Атомно молекулярное учение. Основные положения атомно-молекулярной теории


Материал из Юнциклопедии

Ведущей идеей атомно-молекулярного учения, составляющего фундамент современной физики, химии и естествознания, является идея дискретности (прерывности строения) вещества.

Первые представления о том, что вещество состоит из отдельных неделимых частиц, появились в глубокой древности и поначалу разрабатывались в русле общих философских представлений о мире. Например, некоторые философские школы Древней Индии (I тыс. до н. э.) признавали не только существование первичных неделимых частиц вещества (ану), но и их способность соединяться друг с другом, образуя новые частицы. Аналогичные учения существовали и в других странах древнего мира. Наибольшую известность и влияние на последующее развитие науки оказала древнегреческая атомистика, создателями которой были Левкипп (V в. до н. э.) и Демокрит (р. ок. 460 до н. э. - ум. ок. 370 до н. э.). «Причинами всех вещей,- писал древнегреческий философ и ученый Аристотель (384–322 до н. э.), излагая демокритовское учение,- являются определенные различия в атомах. А различий этих три: форма, порядок и положение». В работах самого Аристотеля встречается важное понятие о миксисе - однородном соединении, образованном из различных веществ. Позднее древнегреческий философ-материалист Эпикур (342–341 до н. э. - 271–270 до н. э.) ввел понятие о массе атомов и их способности к самопроизвольному отклонению во время движения.

Важно отметить, что, по мысли многих древнегреческих ученых, сложное тело - это не простая смесь атомов , а качественно новое целостное образование, наделенное новыми свойствами. Однако у греков еще не выработалось понятие об особых «многоатомных» частицах - молекулах , промежуточных между атомами и сложными телами, которые были бы мельчайшими носителями свойств тел.

В средние века наблюдалось резкое ослабление интереса к античному атомизму. Церковь обвиняла древнегреческие философские учения в утверждении того, что мир возник из случайных сочетаний атомов, а не по воле божьей, как того требовала христианская догма.

В XVI–XVII вв. в обстановке общекультурного и научного подъема начинается возрождение атомизма. В этот период передовые ученые разных стран: Г. Галилей (1564–1642) в Италии, П. Гассенди (1592–1655) во Франции, Р. Бойль (1627–1691) в Англии и другие - провозгласили принцип: не искать истину в Священном писании, а «непосредственно» читать книгу природы

П. Гассенди и Р. Бойлю принадлежит главная заслуга в дальнейшей разработке античной атомистики. Гассенди ввел понятие о молекуле , под которой он понимал качественно новое образование, составленное путем соединения нескольких атомов. Широкую программу создания корпускулярной философии природы предложил Р. Бойль. Мир корпускул, их движение и «сплетение», по мысли английского ученого, весьма сложны. Мир в целом и его мельчайшие частицы - это целесообразно устроенные механизмы. Корпускулы Бойля - это уже не первичные недробимые атомы античных философов, а сложное целое, способное менять свое строение путем движения.

«С тех пор, как я прочитал Бойля,- писал М. В. Ломоносов,- мною овладело страстное желание исследовать мельчайшие частицы». Великий русский ученый М. В. Ломоносов (1711–1765) развил и обосновал учение о материальных атомах и корпускулах. Он приписывал атомам не только неделимость, но и активное начало - способность к движению и взаимодействию. «Нечувствительные частицы должны различаться массою, фигурою, движением, силою инерции или расположением». Корпускулы однородных тел, по Ломоносову, «состоят из одинакового числа одних и тех же элементов, соединенных одинаковым образом… Корпускулы разнородны, когда элементы их различны или соединены различным образом или в различном числе». Лишь потому, что изучение массовых отношений в начале XVIII в. только начиналось, Ломоносов не смог создать количественное атомно-молекулярное учение.

