История металлов - презентация. Презентация на тему "история металлов" Рассказать об открытии металлов


Ширина блока px

Скопируйте этот код и вставьте себе на сайт

Подписи к слайдам:

Развитие науки «ХИМИЯ»

  • Подготовила
  • преподаватель химии ГБПОУ НСО НКЭиВТ
  • Зырянова Т. Е.
ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ХИМИИ
  • Этапы развития химии
  • До III в. н. э.
  • III -XVI в.в.
  • XVII -XVIII в.в.
  • 1789 – 1860 гг.
  • 1860 г. –конец XIX в.
  • С начала XX в. до нашего времени
  • В предалхимическом периоде теоретический и практический аспекты знаний о веществе развивались относительно независимо друг от друга.
  • Практические операции с веществом являлись прерогативой ремесленной химии. Начало её зарождения следует в первую очередь связывать с появлением и развитием металлургии.
  • В античную эпоху были известны в чистом виде 7 металлов: медь, свинец, олово, железо, золото, серебро и ртуть, а в виде сплавов - ещё и мышьяк, цинк и висмут. Помимо металлургии, накопление практических знаний происходило и в других областях, таких как производство керамики и стекла, крашение тканей и дубление кож, изготовление лекарственных средств и косметики. Именно на основе успехов и достижений практической химии древности происходило развитие химических знаний в последующие эпохи.
Предалхимический период (до III в)
  • Попытки теоретического осмысления проблемы происхождения свойств вещества привели к формированию в античной греческой натурфилософии - учения об элементах-стихиях.
  • Наибольшее влияние на дальнейшее развитие науки оказали учения Эмпедокла, Платона и Аристотеля.
  • Согласно этим концепциям все вещества образованы сочетанием четырёх первоначал: земли, воды, воздуха и огня.
  • Сами элементы при этом способны к взаимопревращениям, поскольку каждый из них, согласно Аристотелю, представляет собой одно из состояний единой первоматерии - определённое сочетание качеств.
  • Положение о возможности превращения одного элемента в другой стало позднее основой алхимической идеи о возможности взаимных превращений металлов (трансмутации).
  • Практически одновременно с учением об элементах-стихиях в Греции возник и атомизм, основателями которого стали Левкипп и Демокрит.
«Квадрат противоположностей»
  • графическое отображение взаимосвязи между элементами
АЛХИМИЧЕСКИЙ ПЕРИОД III – XVI В.В.
  • Александрийская алхимия
  • Арабская алхимия
  • Европейская алхимия
  • Алхимический период - это время поисков философского камня, считавшегося необходимым для осуществления трансмутации металлов. Алхимическая теория, основанная на античных представлениях о четырёх элементах, была тесно переплетена с астрологией и мистикой. Наряду с химико-техническим «златоделием» эта эпоха примечательна также и созданием уникальной системы мистической философии. Алхимический период, в свою очередь, разделяется на три подпериода: александрийскую (греко-египетскую), арабскую и европейскую алхимию.
Александрийская алхимия
  • «Хризопея Клеопатры» - изображение из алхимического трактата александрийского периода
  • В Александрии произошло соединение теории (натурфилософии Платона и Аристотеля) и практических знаний о веществах, их свойствах и превращениях; из этого соединения и родилась новая наука - химия
Александрийская алхимия
  • Само слово «химия» (и арабское al-kīmiya ) обычно считается происходящим от древнего названия Египта - Кем или Хем; изначально слово, по-видимому, должно было означать нечто вроде «египетского искусства». Иногда, термин производят от греческого χυμος - сок или χυμενσιζ - литьё.
  • Основными объектами изучения александрийской химии являлись металлы. В александрийский период сформировалась традиционная металлопланетная символика алхимии, в которой каждому из семи известных тогда металлов сопоставлялась соответствующая планета: серебру - Луна, ртути - Меркурий, меди -Венера, золоту - Солнце, железу - Марс, олову - Юпитер, свинцу - Сатурн.
  • Небесным покровителем химии в Александрии стал египетский бог Тот или его греческий аналог Гермес.
Александрийская алхимия
  • Среди значительных представителей греко-египетской алхимии, имя которых дошло до наших дней, можно отметить Болоса Демокритоса, Зосима Панополита, Олимпиодора.
  • Изображение прибора для перегонки из рукописи Зосима Панополита
  • Зосим Панополит
  • даты рождения и смерти неизвестны, вероятно, III – IV вв.
  • Зосима из Панополиса – греко-египетский алхимик, работавший в Александрийской академии. Считается одним из основателей алхимии. Родился в Панополисе (ныне Акхмим, Египет). Многочисленные мистико-аллегорические сочинения Зосима пользовалось широкой известностью у александрийских, а позднее и у средневековых алхимиков.
Арабская алхимия
  • Теоретической основой арабской алхимии по-прежнему являлось учение Аристотеля. Однако развитие алхимической практики потребовало создания новой теории, основанной на химических свойствах веществ. Джабир ибн Хайян (Гебер) в конце VIII века разработал ртутно-серную теорию происхождения металлов - металлы образованы двумя принципами: Hg (принцип металличности) и S (принцип горючести). Для образования Au - совершенного металла, еще необходимо наличие некоторой субстанции, которую Джабир называл эликсиром (al-iksir , от греческого ξεριον, то есть «сухой»).
Арабская алхимия
  • Проблема трансмутации, таким образом, в рамках ртутно-серной теории свелась к задаче выделения эликсира, иначе называемого философским камнем (Lapis Philosophorum ). Эликсир, как считалось, должен был обладать ещё многими магическими свойствами - исцелять все болезни, и, возможно, давать бессмертие.
