза клетки, находящиеся в яичнике, называют яйцами (яйцеклетками), а находящиеся в семеннике - сперматидами. Теперь яйцо окончательно созрело, а сперматиде предстоит еще проделать метаморфоз и превратиться в сперматозоид. Здесь необходимо подчеркнуть одно важное различие между оогенезом и сперматогенезом. Из одного ооцита первого порядка в результате созревания получается только одно зрелое яйцо; остальные три ядра и небольшое количество цитоплазмы превращаются в полярные тельца, которые не функционируют как половые клетки и в дальнейшем дегенерируют. Вся цитоплазма и желток, которые могли бы распределиться по четырем клеткам, концентрируются в одной - в зрелом яйце. В отличие от этого один сперматоцит первого порядка дает начало четырем сперматидам и такому же числу зрелых сперматозоидов, не теряя ни одного ядра. При оплодотворении восстанавливается диплоидное, или нормальное, число хромосом. СХЕМА СПЕРМАТОГЕНЕЗА у человека.

эмбриология - ЭМБРИОЛОГИЯ, Ци, ж. Раздел биологии, изучающий образование и развитие эмбрионов.... Толковый словарь Ожегова

эмбриология - или учение о развитии животных и человека - разработана, главным образом, в XIX столетии. Первые по... Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

эмбриология - (от Эмбрион и...Логия) буквально - наука о зародыше, однако содержание её шире. Различают...

В то время, когда благодаря Галлеру в Центральной Европе было признано значение медицинской науки, в университетском городе Галле на реке Заале молодому человеку по имени Каспар Фридрих Вольф была при­своена степень доктора медицины. Представленная и за­щищенная им докторская диссертация озаглавлена «Теория разви­тия» («Theoria generationis»). Эго один из исторических документов медицинской науки. Никогда подобные.во­просы не служили темой для диссертации. Молодой док­тор родился в 1733 г. в Берлине в семье портного, обра­зование получил в Медико-хирургической академии родного города - в учебном заведении, задачей которого было поставлять хирургов для армии.

Работа Вольфа была чем-то абсолютно новым, но внимание, вызванное ею вначале, вскоре уступило место пренебрежению, как только выяснилось, что взгляды, из­ложенные в диссертации, противоречат взглядам Галле­ра, который считался наивысшим авторитетом во всем, касавшемся человеческого организма. Новые воззрения восторжествовали лишь через несколько лет после смерти Вольфа. Но за время, протекшее с момента опубликова­ния диссертации до его кончины, он перенес все, что суждено переносить непризнанным гениям. Запоздалым признанием его заслуг являются ныне те специальные научные труды, которые посвящены эмбриологии - уче­нию о развитии плода до момента родов.

Вопрос о зарождении человеческого, а также живот­ного организма - древнейший вопрос. Несомненно, что впервые он был поставлен тем человеком, который пер­вым вырвался за пределы мифологических представле­ний. Однако на первых порах не могло быть дано на него правильного ответа, так как в течение тысячелетий к решению этой задачи шли не путем наблюдения при­роды, а путем теоретических построений и фантазирова­ния, и занимались не главными вопросами, а второстепенными.

То, что для зачатия ребенка необходимо сближение мужчины и женщины, поняли уже давно. Но кто играл при этом важнейшую роль: мужчина ли, носитель оплодотворяющей жидкости, или женщина - носительница плода, как питался зародыш в чреве матери и какие части тела образовывались у него в первую очередь, - все эти вопросы интересовали ученых, они пытались от­ветить на них. Так, например, Демокрит, живший за пять столетий до нашей эры, считал, что сначала обра­зуется пупок, а от него происходят другие органы. Гиппократ ответил на вопрос о питании зародыша очень просто: он принимает пищу, как новорожденный, ртом, так как уже после семидневного пребывания в чреве ма­тери у него имеются все органы и все части тела созрели. Однако уже ученики Гиппократа предполагали, что это неверно. Между прочим, они исследовали куриные яйца, на которых можно было легко наблюдать развитие на­рождающегося организма и изменения, происходящие в нем каждодневно.