Это сделал английский ученый Д. Дальтон (1766–1844) . Он рассматривал атом как мельчайшую частицу химического элемента, отличающуюся от атомов других элементов прежде всего массой. Химическое соединение , по его учению, представляет собой совокупность «сложных» (или «составных») атомов, содержащих определенные, характерные лишь для данного сложного вещества количества атомов каждого элемента. Английский ученый составил первую таблицу атомных масс, но в силу того, что его представления о составе молекул зачастую опирались на произвольные допущения, основанные на принципе «наибольшей простоты» (например, для воды он принял формулу ОН), эта таблица оказалась неточной.

Кроме того, в первой половине XIX в. многие химики не верили в возможность определения истинных атомных масс и предпочитали пользоваться эквивалентами, которые можно было найти экспериментально. Поэтому одному и тому же соединению приписывались разные формулы, а это вело к установлению неправильных атомных и молекулярных масс.

Одними из первых, кто начал борьбу за реформу теоретической химии, были французские ученые Ш. Жерар (1816–1856) и О. Лоран (1807–1853), которые создали правильную систему атомных масс и химических формул. В 1856 г. русский ученый Д. И. Менделеев (1834–1907) , а затем независимо от него итальянский химик С. Канниццаро (1826 - 1910) предложили метод вычисления молекулярной массы соединений по удвоенной плотности их паров относительно водорода. К 1860 г. этот метод определился в химии, что имело решающее значение для утверждения атомно-молекулярной теории. В своем выступлении на Международном конгрессе химиков в Карлсруэ (1860) Канниццаро убедительно доказал правильность идей Авогадро, Жерара и Лорана, необходимость их принятия для верного определения атомных и молекулярных масс и состава химических соединений. Благодаря работам Лорана и Канниццаро химики осознали различие между той формой, в которой элемент существует и вступает в реакции (например, для водорода это H 2), и той формой, в которой он присутствует в соединении (HCl, H 2 O, NH 3 и т. д.). В итоге конгрессом были приняты следующие определения атома и молекулы: молекула - «количество тела, вступающее в реакции и определяющее химические свойства»; атом - «наименьшее количество элемента, входящее в частицы (молекулы) соединений». Было также принято предложение считать понятие об «эквиваленте» эмпирическим, не совпадающим с понятиями «атом» и «молекула».

Установленные С. Канниццаро атомные массы послужили Д. И. Менделееву основой при открытии периодического закона химических элементов . Решения конгресса благотворно повлияли на развитие органической химии , ибо установление формул соединений открыло путь для создания структурной химии.

Таким образом, к началу 1860‑х гг. атомно-молекулярное учение сформировалось в виде следующих положений.

1. Вещества состоят из молекул. Молекулой называется наименьшая частица вещества, обладающая его химическими свойствами. Многие физические свойства вещества - температуры кипения и плавления, механическая прочность, твердость и т. д. - обусловлены поведением большого числа молекул и действием межмолекулярных сил.

2. Молекулы состоят из атомов, которые соединяются друг с другом в определенных отношениях (см. Молекула ; Химическая связь ; Стехиометрия).

3. Атомы и молекулы находятся в постоянном самопроизвольном движении.

4. Молекулы простых веществ состоят из одинаковых атомов (O 2 , O 3 , P 4 , N 2 и т. д.); молекулы сложных веществ - из разных атомов (H 2 O, HCl).

6. Свойства молекул зависят не только от их состава, но и от способа, которым атомы связаны друг с другом (см. Теория химического строения ; Изомерия).

Современная наука развила классическую атомно-молекулярную теорию, а некоторые её положения были пересмотрены.

Было установлено, что атом не является неделимым бесструктурным образованием. Об этом, впрочем, догадывались и многие ученые в прошлом веке.