  • Ртутно-серная теория составила теоретическую основу алхимии на несколько последующих столетий. В началеX века другой выдающийся алхимик - Ар-Рази (Разес), - усовершенствовал теорию, добавив к Ртути и Сере принцип твёрдости (хрупкости), или философскую Соль.
Арабская алхимия
  • Арабская алхимия, в отличие от александрийской, была вполне рациональна; мистические элементы в ней представляли собой скорее дань традиции. Помимо формирования основной теории алхимии, во время арабского этапа был разработан понятийный аппарат, лабораторная техника и методика эксперимента. Арабские алхимики добились несомненных практических успехов - ими выделены сурьма, мышьяк и, по-видимому, фосфор, получены уксусная кислота и разбавленные растворы минеральных кислот. Важной заслугой арабских алхимиков стало создание рациональной фармации, развившей традиции античной медицины.
Европейская алхимия
  • Научные воззрения арабов проникли в средневековую Европу в XIII веке. Работы арабских алхимиков были переведены на латынь, а затем и на другие европейские языки.
Европейская алхимия
  • Среди крупнейших алхимиков европейского этапа можно отметить Альберта Великого, Роджера Бэкона, Арнальдо де Вилланову, Раймунда Луллия,Василия Валентина. Р. Бэкон определил алхимию следующим образом: «Алхимия есть наука о том, как приготовить некий состав, или эликсир, который, если его прибавить к металлам неблагородным, превратит их в совершенные металлы».
Европейская алхимия
  • В Европе в мифологию и символику алхимии были внедрены элементы христианской мифологии (Петрус Бонус,Николай Фламель); в целом для европейской алхимии мистические элементы оказались значительно более характерны, нежели для арабской. Мистицизм и закрытость европейской алхимии породили значительное число мошенников от алхимии; уже Данте Алигьери в «Божественной комедии» поместил в восьмой круг Ада тех, кто «алхимией подделывал металлы». Характерной чертой европейской алхимии стало её двусмысленное положение в обществе. Как церковные, так и светские власти неоднократно запрещали занятия алхимией; в то же время алхимия процветала и в монастырях, и при королевских дворах.
Европейская алхимия
  • К началу XIV века европейская алхимия добилась первых значительных успехов, сумев превзойти арабов в постижении свойств вещества. В 1270 году итальянский алхимик Бонавентура, в одной попытке получения универсального растворителя получил раствор из соляной и азотной кислоты (aqua fortis ), который оказался способным растворять золото, царя металлов (отсюда и название - aqua Regis , то есть царская водка). Псевдо-Гебер - один из самых значительных средневековых европейских алхимиков, работавший в Испании в XIV веке и подписывавший свои сочинения именем Гебера, - подробно описал концентрированные минеральные кислоты (серную и азотную). Использование этих кислот в алхимической практике привело к существенному росту знаний алхимиков о веществе.
Европейская алхимия
  • В середине XIII века в Европе началась выделка пороха; первым его (не позже 1249 года) описал, по-видимому, Р. Бэкон (часто упоминаемого монаха Б. Шварца можно считать основоположником порохового дела в Германии). Появление огнестрельного оружия стало сильнейшим стимулом для развития алхимии и её тесного переплетения с ремесленной химией.
Техническая химия
  • Начиная с эпохи Возрождения, в связи c развитием производства всё большее значение в алхимии стало приобретать производственное и вообще практическое направление: металлургия, изготовление керамики, стекла и красок. В первой половине XVI века в алхимии выделились рациональные течения: техническая химия, начало которой положили работы В. Бирингуччо,Г. Агриколы и Б. Палисси, и ятрохимия, основателем которой стал Парацельс.
Техническая химия
  • Бирингуччо и Агрикола видели задачу алхимии в поисках способов совершенствования химической технологии; в своих трудах они стремились к максимально ясному, полному и достоверному описанию опытных данных и технологических процессов.
Техническая химия
  • Парацельс утверждал, что задача алхимии - изготовление лекарств; при этом медицина Парацельса основывалась на ртутно-серной теории. Он считал, что в здоровом организме три принципа - Ртуть, Сера и Соль, - находятся в равновесии; болезнь представляет нарушение равновесия между принципами. Для его восстановления Парацельс ввёл в практику лекарственные препараты минерального происхождения - соединения мышьяка, сурьмы, свинца, ртути и т. п., - в дополнение к традиционным растительным препаратам.
Техническая химия
  • К представителям ятрохимии (спагирикам, как называли себя последователи Парацельса) можно отнести многих известных алхимиков XVI-XVII веков: А. Либавия (рис.1), Р. Глаубера, Я. Б. Ван Гельмонта, О. Тахения.
Значение технической химии
  • Техническая химия и ятрохимия непосредственно подвели к созданию химии как науки; на этом этапе были накоплены навыки экспериментальной работы и наблюдений, в частности, разработаны и усовершенствованы конструкции печей и лабораторных приборов, методы очистки веществ (кристаллизация, перегонка и др.), получены новые химические препараты.
Значение алхимического периода
  • Главным результатом алхимического периода в целом, помимо накопления значительного запаса знаний о веществе, явилось зарождение эмпирического подхода к изучению свойств вещества. Алхимический период стал совершенно необходимым переходным этапом между натурфилософией и экспериментальным естествознанием.
Период становления (XVII – XVIII в.в.)