Спустя несколько десятилетий исследованием всех вопросов естественной истории занялся Аристотель и, ко­нечно, попытался выяснить некоторые вопросы развития организма. Повидимому, он сделал много наблюдений, например, известны его наблюдения над последом (пла­центой) млекопитающих. Его интересовал вопрос и о том, какие органы образуются прежде всего: он полагал, что сердце, так как рассматривал его как средоточие всего организма. И в самом деле, в курином зародыше в очень ранние сроки насиживания можно заметить пуль­сирующую точку, которая затем становится сердцем. Впоследствии и Гален в своем описании истории разви­тия организма, если вообще можно так говорить о его работе, также опирается главным образом на данные наблюдений на животных, - ведь вся его анатомия и физиология были анатомией и физиологией животных.

Все же кое-где можно было натолкнуться на разум­ные мысли и на верные наблюдения. Историки медицины полагают, что основоположником современной эмбрио­логии можно считать Улиссе Альдрованди из Болоньи, поскольку, как отмечает Макс Нейбургер, он упорядочил весь материал, накопившийся по данному вопросу, ока­зав этим решающее влияние на науку об истории разви­тия. Альдрованди, родившийся в 1522 г., поздно начал заниматься медициной, так как, по семейной традиции, должен был стать купцом. Однако он почувствовал вле­чение к изучению медицины и в возрасте 30 лет стал доктором, а в 38 лет был профессором естественных наук в родном городе. Альдрованди начал свои научные ра­боты с того, чем завершили ученики Гиппократа, - с си­стематического исследования насиженных куриных яиц: это был действительно подходящий материал для изуче­ния вопросов развития организма. Наконец, спустя сто­летия снова нашелся человек, отвергший умозрительные построения и доверившийся естествоиспытательскому методу наблюдения. Уже приближался закат средневе­ковья, начинало ощущаться дыхание новой эпохи. Можно было, не опасаясь обвинения в отрицании идеи боже­ственного сотворения человека и не подвергая своей жизни опасности, исследовать развитие организма, начи­нающееся с яйца (ab ovo).

Начав подкладывать наседке яйца и потом ежедневно исследуя их одно за другим, Альдрованди открыл много интересного. Так, например, он точно установил, какой орган можно обнаружить глазом раньше всего, он видел, как пульсирует сердце, как затем образуются перья. Когда цыпленок вылупился из яйца, исследователь уви­дел в разбитой скорлупе остатки желточного мешка, из которого зародыш в яйце получал пищу. Уже одно это было волнующим открытием для того, кто никогда не слыхал ни о чем подобном от учителя, ибо об этом не знал ни один учитель.

Голландец Вольхер Койтер, ученик Альдрованди, не ограничился насиженными куриными яйцами: он пошел дальше и исследовал человеческие зародыши, когда ему удалось заполучить их при выкидышах; особенно уси­ленно он изучал развитие костей. Это был истинный уче­ный, преданный науке. В «Анатомии», изданной им в 1573 г., содержатся только данные наблюдений и нет никакого спекулятивного хлама, который в то время все еще занимал видное место в науке.

Вильям Гарвей, открыв кровообращение не только у взрослого человека, но и у зародыша, вывел тогда свою основную, уже цитированную формулу: «Omne vivum ex ovo». Для нас это является чем-то само собой разу­меющимся, но он был первым, утверждавшим подобное: яйца у млекопитающих, когда их можно видеть только у птиц! Никогда Гарвей не обнаруживал яиц у млекопитающих или у человека, но считал, что они должны су­ществовать и что это можно утверждать на основании всех теоретических данных.