Выяснилось, что далеко не во всех случаях частицы, образующие вещество, представляют собой молекулы. Многие химические соединения, особенно в твердом и жидком состоянии, имеют ионную структуру, например соли . Некоторые вещества, например инертные газы , состоят из отдельных атомов, слабо взаимодействующих между собой даже в жидком и твердом состояниях. Кроме того, вещество может состоять из частиц, образованных путем объединения (ассоциации) нескольких молекул. Так, химически чистая вода образована не только отдельными молекулами H 2 O, но и полимерными молекулами (H 2 O)n, где n = 2–16; одновременно в ней присутствуют гидратированные ионы H + и OH − . Особую группу соединений составляют коллоидные растворы. И наконец, при нагревании до температур порядка тысяч и миллионов градусов вещество переходит в особое состояние - плазму , которая представляет собой смесь атомов , положительных ионов , электронов и атомных ядер.

Оказалось, что количественный состав молекул при одинаковом качественном составе может меняться иногда в широких пределах (например, оксид азота может иметь формулу N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 , NO 3), при этом, если рассматривать не только нейтральные молекулы, но и молекулярные ионы, то границы возможных составов расширяются. Так, молекула NO 4 неизвестна, но недавно был открыт ион NO 3− 4 ; не существует молекулы CH 5 , но известен катион CH + 5 и т. д.

Были открыты так называемые соединения переменного состава, в которых на единицу массы данного элемента приходится различная масса другого элемента, например: Fe 0,89–0,95 O, TiO 0,7–1,3 и т. д.

Было уточнено положение о том, что молекулы состоят из атомов. Согласно современным квантово-механическим представлениям (см. Квантовая химия), у атомов в молекуле более или менее неизменным остается только остов, т. е. ядро и внутренние электронные оболочки, тогда как характер движения внешних (валентных) электронов коренным образом изменяется так, что образуется новая, молекулярная электронная оболочка, охватывающая всю молекулу (см. Химическая связь). В этом смысле никаких неизменных атомов в молекулах нет.

Принимая во внимание эти уточнения и дополнения, следует иметь в виду, что современная наука сохранила рациональное зерно классического атомно-молекулярного учения: идеи о дискретном строении вещества, о способности атомов давать посредством соединения друг с другом в определенном порядке качественно новые и более сложные образования и о непрерывном движении частиц, составляющих вещество.

Основы атомно-молекулярного учения впервые были изложены Ломоносовым. В 1741 г. в одной из своих первых работ - «Элементы математической химии» - Ломоносов сформулировал важнейшие положения созданной им так называемой корпускулярной теории строения вещества.

Согласно представлениям Ломоносова, все вещества состоят из мельчайших «нечувствительных» частичек, физически неделимых и обладающих способностью взаимного сцепления. Свойства веществ обусловлены свойствами этих частичек. Ломоносов различал два вида таких частиц: более мелкие - «элементы», соответствующие атомам в современном понимании этого термина, и более крупные - «корпускулы», которые мы называем теперь молекулами.

Каждая корпускула имеет тот же состав, что и все вещество. Химически различные вещества имеют и различные по составу корпускулы. «Корпускулы однородны, если состоят из одинакового числа одних и тех же элементов, соединенных одинаковым образом», и «корпускулы разнородны, когда элементы их различны и соединены различным образом или в различном числе».

Из приведенных определений видно, что причиной различия веществ Ломоносов считал не только различие в составе корпускул, но и различное расположение элементов в корпускуле.

Ломоносов подчеркивал, что корпускулы движутся согласно законам механики; без движения корпускулы не могут сталкиваться друг о другом или как-либо иначе действовать друг на друга и изменяться. Так как все изменения веществ обусловливаются движением корпускул, то химические превращения должны изучаться не только методами химии, но и методами физики и математики.

За 200 с лишним лет, протекшие с того времени, когда жил и работал Ломоносов, его идеи о строении вещества прошли всестороннюю проверку, и их справедливость была полностью подтверждена. В настоящее время на атомно-молекулярном учении базируются все наши представления о строении материи, о свойствах веществ и о природе физических и химических явлений.