  • Вторая половина XVII века ознаменовалась первой научной революцией, результатом которой стало новое естествознание, целиком основанное на экспериментальных данных. Создание гелиоцентрической системы мира (Н. Коперник, И. Кеплер), новой механики (Г. Галилей), открытие вакуума и атмосферного давления (Э. Торричелли,Б. Паскаль и О. фон Герике) привели к глубокому кризису аристотелевской физической картины мира. Ф. Бэконвыдвинул тезис о том, что решающим доводом в научной дискуссии должен являться эксперимент; в философии возродились атомистические представления (Р. Декарт, П. Гассенди).
Новая химия
  • Одним из следствий этой научной революции явилось создание новой химии, основоположником которой традиционно считается Р. Бойль. Бойль, доказав несостоятельность алхимических представлений об элементах как носителях неких качеств, поставил перед химией задачу поиска реальных химических элементов. Элементы, по Бойлю, - практически неразложимые тела, состоящие из сходных однородных корпускул, из которых составлены все сложные тела и на которые они могут быть разложены. Главной задачей химии Бойль считал изучение состава веществ и зависимости свойств вещества от его состава
  • Создание теоретических представлений о составе тел, способных заменить учение Аристотеля и ртутно-серную теорию, оказалось весьма сложной задачей. В последней четверти XVII в. появились т. н. эклектические воззрения, создатели которых пытаются увязать алхимические традиции и новые представления о химических элементах (Н. Лемери, И. И. Бехер).
Теория флогистона – движущая сила развития учения об элементах (I-я половина XVIII в.)
  • Предложена немецким химиком Г. Э. Шталем. Она объясняла горючесть тел наличием в них некоего материального начала горючести - флогистона, и рассматривала горение как разложение. Обобщила широкий круг фактов, касавшихся процессов горения и обжига металлов, послужила мощным стимулом для развития количественного анализа сложных тел, без которого было бы абсолютно невозможным экспериментальное подтверждение идей о химических элементах. Она стимулировала также изучение газообразных продуктов горения в частности и газов вообще; в результате появилась пневматическая химия, основоположниками которой стали Дж. Блэк, Д. Резерфорд, Г. Кавендиш, Дж. Пристли и К. В. Шееле.
Химическая революция
  • Процесс превращения химии в науку завершился открытиями А. Л. Лавуазье. С создания им кислородной теории горения (1777 год) начался переломный этап в развитии химии, названный «химической революцией». Отказ от теории флогистона потребовал пересмотра всех основных принципов и понятий химии, изменения терминологии и номенклатуры веществ
  • В 1789 году Лавуазье издал свой знаменитый учебник «Элементарный курс химии», целиком основанный на кислородной теории горения и новой химической номенклатуре. Он привёл первый в истории новой химии список химических элементов (таблицу простых тел). Критерием определения элемента он избрал опыт, и только опыт, категорически отвергая любые неэмпирические рассуждения об атомах и молекулах, само существование которых невозможно подтвердить опытным путём. Лавуазье сформулировал закон сохранения массы, создал рациональную классификацию химических соединений, основанную, во-первых, на различии в элементном составе соединений и, во-вторых, на характере их свойств.
  • Химическая революция окончательно придала химии вид самостоятельной науки, занимающейся экспериментальным изучением состава тел; она завершила период становления химии, ознаменовала собой полную рационализацию химии, окончательный отказ от алхимических представлений о природе вещества и его свойств.
Период количественных законов: конец XVIII - середина XIX в.
  • Главным итогом развития химии в период количественных законов стало её превращение в точную науку, основанную не только на наблюдении, но и на измерении. Был открыт целый ряд количественных закономерностей - стехиометрические законы:
  • Закон эквивалентов (И. В. Рихтер, 1791-1798)
  • Закон постоянства состава (Ж. Л. Пруст, 1799-1806)
  • Закон кратных отношений (Дж. Дальтон, 1803)
  • Закон объёмных отношений, или закон соединения газов (Ж. Л. Гей-Люссак, 1808)
  • Закон Авогадро (А. Авогадро, 1811)
  • Закон удельных теплоёмкостей (П. Л. Дюлонг и А. Т. Пти, 1819)
  • Закон изоморфизма (Э. Мичерлих, 1819)
  • Законы электролиза (М. Фарадей, 1830-е гг.)
  • Закон постоянства количества теплоты (Г. Гесс, 1840)
Химия во второй половине XIX в.
  • Для данного периода характерно стремительное развитие науки: были созданы периодическая система элементов, теория химического строения молекул, стереохимия, химическая термодинамика и химическая кинетика; блестящих успехов достигли прикладная неорганическая химия и органический синтез. В связи с ростом объёма знаний о веществе и его свойствах началась дифференциация химии - выделение её отдельных ветвей, приобретающих черты самостоятельных наук.
Периодическая система элементов
  • В 1869 году Д. И. Менделеев
  • опубликовал первый вариант своей Периодической таблицы и сформулировал Периодический закон химических элементов. Менделеев не просто констатировал наличие взаимосвязи между атомными весами и свойствами элементов, но взял на себя смелость предсказать свойства нескольких неоткрытых ещё элементов. После того, как предсказания Менделеева блестяще подтвердились, Периодический закон стал считаться одним из фундаментальных законов природы
Структурная химия
  • ИЗОМЕРИЯ - существование соединений-изомеров (гл. обр. органических), одинаковых по составу и мол. массе, но различных по физ. и хим. св-вам. В итоге полемики Ю. Либиха и Ф. Вёлера было установлено (1823), что существуют два резко различных по св-вам в-ва состава AgCNO - циановокислое и гремучее серебро. Еще одним примером послужили винная и виноградная к-ты, после исследования к-рых И. Берцелиус в 1830 ввел термин "изомерия" и высказал предположение, что различия возникают из-за "различного распределения простых атомов в сложном атоме" (т. е. молекуле). Подлинное объяснение изомерия получила лишь во 2-й пол. 19 в. на основе теории хим. строения A. M. Бутлерова (структурная изомерия) и стереохим. учения Я. Г. Вант-Гоффа (пространственная изомерия). Структурная изомерия - результат различий в хим. строении.