Затем Левенгук, фанатик микроскопа, показал спер­матозоиды различных животных уже после того, как сту­дент Ян Хан в Лейдене впервые увидел этих «семенных живчиков». Все эти открытия, казавшиеся фантастиче­скими, наталкивали умы на правильные или же на лож­ные заключения и во всяком случае оказали влияние на всю эмбриологию. Левенгук хотя и не сознавал сначала всего их значения, но предполагал, что семенные живчи­ки имеют отношение к возникновению плода. Правда, он считал, что есть живчики двух разновидностей - муж­ские и женские: это вполне объясняло бы формирование пола. Левенгук думал также, что видит в каждом спер­матозоиде целое тело, соответствующее телу зрелого индивида. Все уже образовано заранее, говорил он. И, бу­дучи одержим фантазией, заставлявшей его обнаружить то, что ему хотелось обнаружить, он увидел в спермато­зоидах нервы и кровеносные сосуды. Когда он открыл, таким образом, «мужское начало», из которого возникает животное и человек, он уже счел излишним думать о «женском начале» и о наличии яиц у млекопитающих и человека, - ведь этих яиц никто не видел, значит, их и не существует, а «овулисты», предполагавшие наличие яиц у млекопитающих, неправы: правы лишь «анималь­кулисты», так как анималькулу (сперматозоид) - мель­чайшие зачаточные живые существа - можно-де видеть.

В учение о заранее образованной форме, преформации, внес свой вклад и Ян Сваммердам - медик, ничего не желавший знать о врачебной практике и предпочитав­ший исследовать животных. Сваммердам вскрывал насе­комых, куколок и личинок и изучал последовательность форм и органов, которые были вставлены или вложены друг в друга в предобразованном состоянии и которые должны были развиваться для того, чтобы получилась готовая форма. Альбрехт фон Галлер тоже присоединил­ся к этой теории и признавал предобразование. «Фило­софы,- говорил он, - создали себе много трудностей, выискивая происхождение форм, энтелехий (способности развития, направленные на определенную цель) или душ. Между тем современные точные исследования растений, насекомых и других животных привели к выводу, что органические тела никогда не происходят из хаоса или гнили, а каждый раз из зародышей, в которых, несомнен­но, уже заложена преформация. Таким образом, пришли к выводу, что в этом состоянии еще до зачатия суще­ствует не только органическое тело, но и душа в этом теле».

Ко второй половине XVII века относится открытие голландским врачом Ранье де Граафом фолликулов (пузырьков) в яичнике женщины, называемых с тех пор грайфовыми пузырьками. Эти пузырьки полусферической формы заметны на внутренней поверхности яичника; в каждом из них содержится большая шаровидная клет­ка - яйцо. Пока они малы, их нельзя разглядеть нево­оруженным глазом. Развиваются не все фолликулы, а только некоторое число их, и лишь после того, как они вырастают настолько, что становятся заметными для невооруженного глаза. В стенке такого пузырька нахо­дится бугорок, скрывающий яйцо. Зрелый фолликул ра­вен примерно небольшой горошине. Когда стенка разры­вается, яйцо попадает в яйцевод через его бахромчатое окончание. После того как яйцо вышло из яичника, по­лость фолликула, наполненная желтоватыми частицами крови, жира и ткани, закрывается: так возникает обра­зование, называемое желтым телом. Это желтое тело свидетельствует о том, что здесь было яйцо. Отдельные детали описанного процесса, значение фолликулов и жел­того тела (corpus luteum), разумеется, стали понятными значительно позднее.

Ренье де Грааф (1641-1673)

Открытие Граафа вновь вызвало ожесточенный спор между овулистами и анималькулистами: первые считали местом пребывания предобразованного организма яйцо, вторые же - семенную клетку. Не окончился еще спор между сторонниками теории преформации, как Каспар Фридрих Вольф предложил свою теорию развития, на­званную им «эпигенезом» и изложенную в уже упомяну­той диссертации. Эта теория находилась в противоречии с теорией преформации, признанной Галлером и, таким образом, утвержденной властью.

Дела Вольфа обстояли еще сравнительно неплохо, когда он был военным хирургом, - начальник военно­санитарной службы и королевский лейб-медик Котениус обратил на него внимание, когда он читал в Бреславле секции для молодых врачей, и покровительствовал ему.