В основе атомно-молекулярного учения лежит принцип дискретности (прерывности строения) вещества: всякое вещество не является чем-то сплошным, а состоит из отдельных очень малых частиц. Различие между веществами обусловлено различием между их частицами; частицы одного вещества одинаковы, частицы различных веществ различны. При всех условиях частицы вещества находятся в движении; чем выше температура тела, тем интенсивнее это движение.

Для большинства веществ частицы представляют собой молекулы. Молекула - наименьшая частица вещества, обладающая его химическими свойствами. Молекулы в свою очередь состоят из атомов. Атом - наименьшая частица элемента, обладающая его химическими свойствами. В состав молекулы может входить различное число атомов. Так, молекулы благородных газов одноатомны, молекулы таких веществ, как водород, азот, - двухатомны, воды - трехатомны и т. д. Молекулы наиболее сложных веществ - высших белков, и нуклеиновых кислот - построены из такого количества атомов, которое измеряется сотнями тысяч.

При этом атомы могут соединяться друг с другом не только в различных соотношениях, но и различным образом. Поэтому при сравнительно небольшом числе химических элементов число различных веществ очень велико.

Нередко у учащихся возникает вопрос, почему молекула данного вещества не обладает его физическими свойствами. Для того чтобы лучше понять ответ на этот вопрос, рассмотрим несколько физических свойств веществ, например температуры плавления и кипения, теплоемкость, механическую прочность, твердость, плотность, электрическую проводимость.

Такие свойства, как температуры плавления и кипения, механическая прочность и твердость, определяются прочностью связи между молекулами в данном веществе при данном его агрегатном состоянии; поэтому применение подобных понятий к отдельной молекуле не имеет смысла. Плотность - это свойство, которым отдельная молекула обладает и которое можно вычислить. Однако плотность молекулы всегда больше плотности вещества (даже в твердом состоянии), потому что в любом веществе между молекулами всегда имеется некоторое свободное пространство. А такие свойства, как электрическая проводимость, теплоемкость, определяются не свойствами молекул, а структурой вещества в целом. Для того чтобы убедиться в этом, достаточно вспомнить, что эти свойства сильно изменяются при изменении агрегатного состояния вещества, тогда как молекулы при этом не претерпевают глубоких изменений. Таким образом, понятия о некоторых физических свойствах не применимы к отдельной молекуле, а о других - применимы, но сами эти свойства по своей величине различны для молекулы и для вещества в целом.

Не во всех случаях частицы, образующие вещество, представляют собой молекулы. Многие вещества в твердом и жидком состоянии, например большинство солей, имеют не молекулярную, а ионную структуру. Некоторые вещества имеют атомное строение. Строение твердых тел и жидкостей более подробно будет рассмотрено в главе V, а здесь лишь укажем на то, что в веществах, имеющих ионное или атомное строение, носителем химических свойств являются не молекулы, а те комбинации ионов или атомов, которые образуют данное вещество.

Введение количественного метода исследования и установле­ние закона сохранения массы имели огромное значение для дальнейшего развития химии. Но прочный научный фунда­мент химия получила лишь после утверждения в ней атомно-молекулярного учения.

Возникновение атомно-молекулярного учения

Основы атомно-молекулярного учения впервые были изложены М. В. Ло­моносовым в 1741 году в одной из его первых работ - «Эле­менты математической химии», в которой он сформулировал важнейшие положения корпускулярной теории строения .

Согласно представлениям Ломоносова, все состоят из мельчайших «нечувствительных» частичек, физически недели­мых и обладающих способностью взаимного сцепления. Свойства веществ и прежде всего их агрегатное состояние обусловлены свойствами этих частичек; различие в свойствах веществ зависит только от различия самих частичек или способа их взаимной связи.