Структурная химия
  • На протяжении почти всего XIX века структурные представления оказались востребованы, прежде всего, в органической химии.
  • Лишь в 1893 году А. Вернер создал теорию строения комплексных соединений, которая распространила эти представления на неорганические соединения, существенно расширив понятие о валентности элементов
Физическая химия
  • В середине XIX века начала стремительно развиваться пограничная область науки - физическая химия. Начало ей положил ещё М. В. Ломоносов, дав определение и введя само наименование этой дисциплины в научный тезаурус. Предметом изучения физической химии стали химические процессы - скорость, направление, сопровождающие их тепловые явления и зависимость этих характеристик от внешних условий.
Физическая химия
  • Изучение тепловых эффектов реакций
  • начал А. Л. Лавуазье, сформулировавший совместно с П. С. Лапласом первый закон термохимии. В1840 году Г. И. Гесс открыл основной закон термохимии («закон Гесса»). М. Бертло и Ю. Томсен в 1860-е годы сформулировали «принцип максимальной работы» (принцип Бертло - Томсена), позволивший предвидеть принципиальную осуществимость химического взаимодействия.
  • В 1867 году К. М. Гульдберг и
  • П. Вааге открыли закон действующих масс. Представляя равновесие обратимой реакции как равенство двух сил сродства, действующих в противоположных направлениях, они показали, что направление реакции определяется произведением действующих масс (концентраций) реагирующих веществ. Теоретическое рассмотрение химического равновесия выполнили
  • Дж. У. Гиббс (1874-1878), Д. П. Коновалов (1881-1884) и Я. Г. Вант-Гофф (1884). Вант-Гофф сформулировал также принцип подвижного равновесия, который обобщили позже А. Л. Ле Шателье и К. Ф. Браун. Создание учения о химическом равновесии стало одним из главных достижений физической химии XIX века, имевшим значение не только для химии, но и для всего естествознания
  • К.М. Гульдберг и П. Вааге
  • Анри-Луи
  • Ле Шателье
  • Важным достижением физической химии в XIX веке стало создание учения о растворах. Существенные успехи были достигнуты в количественном описании некоторых свойств растворов (1-й и 2-й законы Ф.М. Рауля,
  • осмотический закон Я. Г. Вант-Гоффа,
  • теория электролитической диссоциации
  • С. А. Аррениуса)
  • Сва́нте А́вгуст Арре́ниус
  • После открытия делимости атома и установления природы электрона как его составной части возникли реальные предпосылки
  • для разработки
  • теорий химической связи.
  • В конце 20-х - начале 30-х годов XX века сформировались принципиально новые - квантово-механические - представления о строении атома и природе химической связи.
  • Квантово-механический подход к строению атома привёл к созданию новых теорий, объясняющих образование связи между атомами.
Современный период: с начала XX в.
  • В 1929 году Ф. Хунд, Р. С. Малликен и Дж. Э. Леннард-Джонс заложили фундамент метода молекулярных орбиталей, основанного на представлении о полной потере индивидуальности атомов, соединившихся в молекулу. Хунд создал также современную классификацию химических связей; в 1931 году он пришёл к выводу о существовании двух основных типов химических связей - простой, или σ-связи, и π-связи.
  • Э. Хюккель распространил метод МО на органические соединения, сформулировав в 1931 году правило ароматической стабильности, устанавливающее принадлежность вещества к ароматическому ряду
Современный период: с начала XX в.
  • Благодаря квантовой механике к 30-м годам XX века в основном был выяснен способ образования связи между атомами; кроме того, в рамках квантово-механического подхода получило корректную физическую интерпретацию менделеевское учение о периодичности. Создание надёжного теоретического фундамента привело к значительному росту возможностей прогнозирования свойств вещества. Особенностью химии в XX веке стало широкое использования физико-математического аппарата и разнообразных расчётных методов
Современный период: с начала XX в.
  • Подлинным переворотом в химии стало появление в XX веке большого числа новых аналитических методов, прежде всего физических и
  • физико-химических (рентгеноструктурный анализ, электронная и
  • колебательная спектроскопия,магнетохимия и
  • масс-спектрометрия, спектроскопия ЭПР и ЯМР,хроматография и т. п.). Эти методы предоставили новые возможности для изучения состава, структуры и реакционной способности вещества.
Современный период: с начала XX в.
  • Отличительной чертой современной химии стало её тесное взаимодействие с другими естественными науками, в результате которого на стыке наук появились биохимия, геохимия и др. разделы. Одновременно с этим процессом интеграции интенсивно протекал и процесс дифференциации самой химии. Хотя границы между разделами химии достаточно условны, коллоидная и координационная химия, кристаллохимия и электрохимия, химия высокомолекулярных соединений и некоторые другие разделы приобрели черты самостоятельных наук.
Современный период: с начала XX в.
  • Закономерным следствием совершенствования химической теории в XX веке стали новые успехи практической химии - каталитический синтез аммиака, получение синтетических антибиотиков, полимерных
  • материалов и т. п. Успехи химиков в деле получения вещества с желаемыми свойствами в числе прочих достижений прикладной науки к концу XX столетия привели к коренным преобразованиям в жизни человечества .