Однако по окончании семилетней войны отпала надоб­ность в военно-полевых госпиталях, стал ненужен и этот хирург. Вольф остался без места и без заработка. А он мечтал о том, чтобы получить профессуру, читать лек­ции. Котениус обещал ему свою поддержку, но не мог ничего сделать: профессора не хотели и слышать о Воль­фе, факультетские аудитории оставались для него закрытыми. Единственное, чего достиг Вольф, это чтения на снятой им квартире частных лекций в качестве приват- доцента. Однако лекции были так интересны, так новы, что слушатели собирались на них толпами.

В 1759 г. вышла в свет «Теория развития» Вольфа - та самая теория, которую отрицал Галлер и которая по этой причине была исключена из круга научных иссле­дований. Галлер отстаивал теорию предобразования ор­ганизма в зародышевой клетке, как это проповедовали преформисты, Вольф же доказывал «эпигенез» - разви­тие путем новообразования - и говорил, что ничто не предобразовано ни в анималькуле, ни в яйце: в нарож­дающемся существе, в эмбрионе все должно образовать­ся заново и сам эмбрион возникает лишь после ряда новообразований. Такова была теория Вольфа, не соот­ветствовавшая взглядам того времени.

Вначале, поучал Вольф, имеется лишь шарообразное скопление клеток, затем двойной листок, сросшийся по­середине, который потом заворачивается. Этот заворот - начало кишечного канала. Он указывал, что существует единый тип развития: во всех органических системах сначала образуется нервная система, потом мышцы, со­суды и, наконец, кишечный канал. Отдельные стадии он снова и снова показывал на куриных яйцах, демонстри­руя их каждые четверть часа, чтобы дать слушателям возможно более полную картину развития зародыша.

Да, все это, действительно, не могло понравиться профессорам. Им это казалось учением, ниспровергаю­щим общепринятые основы. Только студенты слушали Вольфа охотно и следили за тем, что он открывал на насиженных яйцах. Когда в 1764 г. он издал для сту­дентов немецкую переработку своей «Теории развития», неприязнь к нему профессоров еще более усилилась.

Не только физиолог Галлер был против него - фило­соф Лейбниц также признавал теорию преформации. А выдающийся берлинский анатом Иоганн Фридрих Меккель-старший столь ожесточенно выступил против Вольфа, что для него закрылись все двери. Вольфу не оставалось ничего больше, как оставить Германию. Он принял приглашение Российской академии наук, что ему советовал и врач Мурзинна, один из немногих его сто­ронников. Именно Мурзинна рассказал Гете о Вольфе. Благодаря этому известно не только об отъезде Вольфа в Россию, но и о том, что перед отъездом он спешно женился на бедной, но красивой берлинской девушке.

В России Вольф имел возможность работать. Он из­учал развитие кишечного канала и закончил в 1768 г. классический труд по этому вопросу, оставшийся неизвестным. Он был издан на немецком языке через во­семнадцать лет после смерти Вольфа. Стоит упомянуть, что перевод сделал Иоганн Фридрих Меккель - внук Меккеля-старшего. Быть может, Иоганн Фридрих хотел хоть частично исправить ту несправедливость, которую его дед допустил по отношению к гениальному исследо­вателю. Вольф умер в 1794 г., прожив двадцать лет в Петербурге.

Научно-исследовательские труды Вольфа частично не признавали, частично подвергали насмешкам. Он был почти забыт. Но его работы послужили основой для со­здания новой науки - истории развития человечества. В 1827 г. К. Э. Бэр сделал важнейшее дополнение к тео­рии Вольфа - он открыл яйцо у млекопитающих и пре­жде всего яйцо у человека.