Различал два вида таких частиц: более мелкие - «элементы», соответствующие атомам в современном понимании этого термина и более крупные «корпускулы», которые мы называем теперь молекулами. По его определению, «Элемент есть часть тела, не состоящая из каких-либо других меньших и отличающихся от него тел. Корпускула есть собрание элементов, об­разующее одну малую массу».

Каждая корпускула имеет тот же состав, что и все вещество. Химически различные вещества имеют и различные по составу корпускулы. «Корпускулы однородны, если состоят из одинако­вого числа одних и тех же элементов, соединенных одинаковым образом», и «корпускулы разнородны, когда элементы их раз­личны и соединены различным образом или в различном числе».

Из приведенных определений видно, что причиной различия веществ считал не только различие в составе корпу­скул, но и различное расположение элементов в корпускуле.

Излагая свои взгляды на из «нечувстви­тельных» частиц, особенно подчеркивал, что каждая корпускула имеет некоторые конечные, хотя и очень малые раз­меры, вследствие чего ее нельзя видеть, и обладает определенной массой. Подобно всем физическим телам, корпускулы могут дви­гаться по законам механики; без движения корпускулы не мо­гут сталкиваться друг с другом, отталкиваться или как-либо иначе действовать друг на друга и изменяться. Движением кор­пускул, в частности, объясняются такие явления, как нагревание и охлаждение тел.

Так как все изменения веществ обусловли­ваются движением корпускул, химические превращения должны изучаться не только методами химии, но и методами фи­зики и математики.

Предположения Ломоносова в те времена не могли быть про­верены опытным путем из-за отсутствия точных данных о количе­ственном составе различных сложных веществ. Поэтому основ­ные положения корпускулярной теории смогли найти подтвержде­ние лишь после того, как химия прошла длительный путь разви­тия, накопила большой опытный материал и овладела новыми методами исследования.

Основы атомно-молекулярной теории создали русский ученый М.В.Ломоносов (1741 г.) и английский ученый Дж. Дальтон (1808 г.).

Атомно-молекулярная теория – это учение о строении вещества, основными положениями которого являются:

1. Все вещества состоят из молекул и атомов. Молекула – это наименьшая частица вещества, которая способна существовать самостоятельно и не может дробится дальше без потери основных химических свойств данного вещества. Химические свойства молекулы определяются её составом и химическим строением.

2. Молекулы находятся в непрерывном движении. Молекулы двигаются беспорядочно и непрерывно. Скорость движения молекул зависит от агрегатного состояния веществ. С повышением температуры скорость движения молекул увеличивается.

3. Молекулы одного и того же вещества одинаковы, а молекулы различных веществ отличаются массой, размерами, строением и химическими свойствами. Каждое вещество существует до тех пор, пока сохраняются его молекулы. Как только молекулы разрушаются, перестает существовать и данное вещество: возникают новые молекулы, новые вещества. При химических реакциях молекулы одних веществ разрушаются, образуются молекулы других веществ.

4. Молекулы состоят из более мелких частиц – атомов. Атом – это наименьшая частица химического элемента, которую нельзя разложить химическим путем.

Следовательно, атом обуславливает свойства элемента.

Атом – электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.

Химическим элементом называется вид атомов, характеризующихся определенной совокупностью свойств.

В настоящее время элемент определяется как вид атомов, обладающих одинаковым зарядом ядра.

Вещества, молекулы которых состоят из атомов одного элемента, называются простыми веществами (С, Н 2 , N 2 , О 3 , S 8 и т.д.).

Вещества, молекулы которых состоят из атомов двух или более элементов, называются сложными веществами ( H 2 O, H 2 SO 4 , KHCO 3 и т.д.). Существенное значение имеет число и взаимное расположение атомов в молекуле.

Способность атомов одного и того же элемента к образованию нескольких простых веществ, различных по строению и свойствам называется аллотропией, а образовавшиеся вещества – аллотропными видоизменениями или модификациями, так например, элемент кислород образует две аллотропные модификации: О 2 – кислород и О 3 – озон; элемент углерод – три: алмаз, графит и карбин и т.д.