Описание презентации ИСТОРИЯ МАТЕРИАЛОВЕДЕНИЯ ВВЕДЕНИЕ На по слайдам

ВВЕДЕНИЕ На сегодняшний день наука и техника имеют очень широкое развитие. Создаются новые аппараты и изделия в самых разных отраслях индустрии для более качественной и продуктивной работы, для их более долговечной службы. А для создания таких аппаратов и изделий необходимы надежные и высококачественные материалы, работа над поиском которых ведется и по настоящее время. Для решения проблемы поиска существует такая наука как материаловедение, которая изучает строение и свойства материалов. Материаловедение существует с древнейших времен, когда люди использовали еще только природные материалы и не могли задумываться о создании новых, более качественных. Но человек развивался, и увеличивались его потребности, в том числе потребность к более прочным изделиям. Как наука материаловедение сформировалась только в ХIХ веке. Дальнейшее ее развитие неотъемлемо связано с получением новых высококачественных материалов, которые необходимы для создания продуктов более стойких в эксплуатации. Развитие производства являлось следствием возрастающих потребностей в материалах у общества.

ГЛАВА I. ОБЩИЕ СВЕДЕНИЯ О НАУКЕ МАТЕРИАЛОВЕДЕНИЕ Материаловедение – это наука, изучающая строение и свойства материалов и устанавливающая связь между их составом, строением и свойствами и поведение материалов в зависимости от воздействия окружающей среды. Воздействие бывает тепловым, электрическим, магнитным и т. д. Материаловедение можно отнести к тем разделам физики и химии, которые занимаются изучением свойств материалов. Кроме того, эта наука использует целый ряд методов, позволяющих исследовать структуру материалов. При изготовлении наукоемких изделий в промышленности, особенно при работе с объектами микро- и нано- размеров необходимо детально знать характеристику, свойства и строение материалов. Решить эти задачи и призвана наука – материаловедение.

НАПРАВЛЕНИЯ ИССЛЕДОВАНИЙ МАТЕРИАЛОВЕДЕНИЯ: 1. Нанотехнология – создание и изучение материалов и конструкций размерами порядка нескольких нанометров. 2. Кристаллография – изучение физики кристаллов, включает: дефекты кристаллов – изучение нарушений структуры кристаллов включения посторонних частиц и их влияние на свойства основного материала кристалла; технологии дифракции, такие как рентгеноструктурный анализ, используемые для изучения фазового состояния вещества. 3. Металлургия (металловедение) – изучение свойств различных металлов. 4. Керамика, включает: создание и изучение материалов для электроники, например, полупроводники; структурная керамика, занимающаяся композитными материалами, напряжёнными веществами и их трансформациями. 5. Биоматериалы – исследование материалов, которые можно использовать в качестве имплантантов в человеческое тело.

ГЛАВАII. ИСТОРИЧЕСКИЕ ЭТАПЫ РАЗВИТИЯ МАТЕРИАЛОВЕДЕНИЯ Наука о материалах имеет глубочайшую историю развития. Условно можно выделить три основных по своей продолжительности не равных этапа в ее истории. Возникновение науки и каждый этап ее развития всегда были обусловлены производством, практикой. В свою очередь, развитие производства являлось следствием возрастающих потребностей в материалах у общества. Первые познания о материалах Имеется достаточно оснований утверждать, что исходным моментом для становления науки о материалах явилось получение керамики путем сознательного изменения структуры глины при ее нагревании и обжиге. На следующем этапе развития человек стал использовать металлы. С течением значительного времени человечество познало самородные, а затем и рудные металлы, крепость и жесткость которых были известны уже с 8 -го тысячелетия до н. э. Холоднокованая самородная медь была вытеснена медью, выплавленной из руд, которые встречались в природе чаще и в больших количествах. В дальнейшем к меди стали добавлять другие металлы, так что в 3 -м тысячелетии до н. э. научились изготовлять и использовать бронзу как сплав меди с оловом, а также обрабатывать благородные металлы, уже широко известные к тому времени. Масштабы использования металлов возрастали, и человечество вступило из бронзового века в железный, поскольку железные руды оказались доступнее медных. В 1 -м тысячелетии до н. э. преобладало железо, которое научились соединять с углеродом при кузнечной обработке в присутствии древесного угля. Пока точно не установлено, когда началось применение термической обработки, стали, но все же известно, что в 9 и 8 вв. до н. э. жители Луристана использовали ее в быту и технике. Сознательное создание новых керамических и металлических материалов и изделий было обусловлено определенным прогрессом производства. Возрастала необходимость в более глубоком понимании свойств материалов, особенно прочности, ковкости и других качественных характеристик, а также способов их возможного изменения. К этому времени развились мореплавание, ирригация, постройка пирамид, храмов, укрепление грунтовых дорог и т. д. Пополнились новыми сведениями и фактами теоретические представления о материалах.

ЗАРОЖДЕНИЕ МАТЕРИАЛОВЕДЕНИЯ КАК НАУКИ Первые шаги на пути к реальному пониманию свойств материалов были сделаны с наступлением XIX века. Материаловедение является поистине интернациональной наукой, ее теоретические основы были заложены трудами разных стран. Начало этому положила химия, затем физика. Большой вклад в развитие науки о материалах был внесен гениальными русскими учеными М. В. Ломоносовым и Д. И. Менделеевым. М. В. Ломоносов (1711 – 1765 гг.) заложил основы передовой русской философии и науки, особенно в области химии, физики, геологии. Он явился основоположником курса физической химии и химической атомистики, обосновывающей атомно-молекулярное строение вещества. Кроме того, в 1763 г. вышла книга «Первые основания металлургии или рудных дел» М. В. Ломоносова, которая является выдающимся трудом по металлургии (в частности чугуна, и горному делу), разработал составы цветных стекол и способ изготовления мозаичных панно из них, высказал гипотезу о происхождении янтаря и др. Д. И. Менделеев (1834 – 1907 гг.) открыл важнейшую закономерность природы – периодический закон, в соответствии с которым свойства элементов находятся в периодической зависимости от величины их атомной массы. Он опубликовал книгу «Основы химии» ; в ней описано, в частности, атомно-молекулярное строение вещества. Д. И. Менделеев также немалое внимание уделял проблеме производства стекла. Достижения науки о материалах в нашей стране исходят от основоположников крупнейших научных школ Ф. Ю. Левинсона-Лессинга, Е. С. Федорова, В. А. Обручева, А. И. Ферсмана, Н. А. Белелюбского, занимавшихся исследованием минералов и месторождений природных каменных материалов (горных пород). Начинают производиться новые материалы: портландцемент, новые гипсы, цементные бетоны, полимерные материалы и т. д. В машиностроении широкое применение получили металлы и сплавы металлов, именно поэтому металловедение является важной частью материаловедения. Известный физик Майкл Фаррадей (1791 – 1867 гг.) использовал химический анализ при изучении свойств булатной стали. Из последующих работ по материаловедению особо следует отметить труды выдающегося русского металлурга горного инженера генерал-майора П. П. Аносова (1799 – 1839 гг.). Он в 1831 г. впервые использовал микроскоп для изучения структуры металлов при исследовании строения высококачественной стали – булата, проблему изготовления которой П. П. Аносов блестяще разрешил на Златоустовском заводе (1837 г.). Им была установлена связь между строением стали и ее свойствами. Аносов, по существу, явился зачинателем производства высококачественных сталей, играющих важнейшую роль в современной технике. В своих работах П. П. Аносов изучил также влияние углерода на структуру и свойства стали, оценил роль ряда других элементов.