Карл Эрнст фон Бэр родился в 1792 г. в Эстляндии - прибалтийской провинции России. Семья жила в своем поместье, и мальчик рос в тесном общении с природой. Отец предложил детям превратить часть двора в сад. Выполняя эту задачу, они подмечали своими зоркими наблюдательными глазами в укромных уголках двора и сада различные чудеса. То, что Бэр уже в 12 лет был ботаником, следует приписать влиянию его учителя Гланштрема. Однажды юный Карл застал его в саду с книгой и несколькими растениями в руках. Узнав, что тот определяет названия растений, Бэр пришел в восторг. Вскоре он и сам обзавелся пособием по ботанике и с рвением, свойственным юности, увлекся определением растений и составлением гербария. Ботаника -ведет к медицине дорогой, вдоль которой растут лекарственные растения. Гланштрем изучал медицину в течение несколь­ких семестров и, хотя не обладал обширными познания­ми, мог делать прививки против оспы и оказывал неко­торую помощь окрестному населению, пользуясь в своей скромной практике валерианой, аиром и другими лечеб­ными травами. Само собой разумеется, Карл всегда со­провождал его и стал, так сказать, его ассистентом. В душе молодого Бэра созрело решение стать медиком, и, окончив среднюю школу в Ревеле, он начал изучать медицину в Дерпте.

Карл Эрнст фон Бэр (1792-1876)

Но Дерпт его не удовлетворял, и он часто спрашивал себя, не лучше ли ему стать естествоиспытателем. «В на­чале я избрал профессию практическую медицину, кото­рая не соответствовала моей духовной организации и ко­торой я не мог бы хорошо овладеть, учась в Дерпте», - писал он впоследствии в автобиографии. Однако Бэр все же сдал экзамены и в 1814 г. получил степень докто­ра. После этого он прежде всего отправился в Вену, которая пользовалась славой как центр медицинского образования, несмотря на то, что первый период расцве­та этого города уже миновал, а второй еще не наступил. Однако намерение посетить Вену едва не сорвалось: ко­гда Бэр проездом остановился в Берлине, профессор Пандер пытался уговорить его остаться и посвятить се­бя ботанике и зоологии. Пандер рассказал ему о сокро­вищах зоологического музея и ботанического сада, но Бэр отказался даже осмотреть их: он решил стать «на­стоящим практиком». И именно потому, что в то время его интересовала только практическая медицина, в венском университете ему не понравилось: медицинская школа здесь в ту пору была совершенно оторвана от практики. В клинике внутренних болезней он мог наблюдать только легкие случаи, когда больные выздоравли­вали без помощи врачей, если природе предоставляли идти своим путем. Это возродило раздвоение в душе Бэра, его выбор опять стал колебаться между чистым естествознанием и практической медициной. Но увидев как-то прекрасные коллекции растений и жуков и озна­комившись с книгой о съедобных грибах, он решил покинуть Вену и окончательно посвятить себя естество­знанию.

Сначала Бэр направился в Вюрцбург, где ему при­вили интерес к исследованиям яиц млекопитающих.

Здесь он участвовал в работах, предпринятых с целью проследить, каким образом из пластинчатого тела, за­ключенного в курином яйце, так называемого наседа, возникает существо, снабженное брюшной полостью и другими органами. Позднее он считал ошибкой то, что исследования велись от начала развития, а не от созрев­шего плода к зачатку. В зимний семестр 1817 г. он по­ступил прозектором к профессору Карлу Фридриху Бурдаху в Кенигсберге: у этого профессора можно было кое-чему научиться - он разбирался в анатомии и физиологии и придавал своим лекциям почти философски стройную форму. Бурдах. был первым, разрезавшим при помощи тончайшего скальпеля головной и спинной мозг на слои, которые он изучал затем под микроско­пом, чтобы разобраться в структуре центральной нервной системы. Бурдах и был подлинным учителем Бэра. Под его руководством Бэр стал профессором и «директором анатомии».

Более всего Бэр интересовался теперь, как и в Вюрц­бурге, историей развития животных. Он старался доста­вать для исследований возможно более молодые зародыши, главным образом млекопитающих, например, коров и др. Он обратил внимание на сильное сходство этих зародышей в ранней стадии развития с куриными зародышами и уже не сомневался в единообразии харак­тера развития.