Явление аллотропии вызывается двумя причинами: различным числом атомов в молекуле (кислород О 2 и озон О 3), или образованием различных кристаллических форм (алмаз, графит и карбин).

Элементы принято обозначать химическими знаками. Следует всегда помнить, что каждый знак химического элемента обозначает:



1. название элемента;

2. один атом его;

3. один моль его атомов;

4. относительную атомную массу элемента;

5. его положение в периодической системе химических элементов

Д.И. Менделеева.

Так, например, знак S показывает, что перед нами:

1. химический элемент сера;

2. один атом его;

3. один моль атомов серы;

4. атомная масса серы равна 32 а. е. м. (атомная единица массы);

5. порядковый номер в периодической системе химических элементов Д.И. Менделеева 16.

Абсолютные массы атомов и молекул ничтожно малы, поэтому для удобства массу атомов и молекул выражают в относительных единицах. В настоящее время за единицу атомных масс принята атомная единица массы (сокращенно а. е. м. ), представляющая собой 1/12 часть массы изотопа углерода 12 С, 1 а. е. м. составляет 1,66 × 10 -27 кг.

Атомной массой элемента называется масса его атома, выраженная в а. е. м.

Относительной атомной массой элемента называют отношение массы атома данного элемента к 1/12 массы изотопа углерода 12 С.

Относительная атомная масса величина безразмерная и обозначается Аr ,

например, для водорода

для кислорода .

Молекулярная масса вещества – это масса молекулы, выраженная в а. е. м. Она равна сумме атомных масс элементов, входящих в состав молекулы данного вещества.

Относительной молекулярной массой вещества называют отношение массы молекулы данного вещества к 1/12 массы изотопа углерода 12 С. Она обозначается символом Мr. Относительная молекулярная масса равна сумме относительных атомных масс элементов, входящих в молекулу с учетом количества атомов. Например, относительная молекулярная масса ортофосфорной кислоты Н 3 РО 4 равна массе атомов всех элементов, входящих в молекулу:

Мr(Н 3 РО 4) = 1,0079 × 3 + 30,974 × 1 + 15,9994 × 4 = 97, 9953 или ≈ 98

Относительная молекулярная масса показывает, во сколько раз масса молекулы данного вещества больше 1 а. е.м.

Наряду с единицами массы, в химии пользуются также единицей количества вещества, называемой молем (сокращенное обозначение «моль» ).

Моль вещества – количество вещества, содержащее столько молекул, атомов, ионов, электронов или других структурных единиц, сколько содержится в 12 г (0,012 кг) изотопа углерода 12 С.

Зная массу одного атома углерода 12 С (1,993 × 10 -27 кг), можно вычислить число атомов в 0,012 кг углерода:

Число частиц в моле любого вещества одно и то же. Оно равно 6,02 × 10 23 и называется постоянной Авогадро или числом Авогадро (N А ).

Например, в трёх моль атомов углерода будет содержится

3 × 6,02 × 10 23 = 18,06 × 10 23 атомов

Применяя понятие «моль», необходимо в каждом конкретном случае точно указать, какие именно структурные единицы имеются в виду. Например, следует различать моль атомов водорода Н, моль молекул водорода Н 2 , моль ионов водорода или Один моль частиц имеет определенную массу.

Молярная масса – это масса одного моля вещества. Обозначается буквой М.

Молярная масса численно равна относительной молекулярной массе и имеет единицы измерения г/моль или кг/моль.

Масса и количество вещества – понятие разные. Масса выражается в кг (г), а количество вещества – в молях. Между массой вещества (m, г), количеством вещества (n, моль) и молярной массой (М, г/моль) существуют соотношения:

n = , г/моль; М = , г/моль; m = n × M, г.

По этим формулам легко вычислить массу определенного количества вещества, молярную массу вещества или количества вещества.