КРУПНЕЙШИЕ ДОСТИЖЕНИЯ В ТЕОРИИ И ПРАКТИКЕ МАТЕРИАЛОВЕДЕНИЯ В XX столетии химикам и физикам удалось сделать ряд фундаментальных открытий, на которые опираются все современные разработки новых материалов и технологические методы их получения и обработки. В начале XX в. большую роль в развитии материаловедения сыграли работы Н. С. Курнакова (1860 – 1941 гг.), который применил для исследования металлов методы физико-химического анализа (электрический, магнитный, дилатометрический и др.). Н. С. Курнаков и его ученики изучили большое количество металлических сплавов, построили диаграммы состояния и установили зависимость изменения свойств сплавов от их состава в связи типом диаграммы состояния. Работы крупнейшего русского химика А. М. Бутлерова (1828 – 1886 гг.), создавшего теорию химического строения органических соединений, создали научную основу для получения синтетических полимерных материалов. На основе работ С. В. Лебедева впервые в мире было создано промышленное производство синтетического каучука. Большое значение для развития полимерных материалов имели структурные исследования В. А. Каргина и его учеников. Над созданием полимерных материалов работали К. Циглер (ФРГ) и Д. Натта (Италия).

ЗАКЛЮЧЕНИЕ Материаловедение – это наука, изучающая строение и свойства материалов и устанавливающая связь между их составом, строением и свойствами и поведение материалов в зависимости от воздействия окружающей среды. Материаловедение или наука о материалах получила свое развитие с древнейших времен. Первый этап развития материаловедения начинается со специализированного изготовления керамики. На следующем этапе развития человек стал использовать металлы. Первыми и наиболее правдоподобными суждениями о сущности качества материалов и о слагающих частицах вещества были суждения древнегреческих философов Демокрита, Эпикура и Аристотеля. Средневековый период характеризуется достижениями в области познания составов, внутренних взаимодействий и свойств веществ таких ученых как Парацельс, Декарт, Реомюр, Бирингуччо и Агрикола. Большой вклад в развитие науки о материалах был внесен гениальными русскими учеными М. В. Ломоносовым (подтвердил теорию об атомно-молекулярном строении вещества) и Д. И. Менделеевым (разработал периодическую систему элементов). Оба ученых немалое внимание уделяли проблеме производства стекла. Из последующих работ по материаловедению следует отметить труды П. П. Аносова, который впервые установил связь между строением стали и ее свойствами. Д. К. Чернов, открывший полиморфизм стали, всемирно признан основоположником научного металловедения.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ 1. Материаловедение и технология металлов: учебник / под ред. Г. П. Фетисова, Ф. А. Гарифуллина. М. : ОНИКС, 2007 – 615 с. 2. Шашков Д. И. Материаловедение в автомобилестроении / МАДИ (ГТУ). М. , 2003 – 328 с.




Металлы в древности Уже в глубокой древности человеку были известны семь металлов: золото, серебро, медь, олово, свинец, железо и ртуть. Эти металлы можно назвать «доисторическими», так как они применялись человеком ещё до изобретения письменности. Очевидно, что из семи металлов человек вначале познакомился с теми, которые в природе встречаются в самородном виде. Это золото, серебро и медь. Остальные четыре металла вошли в жизнь человека после того, как он научился добывать их из руд с помощью огня.





К концу каменного века человек открыл возможность использования металлов для изготовления орудий труда. Первым таким металлом была медь. Позже появилось литьё, а потом человек стал добавлять к меди олово, делать бронзу, более долговечную, прочную, легкоплавкую. Так наступил бронзовый век.




Бронзовый век сменился железным только тогда, когда человечество смогло поднять температуру пламени в металлургических печах до 1540 С, т.е. до температуры плавления железа. Наступил железный век. Учёные предполагают, что первое железо, попавшее в руки человека, было метеоритного происхождения. Самый крупный железный метеорит нашли в Африке, он весил около 60 т.. Уже в древности из этих небесных тел, так как они были прочными и твёрдыми, изготавливались различные предметы. Современные химические анализы огромного числа метеоритов, упавших на нашу планету, показали, что в составе железных метеоритов на долю железа приходится 91%.


Примерно 90% всех используемых человеком металлов – это сплавы на основе железа. Железа выплавляется в мире очень много, примерно в 50 раз больше, чем алюминия, не говоря уже о прочих металлах. Сплавы на основе железа универсальны, технологичны, доступны. Железу ещё долго быть фундаментом цивилизации. Роль металлов в развитии человеческой цивилизации – огромна. Сейчас у металлов имеется очень серьёзный «конкурент» в виде продуктов современной химии – пластмасс, синтетических волокон, керамики, стекла. Но ещё многие и многие годы человечество будет использовать металлы, которые продолжают играть ведущую роль в развитии всех областей его жизнедеятельности.

Металлы – наиболее распространенные и широко используемые материалы в производстве и в быту человека. Особенно велико значение металлов в наше время, когда большое их количество используют в машиностроительной промышленности, на транспорте, в промышленном, жилищном и дорожном строительстве, а также в других отраслях производства.