«Идя все дальше вглубь, - писал он позднее, - я обнаружил в яйцеводах очень маленькие, наполовину прозрачные и потому с трудом различимые пузырьки, в каждом из которых под микроскопом было видно круг­лое пятно, напоминающее насед, и, кроме того, - еще более мелкие, непрозрачные тельца тоже круглой формы, похожие на зародыши. Таким образом, я оказался почти что принужденным к поискам неоплодотворенного яйца в том виде, в каком оно находится в яичнике, хотя у меня почти нехватало мужества приступить к решению этой последней задачи».

Бэр поделился с Бурдахом своим предположением, что в телах млекопитающих яйца начинают развиваться в яичнике, однако ему не хватало еще доказательств. Каким путем он мог найти их? Бэр стал искать суку, покрытую всего лишь несколько дней назад. У него у самого была собака, и он решил пожертвовать ею.

Вот как рассказывал он впоследствии о своем опыте: «Когда я вскрыл ее, я обнаружил граафовы пузырьки в напряженном состоянии, но ни один из них еще не был готов к разрыву» (в то время полагали, что в первые дни после оплодотворения граафовы пузырьки у суки еще закрыты, но уже близки к разрыву). «...Подавлен­ный сознанием, что моя надежда вновь не сбылась, я стал изучать яичник и заметил сначала в одном, затем в большинстве других пузырьков желтые пятнышки, в каждом лишь одно единственное пятнышко. Удиви­тельно! - подумал я. - Что же это может быть? Вскрыв один из пузырьков, я осторожно переложил скальпелем темное образование на наполненное водой часовое стекло и поместил его под микроскоп. Глянув в микро­скоп, я отпрянул, как сраженный молнией, ибо я яв­ственно увидел очень маленький желточный шарик весьма четкой формы. Мне пришлось передохнуть, пре­жде чем я набрался мужества заглянуть вновь, так как опасался, что меня обмануло мое воображение. Странно, что зрелище, которого столь страстно ожидаешь, может испугать своим появлением. Правда, там было и кое-что неожиданное: я не предполагал, что содержание яйца млекопитающих столь похоже на желток птичьего яйца... Итак, первоначальное яйцо собаки было найдено. Оно не плавает в неопределенном положении внутри довольно густой жидкости граафова пузырька, а придавлено к его стенке и удерживается венцом крупных клеток, который теряется в очень нежной внутренней оболочке пузырька. Конечно, я отыскал яйцо и у других млекопитающих и в женщине. Но оно казалось скорей беловатого цвета, изредка с желтоватым оттенком, и только в редких случаях я мог его рассмотреть снаружи без вскрытия граа­фова пузырька и без микроскопа. Чаще всего мне это удавалось на свиньях».

Эти воспоминания Бэр написал в 1866 г. по случаю пятидесятилетия присуждения ему докторской степени. Сообщение о своем открытии «О происхождении яйца млекопитающих и человека» он опубликовал в 1827 г. по-латыни. В то время, как уже сказано, он был в Кенигсберге профессором зоологии - учебной дисципли­ны, которая побуждала его к исследовательской работе, но не давала ему полного удовлетворения. Позднее он принял приглашение Российской академии наук и прослужил в Петербурге более тридцати лет как «краса и гордость, душа академии». Он читал лекции по анатомии и физиологии и участвовал в научной экспедиции, пред­принятой в целях географических открытий на дальнем Севере и Новой Земле. Бэр обладал редким качеством обнаруживать в любом научном вопросе нечто новое и вести исследовательскую работу в самых различных областях. В 1867 г. он переселился в Дерпт, где умер девять лет спустя, завещав свой труп, как в то время часто делали врачи, анатомам, - это было вызвано тем, что они тоже, как и он, не имели возможности в студен­ческие годы заниматься практической анатомией. Бэр не только обнаружил яйцо млекопитающих, но и впервые проследил все стадии развития высших позвоночных животных. Он установил, что единого плана развития всех животных нет, а оно происходит по отрядам. У ку­риного зародыша появляются вначале признаки позвоночного животного, затем птицы, затем отряда куриных и, наконец, курицы. Конечно, Бэр не мог еще постигнуть всю историю развития, не мог понять, что эмбрион дол­жен пройти определенные стадии, не свойственные данному виду, не мог ответить, например, на вопрос, зачем человеческому зародышу жаберные щели. Только благодаря прогрессу теории развития было установлено, что развитие зародыша живого существа повторяет эво­люцию своего рода.