Пример 1 . Чему равна масса 2 моль атомов железа?

Решение: Атомная масса железа равна 56 а.е.м. (округленно), следовательно, 1 моль атомов железа весит 56 г, а 2 моль атомов железа имеют массу 56×2 =112 г

Пример 2 . Сколько моль гидроксида калия содержится в 560 г КОН?

Решение: Молекулярная масса КОН равна 56 а.е.м. Молярная = 56 г/моль. В 560 г гидроксида калия содержится: 10 моль КОН. Для газообразных веществ существует понятие молярный объём V m . Согласно закону Авогадро моль любого газа при нормальных условиях (давление 101,325 кПа и температуре 273К) занимает объем 22,4 л. Эта величина называется молярным объемом (его занимают 2 г водорода (Н 2), 32 г кислорода (О 2) и т.д.

Пример 3 . Определить массу 1 л оксида углерода (ΙV) при нормальных условиях (н. у.).

Решение: Молекулярная масса СО 2 равна М = 44 а.е.м., следовательно, молярная масса равна 44 г/моль. По закону Авогадро один моль СО 2 при н.у. занимает объем 22,4 л. Отсюда масса 1 л СО 2 (н. у.) равна г.

Пример 4. Определить объём, занимаемый 3,4 г сероводорода (Н 2 S) при нормальных условиях (н.у.).

Решение: Молярная масса сероводорода равна 34 г/моль. Исходя из этого, можно записать: 34 г Н 2 S при н.у. занимает объем 22,4 л.

3,4 г ________________________ Х л,

отсюда Х = л.

Пример 5. Сколько молекул аммиака содержится:

а) в 1 л б) в 1 г?

Решение: Число Авогадро 6,02 × 10 23 указывает на количество молекул в 1 моле (17 г/моль) или в 22,4 л при н.у., следовательно, в 1 л содержится

6,02 × 10 23 × 1 = 2,7 × 10 22 молекул.

Число молекул аммиака в 1 г находим из пропорции:

отсюда Х = 6,02 × 10 23 × 1 = 3,5 × 10 22 молекул.

Пример 6 . Какова масса 1 моль воды?

Решение : Молекулярная масса воды H 2 O равна 18 а.е.м. (атомная масса водорода – 1, кислорода – 16, итого 1 + 1 + 16 = 18). Значит, один моль воды равен по массе 18 граммов, и эта масса воды содержит 6,02 × 10 23 молекул воды.

Количественно масса 1 моль вещества – масса вещества в граммах, численно равная его атомной или молекулярной массе.

Например, масса 1 моля серной кислоты H 2 SO 4 равна 98 г

(1 +1 + 32 + 16 + 16 + 16 + 16 = 98),

а масса одной молекулы H 2 SO 4 равна 98 г = 16,28 × 10 -23 г

Таким образом, любое химическое соединение характеризуется массой одного моля или мольной (молярной) массой М , выражаемой в г/моль (М(H 2 O) = 18 г/моль, а М(H 2 SO 4) = 98 г/моль).

Исключительное значение для развития химии имело атомно-молекулярное учение, колыбелью которого является Древняя Греция. Атомистика древнегреческих материалистов отделена от нас 25-ве-ковым периодом, однако, логика греков поражает настолько, что философское учение о дискретном строении материи, развитое ими, невольно сливается в сознании с нашими сегодняшними представлениями. Как же зародилась атомистика? Основным научным методом древнегреческих философов являлись дискуссия, спор. Для поиска “первопричин” в спорах обсуждались многие логические задачи, одной из которых являлась задача о камне: что произойдет, если начать его дробить?