В древности и в средние века считалось, что существует только 7 металлов: золото, серебро, медь, олово, свинец, железо, ртуть. По алхимическим представлениям металлы зарождались в земных недрах под влиянием лучей планет и постепенно крайне медленно совершенствовались, превращаясь в серебро и золото. Алхимики полагали, что металлы – вещества сложные, состоящие из «начала металличности» (ртути) и «начала горючести» (серы). В начале XVIII в. получила распространение гипотеза, согласно которой металлы состоят из земли и «начала горючести» – флогистона. М.В. Ломоносов насчитывал 6 металлов (Au, Ag, Cu, Sn (олово), Fe, Pb) и определял металл как «светлое тело, которое ковать можно». В конце XVIII в. А.Л. Лавуазье опроверг гипотезу флогистона и показал, что металлы – простые вещества. В 1789 Лавуазье в руководстве по химии дал список простых веществ, в который включил все известные тогда 17 металлов (Sb, Ag, As, Bi, Co, Cu, Sn, Fe, Mn, Hg, Mo, Ni, Au, Pt, Pb, W, Zn). По мере развития методов химического исследования число известных металлов возрастало.

Согласно периодической системы Д.И. Менделеева в природе насчитывается 107 химических элементов, из которых 85 элементов – металлы и лишь 22 – неметаллы. В настоящее время периодическая система насчитывает 111 элементов.

В конце XIX – начале XX вв. получила физико-химическую основу металлургия – наука о производстве металлов из природного сырья. Тогда же началось исследование свойств металлов и их сплавов в зависимости от химического состава и строения.

Основы современного металловедения заложили выдающиеся русские ученые-металлурги Павел Петрович Аносов (1799–1851) и Дмитрий Константинович Чернов (1839–1921), впервые обосновав влияние химического состава, структуры сплава и характера его обработки на свойства металла.

П.П. Аносов разработал научные принципы получения высококачественной стали, впервые в мире в 1831 г., разрабатывая способ получения булата , изучал под микроскопом строение отполированной поверхности стали, предварительно протравленной кислотой, т.е. применял так называемый метод микроанализа.

Бул а т (от перс. пулад - сталь), булатная сталь, углеродистая литая сталь, которая благодаря особому способу изготовления отличается своеобразной структурой и видом («узором») поверхности, высокой твердостью и упругостью. Узорчатость булатной стали связана с особенностями выплавки и кристаллизации. С древнейших времен (упоминается Аристотелем) идет на изготовление холодного оружия исключительной стойкости и остроты – клинков, мечей, сабель, кинжалов и др. Булат производили в Индии (под названием вуц), в странах Средней Азии и в Иране (табан, хорасан), в Сирии (дамаск, или дамасская сталь). Впервые в Европе литой булат, аналогичный лучшим старинным восточным образцам, получен на Златоустовском заводе П.П. Аносовым .

Ан о сов Павел Петрович , русский металлург. Родился в семье секретаряБерг-коллегии, который в 1806 был назначен советником Пермского горного управления и переехал с семьей в Пермь. Вскоре родители Аносова умерли, и он воспитывался у деда, служившего механиком на Камских заводах. В 13 лет Аносов поступил в Петербургский горный кадетский корпус (будущий Горный институт), который окончил в 1817. В том же году поступил на Златоустовские казенные заводы, основанные при Петре I. Спустя 2 года написал свою первую работу «Систематическое описание горного и заводского производства Златоустовского завода». Этот труд показал не только широкий кругозор Аносова (завод включал доменные печи, передельные и кричные фабрики, рудники по добыче железной руды, плотину с установленными на ней водяными колесами и др.), но и редкое умение обобщать и анализировать фактический материал. В 1819 Аносов назначен смотрителем Оружейной фабрики, в 1824 ее управителем, в 1829 директором этой фабрики, а в 1831 одновременно и горным начальником Златоустовских заводов. На Златоустовских заводах Аносов проработал около 30 лет, дослужившись до звания генерал-майора корпуса горных инженеров. В 1847 назначен начальником Алтайских заводов, где работал до конца жизни.

В районе Златоуста Аносов вел большие работы по изысканию месторождений золота, железных руд и др., занимался совершенствованием добычи и обработки металлов. Изобрел новые золотопромывальные машины, получившие распространение на Урале. Предложил использовать паровую машину для механизации труда в золотопромышленности. Первый номер «Горного журнала» (1825) открывается трудами Аносова по геологии.

Всемирную известность приобрели работы Аносова по производству стали. В 1827 Аносов опубликовал труд «Описание нового способа закалки стали в сгущенном воздухе», спустя 10 лет - другую замечательную работу «О приготовлении литой стали». Аносов предложил новый метод получения стали, объединив процессы науглероживания и плавления металла. Наряду с этим он практически доказал, что для науглероживания железа не обязательно соприкосновение металла и угля (как это считалось). Последний может быть с большим эффектом заменен печными газами. Так впервые в мире была применена газовая цементация металла, нашедшая в настоящее время широкое распространение. В 1837 Аносов осуществил переплавку чугуна в сталь как с добавкой, так и без добавки железа.

Первым в России Аносов разработал технологию изготовления огнеупорных тиглей – основного оборудования стале- и золотоплавильного производства того времени. Это позволило в 50 раз удешевить стоимость каждого тигля, ранее ввозимого из Германии.

Оригинальными были работы Аносова по раскрытию утерянного в средние века секрета приготовления булатной стали. Опыты в течение 10 лет по сплавлению железа с кремнием, марганцем, хромом, титаном, золотом, платиной и др., а также изучение свойств получаемых сплавов позволили Аносову первым раскрыть тайну булата. Аносов обосновал влияние химического состава, структуры сплава и характера его обработки на свойства металла. Эти выводы Аносова легли в основу науки о качественных сталях. Результаты работ Аносова обобщены в классическом труде «О булатах» (1841), который был сразу переведен на немецкий и французский языки.

Аносов первым доказал, что узоры на металле отражают его кристаллическое строение и установил влияние так называемой макроструктуры металла на его механические качества. Первым Аносов применил микроскоп для исследования внутреннего строения стальных сплавов (1831), положив начало микроскопическому анализу металлов. По инициативе Аносова в 40-х гг. 19 в. предприняты успешные попытки производства литых стальных орудий, завершенные впоследствии П.М.Обуховым.