Следует сказать еще о Роберте Ремаке, который оста­вил бессмертные труды. Чтобы допустить его, исповедо­вавшего иудейскую веру, к академической деятельности, потребовался специальный именной указ. В 1847 г. Ре­маке стал приват-доцентом, в 1859 г. - профессором. В Пруссии это был первый приват-доцент еврей. Его работы посвящены микроскопической анатомии нервов и истории развития. Он первый обнаружил, что бластодер­ма зародыша состоит из трех слоев, которые определяют развитие организма. Вначале эти листки, наподобие листов книги, лежат один над другим, что хорошо за­метно все на тех же насиженных яйцах. Из наружного зародышевого листка - эктодермы - возникает кожа, железы и зубы, головной мозг с его буграми - органами чувств, спинной мозг, пищевод и конечный отрезок ки­шечника. Основная часть кишечника, а также придатки кишечника, например, печень, образуются из самого внутреннего зародышевого листка - энтодермы. Между ним находится средний листок - мезодерма - основа мускулатуры.

Все это стало исходным пунктом для дальнейшей работы по теории развития и составило основу теории Дарвина.

Похожие материалы:

Эмбриология изучает особенности развития зародыша от момента зачатия до появления на свет ребенка. Процесс эмбриогенеза , являющийся основным предметом исследований науки, можно разделить на несколько стадий:

  • образование зиготы, происходящее в момент оплодотворения яйцеклетки сперматозоидом;
  • образование бластулы вследствие активного дробления клеток;
  • гаструляция, подразумевающая под собой появление основных зародышевых листков и органов;
  • гистогенез и органогенез органов и тканей плода, плаценты;
  • системогенез, означающий формирование всех основных систем организма ребенка.

Кроме того, благодаря эмбриологии стали известны наиболее опасные периоды внутриутробного развития, способные негативно повлиять на плод под воздействием определенных факторов. Так, критическими считаются следующие моменты онтогенеза:

  • само оплодотворение;
  • внедрение эмбриона в стенку матки, происходящее на 7-е сутки;
  • формирование зачатков основных тканей, длящееся с 3 по 8 неделю;
  • образование головного мозга, происходящее с 15 по 20 неделю;
  • развитие всех органов и систем плода (с 20 по 24 неделю);
  • рождение.

В эти периоды влияние различных внутренних и внешних процессов может привести к замедленному, неправильному развитию или даже смерти ребенка. Поэтому на данных сроках беременности стоит уделить особое внимание здоровью женщины и плода.


Клиническая эмбриология изучает проблемы и отклонения от нормы в онтогенезе, ищет способы их решения и помогает избежать каких-либо нарушений. Кроме того, эта наука ищет вероятные причины различных патологий развития (в том числе возникновения уродств), факторы, действующие на течение эмбриогенеза, а также способы влияния на него на всех возможных этапах. Также к предметам изучения можно отнести бесполое размножение, регенерацию и патологическое развитие тканей и органов. Существуют школы, исследующие проблемы онкологических новообразований, их закономерности и причины возникновения.

История эмбриологии

Еще в древние времена ученых интересовали загадки возникновения и развития ребенка в утробе матери. Гиппократ и Аристотель были основоположниками самых известных теорий эмбриогенеза, соперничавших друг с другом почти до 19 века: перформизма и эпигенеза.


Представители идеи перформизма считали, что новый организм присутствует в «яйце» уже в готовом состоянии, лишь очень уменьшенный в размере, и со временем он только увеличивается в размерах. Однако теоретики не знали точно, в материнском теле или отцовском содержатся эмбрионы и каким образом им передаются свойства второго родителя.