Большинство философов считало, что этот процесс можно продолжать бесконечно. И только Левкип (500--440 до н.э.) и его школа утверждали, что этот процесс не бесконечен: при дроблении, в конце концов, получится такая частица, дальнейшее деление которой будет просто невозможно. Основываясь на этой концепции, Левкипп утверждал: материальный мир дискретен, он состоит из мельчайших частиц и пустоты. Ученик Левкиппа Демокрит (460--370 до н. э.) назвал мельчайшие частицы “неделимые”, что по-гречески значит “атом”. Это название мы используем и сегодня. Демокрит, развил новое учение -- “атомистику”, приписал атомам такие “современные” свойства, как размер и форму, способность к движению.

Последователь Демокрита Эпикур (342--270 до н. э.) придал древнегреческой атомистике завершенность, предположив, что у атомов существует внутренний источник движения, и они сами способны взаимодействовать друг с другом. Все положения древнегреческой атомистики выглядят удивительно современно, и нам они, естественно, понятны. Ведь любой из нас, ссылаясь на опыт науки, может описать множество интересных экспериментов, подтверждающих справедливость любой из выдвинутых концепций. Но совершенно непонятны они были 20--25 веков назад, поскольку никаких экспериментальных доказательств, подтверждающих справедливость своих идей, древнегреческие атомисты представить не могли. Итак, хотя атомистика древних греков и выглядит удивительно современно, ни одно из ее положений в то время не было доказано. Следовательно ”атомистика, развитая Левкиппом, Демокритом и Эпикуром, была и остается просто догадкой, смелым предположением, философской концепцией, но подкрепленной практикой. Это привело к тому, что одна из гениальных догадок человеческого разума постепенно была предана забвению.

Были и другие причины, из-за которых учение атомистов было надолго забыто. К сожалению, атомисты не оставили после себя систематических трудов, а отдельные записи споров и дискуссий, которые были сделаны, лишь с трудом позволяли составить правильное представление об учении в целом. Главное же заключается е том, что многие концепции атомистики были еретичны и официальная церковь не могла их поддерживать.

Об учении атомистов не вспоминали почти 20 веков. И лишь в XVII в. Идеи древнегреческих атомистов были возрождены благодаря работам французского философа Пьера Гассенди (1592--1655 гг.). Почти 20 лет он потратил; чтобы восстановить и собрать воедино забытые концепции древнегреческих философов, которые он подробно изложил в своих трудах “С) жизни, нравах и учении Эпикура” и “Свод философии Эпикура”. Эти две книги, в которых воззрения древнегреческих материалистов впервые были изложены систематически, стали “учебником” для европейских ученых и философов. До этого единственным источником, дававшим информацию о воззрениях Демокрита - Эпикура, была поэма римского поэта Лукреция “О природе вещей”. История науки знает немало удивительных совпадений. Вот одно из них: возрождение древнегреческой атомистики совпадает по времени с установлением Р. Бойлем (1627--1691 гг.) фундаментальной закономерности, описывающей изменения объема газа от его давления. Качественное объяснение фактом, наблюдаемых Бойлем, может дать только атомистика: если газ имеет дискретное строение, т. е. состоит из атомов и пустоты, то легкость его сжатия обусловлена сближением атомов в результате уменьшения свободного пространства между ними. Первая робкая попытка применения атомистики для объяснения количественно наблюдаемых явлений природы позволяет сделать два очень важных вывода:

  • 1. Превратившись из философской гипотезы в научную концепцию, атомистика может стать мощным инструментом, позволяющим давать единственно правильную трактовку самым разнообразным явлениям природы.
  • 2. Для скорейшего превращения атомистики из философской гипотезы в научную концепцию доказательство существования атомов необходимо, прежде всего, искать при изучении газов, а не жидких и твердых веществ, которыми до этого занимались химики. Однако пройдет еще около 100 лет, прежде чем химики вплотную займутся исследованием газов. Тогда-то и последует каскад открытий простых веществ: водород, кислород, азот, хлор. А несколько позже газы помогут установить те законы, которые принято называть основными законами химии. Они и позволят сформулировать основные положения атомно-молекулярного учения.