Аносов был избран член-корреспондентом Казанского университета (1844), почетным членом Харьковского университета (1846). Имени Аносова учреждены премия и стипендия (1948).

Д.К. Чернов продолжил труды П.П. Аносова. Он по праву считается основоположником металлографии – науки о строении металлов и сплавов . Его научные открытия легли в основу процессов ковки, прокатки, термической обработки стали. В 1868 Д.К. Чернов указал на существование температур, при которых сталь претерпевает превращения при нагревании и охлаждении (критические точки). Открытые Д.К. Черновым критические точки в стали явились основой для построения современной диаграммы состояния системы железо – углерод.

Черн о в Дмитрий Константинович ,русский ученый в области металлургии, металловедения, термической обработки металлов. Родился в семье фельдшера. В 1858 окончил Петербургский практический технологический институт, затем работал в механическом отделении Петербургского монетного двора. В 1859–66 преподаватель, помощник библиотекаря и хранитель музея Петербургского практического технологического института. С 1866 инженер молотового цеха Обуховского сталелитейного завода в Петербурге, в 1880–84 занимался разведкой месторождений каменной соли в Бахмутском районе (Донбасс); найденные им залежи получили промышленное значение. С 1884, по возвращении в Петербург, работал в Морском техническом комитете, с 1886 (одновременно) главный инспектор министерства путей сообщения по наблюдению за исполнением заказов на металлургических заводах. С 1889 профессор металлургии Михайловской артиллерийской академии.

В 1866–68 в результате практического изучения причин брака при изготовлении орудийных поковок, а также глубокого анализа работ своих предшественников П.П. Аносова , П.М. Обухова , А.С. Лаврова и Н.В. Калакуцкого по вопросам выплавки, разливки и ковки стальных слитков, Чернов установил зависимость структуры и свойств стали от ее горячей механической и термической обработки. Чернов открыл критические температуры, при которых в стали в результате ее нагревания или охлаждения в твердом состоянии происходят фазовые превращения, существенно изменяющие структуру и свойства металла. Эти критические температуры, определенные Черновым по цветам каления стали, были названы точками Чернова. Чернов графически изобразил влияние углерода на положение критических точек, создав первый набросок очертания важнейших линий диаграммы состояния «железо-углерод» (см. Тему 3). Результаты своего исследования, положившего начало современной металлографии, Чернов опубликовал в «Записках Русского технического общества» (1868, № 7), назвав его «Критический обзор статей г. Лаврова и Калакуцкого о стали и стальных орудиях и собственные Д.К. Чернова исследования по этому же предмету». В др. крупном научном труде «Исследования, относящиеся до структуры литых стальных болванок» (1879) Чернов изложил стройную теорию кристаллизации стального слитка. Он детально исследовал процесс зарождения и роста кристаллов (в частности, дендритных стальных кристаллов, которые иногда называются кристаллами Чернова), дал схему структурных зон слитка, развил теорию последовательной кристаллизации, всесторонне изучил дефекты литой стали и указал эффективные меры борьбы с ними. Этими исследованиями Чернов во многом способствовал превращению металлургии из ремесла в теоретически обоснованную научную дисциплину.

Большое значение для прогресса металлургии стали имели труды Чернова в области интенсификации металлургических процессов и совершенствования технологии производства. Он обосновал значение полноты раскисления стали при выплавке, целесообразность применения комплексных раскислителей, рекомендовал систему мероприятий, обеспечивающих получение плотного, беспузыристого металла. Чернов выдвинул идею перемешивания металла в процессе кристаллизации, предложив для этого вращающуюся изложницу.

Чернов многое сделал для совершенствования конвертерного способа производства литой стали. В 1872 он предложил подогревать в вагранке жидкий малокремнистый чугун, считавшийся непригодным для бессемерования, перед продувкой его в конвертере; в дальнейшем этот способ нашел распространение на русских и зарубежных заводах. Чернов применил спектроскоп для определения окончания бессемеровского процесса, одним из первых указал на целесообразность применения обогащенного кислородом воздуха для продувки жидкого чугуна в конвертере (1876). Чернов работал также над проблемой прямого получения стали из руды, минуя доменный процесс. Ему принадлежит ряд важных исследований в области артиллерийского производства: получение высококачественных стальных орудийных стволов, стальных бронебойных снарядов, изучение выгорания каналов орудий при стрельбе в результате действия пороховых газов и др. факторов. Чернов известен также рядом работ по математике, механике, авиации.

Чернов Д.К. - основоположник современного металловедения , основатель крупной научной школы русских металлургов и металловедов. Его научные открытия получили признание во всем мире. Чернов был избран почетным председателем Русского металлургического общества, почетным вице-председателем английского института железа и стали, почетным членом американского института горных инженеров и ряда др. русских и иностранных научных учреждений.

Классические труды «отца металлографии» Д.К. Чернова развивали выдающиеся русские ученые. Первое подробное описание структур железоуглеродистых сплавов было сделано А.А. Ржешотарским (1898). Дальнейшее развитие металловедение получило в работах видных советских ученых Н.И. Беляева, Н.С. Курнакова, А.А. Байкова, С.С. Штейнберга, А.А. Бочвара, Г.В. Курдюмова и др.

Современная наука о металлах развивается широким фронтом во вновь созданных научных центрах с применением электронных микроскопов и другой современной аппаратуры, с использованием достижений рентгенографии и физики твердого тела. Все это позволяет более глубоко изучить строение металлов, их сплавов и находить новые пути повышения механических и физико-химических свойств. Создаются сверхтвердые сплавы, сплавы с заранее заданными свойствами, многослойные композиции с широким спектром свойств и многие другие металлические, алмазные и керамико-металлические материалы.