Одним из приверженцев перформизма был математик Г. Лейбниц, выдвинувший предположение, что если в яйцеклетке есть эмбрионы, то в его яичниках должны быть сами яйцеклетки со следующим поколением зародышей и так далее. Другим примером схожих взглядов можно назвать теорию Сваммердама, утверждающую, что в яйце бабочки находится гусеница, в самой гусенице – куколка, а в ней – бабочка.


Ученые, придерживающиеся эпигенеза, ярким представителем которого являлся У. Гарвей, считали, что в «яйце» содержится бесструктурное вещество, хранящее потенциал для образования будущих органов и тканей. В 18 веке К. Ф. Вольфом в ходе исследований куриных зародышей сделал открытие первичных пластов, которые затем формируют органы. В начале 19 века это наблюдение было подтверждено и стало общепринятым мнением среди ученых.


В это же время большое открытие было сделано К. Бэром. Изучая зародыши позвоночных, он пришел к выводу, что все они на самых ранних этапах развития схожи между собой. Причем с течением времени у них появляется все больше различий. То есть эмбриогенез происходит от общего к частному, вначале формируя признаки типа, затем класса и так далее. Таким образом, возникло понятие о филогенезе, или повторении процессов эволюции за время онтогенеза человека. Позднее на основании этой теории был сформирован биогенетический закон, описывающийся в трудах Ч. Дарвина.


Также получило известность учение о рекапитуляции – повторении высшими организмами этапов развития более низших. Кроме того, большой вклад в развитие эмбриологии внесли А. Ковалевский, И. Мечников, доказавшие, что эмбриогенез всех млекопитающих проходит через образование трех зародышевых листков. Кроме того, неоценимы заслуги П. Светлова, являющегося основоположником теории о критических моментах эмбриогенеза.


Экспериментальная эмбриология, как наука, стала развиваться благодаря В. Ру, который путем изоляции бластомеров выявил некоторые закономерности в эмбриогенезе и патологии при действии определенных факторов. В 20 веке появилось новое направление в науке – микрохирургия на зародышах. Вследствие этого были придуманы новые методики: снятие оболочек с яйца, пересадка частей зародыша и приготовление питательной среды для развития эмбриона.

Эмбриология в наше время

Наука, изучающая эмбриогенез, в настоящее время достигла больших результатов. Различают несколько направлений эмбриологии:

  • общая эмбриология;
  • сравнительная;
  • экологическая;
  • экспериментальная;
  • онтогенетическая.

Все они тесно связаны с цитологией, гистологией, медициной, биохимией, биологией, генетикой и физиологией.


Есть несколько методов изучения эмбриогенеза и зародышей как таковых. К ним относятся:

  • исследование фиксированных срезов при помощи различных методик (световой микроскопии, иммуноцитохимии и других);
  • метод маркирования клеток эмбриона, позволяющий следить за их изменениями;
  • эксплантация, суть которой заключается в переносе отдельной части зародыша на питательную среду для выращивания и изучения;
  • трансплантация ядра, с помощью которой стало возможным осуществить клонирование.

Благодаря успехам и исследованиям в эмбриологии стало возможным не только следить за этапами развития плода, но и управлять ими, предотвращать появление пороков и уродств. Кроме того, женщины, в анамнезе которых отмечаются постоянные выкидыши или бесплодие, получили шанс стать матерями.


Методы искусственного оплодотворения и суррогатного материнства получили свое существование только с помощью достижений и методик эмбриологии. Теперь образование эмбриона, его рост можно осуществлять в искусственных условиях, на специально подготовленной питательной среде. Кроме того, исследуя зародыши, эмбриологи могут совершить отбор более жизнеспособных зародышей от патологических и слабых, и тем самым не допустить случаев замершей беременности или рождения ребенка с пороками развития.


В клиниках ЭКО, научно-исследовательских институтах есть специалисты, занимающиеся проблемами оплодотворения и внутриутробного развития. Стоит отметить, что эта область медицины достигла значительных высот и продолжает развиваться, открывая новые горизонты и возможности для людей. Ее роль в современном мире становится все более значительной.