Каковы примерные размеры белых карликов. Белые звезды: названия, описание, характеристики


Когда мы смотрим на ночное небо, нам кажется, что все звезды одинаковы. Человеческий глаз с большим трудом различает видимый спектр света, излучаемого далекими небесными светилами. Звезда, которую еще едва видно, может уже давно погасла, и мы наблюдаем только ее свет. Каждая из звезд проживает свою жизнь. Одни светят ровным белым светом, другие выглядят пульсирующими неоновым светом яркими точками. Третьи представляют собой тусклые светящиеся пятнышки, едва заметные в небе.

Каждая из звезд пребывает на определенном этапе своей эволюции и с течением времени превращается в небесное светило другого класса. Вместо яркой и ослепительной точки на ночном небе появляется новый космический объект — белый карлик — стареющая звезда. Этот этап эволюции характерен для большинства обычных звезд. Не избежать подобной участи и нашему Солнцу .

Что такое белый карлик: звезда или фантом?

Только недавно, в XX веке ученым стало понятно, что белый карлик – это все, что осталось в космосе от обычной звезды. Изучение звезд с точки зрения термоядерной физики дало представление о процессах, которые бушуют в недрах небесных светил. Звезды, образовавшиеся в результате взаимодействия сил гравитации, представляют собой колоссальный термоядерный реактор, в котором постоянно происходят цепные реакции деления ядер водорода и гелия. В таких сложных системах темпы эволюции компонентов неодинаковы. Огромные запасы водорода обеспечивают жизнь звезды на миллиарды лет вперед. Термоядерные водородные реакции способствуют образованию гелия и углерода. Следом за термоядерным синтезом в дело вступают законы термодинамики.

После того, как звезда израсходовала весь водород, ее ядро под воздействием гравитационных сил и колоссального внутреннего давления начинает сжиматься. Теряя основную часть своей оболочки, небесное светило достигает предел массы звезды, при которой может существовать как белый карлик, лишенный источников энергии, продолжая по инерции излучать тепло. На самом деле белые карлики — это звезды из класса красных гигантов и сверхгигантов, утративших наружную оболочку.

Термоядерный синтез истощает звезду. Водород иссякает, а гелий, как более массивный компонент может проэволюционировать дальше, достигнув нового состояния. Все это приводит к тому, что сначала красные гиганты образуются на месте обычной звезды, и звезда покидает главную последовательность. Таким образом, небесное светило, встав на путь своего медленного и неизбежного старения постепенно трансформируется. Старость звезды – это долгий путь в небытие. Все это происходит очень медленно. Белый карлик является небесным светилом, с которым вне пределов главной последовательности, происходит неизбежный процесс угасания. Реакция синтеза гелия приводит к тому, что ядро стареющей звезды сжимается, светило окончательно теряет свою оболочку.

Эволюция белых карликов

Вне главной последовательности происходит процесс угасания звезды. Под воздействием сил гравитации нагретый газ красных гигантов и сверхгигантов разлетается по Вселенной, образуя молодую планетарную туманность. Через сотни тысяч лет туманность рассеивается, а на ее месте остается вырожденное ядро красного гиганта белого цвета. Температуры такого объекта достаточно высоки от 90000 К, оценивая по линии поглощения спектра и до 130000 К, когда оценка осуществляется в пределах рентгеновского спектра. Однако ввиду небольших размеров, остывание небесного светила происходит очень медленно.

Та картина звездного неба, которую мы наблюдаем, имеет возраст в десятки-сотни миллиардов лет. Там, где мы видим белые карлики, в пространстве уже возможно существует другое небесное тело. Звезда перешла в класс черного карлика, конечный этап эволюции. В действительности на месте звезды остается сгусток материи, температура которого равняется температуре окружающего пространства. Главная особенность этого объекта — полное отсутствие видимого света. Заметить такую звезду в обычный оптический телескоп достаточно трудно ввиду слабой светимости. Основным критерием обнаружения белых карликов является наличие мощного ультрафиолетового излучения и рентгеновских лучей.

Все известные белые карлики в зависимости от своего спектра делятся на две группы:

  • объекты водородные, спектрального класса DA, в спектре которых отсутствуют линии гелия;
  • гелиевые карлики, спектральный класс DB. Основные линии в спектре приходятся на гелий.

Белые карлики водородного типа составляют большинство популяции, до 80% из всех известных на данный момент объектов подобного типа. На гелиевые карлики приходится оставшиеся 20%.

Этап эволюции, в результате которой появляется белый карлик, является последним для немассивных звезд, к которым относится и наша звезда Солнце. На данном этапе звезда обладает следующими характеристиками. Несмотря на столь маленькие и компактные размеры звезды, ее звездное вещество весит ровно столько, сколько требуется для ее существования. Другими словами, белые карлики, которые имеют радиусы в 100 раз меньше радиуса солнечного диска, имеют массу равную массе Солнца или даже весят больше, чем наша звезда.

Этого говорит о том, что плотность белого карлика в миллионы раз выше плотности обычных звезд, находящихся в пределах главной последовательности. К примеру, плотность нашей звезды 1,41 г/см³, тогда как плотность у белых карликов может достигать колоссальных значений 105-110 г/см3.

В отсутствие собственных источников энергии, такие объекты постепенно остывают, соответственно имеют невысокую температуру. На поверхности белых карликов зафиксирована температура в диапазоне 5000-50000 градусов Кельвина. Чем старше звезда, тем ниже ее температура.

К примеру, соседка самой яркой звезды нашего небосклона Сириуса А, белый карлик Сириус В, имеет температуру поверхности всего 2100 градусов Кельвина. Внутри это небесное тело значительно горячее, почти 10000°К. Сириус В стал первым из белых карликов, обнаруженных астрономами. Цвет белых карликов, открытых после Сириуса В, оказался таким же белым, что и послужило поводом дать такое название этому классу звезд.

По яркости света Сириус А в 22 раза превышает яркость нашего Солнца, а вот ее сестра Сириус В светит тусклым светом, заметно уступая по яркость своей ослепительной соседке. Обнаружить присутствие белого карлика удалось благодаря снимкам Сириуса, сделанным рентгеновским телескопом Чандра. Белые карлики не обладают ярко выраженным световым спектром, поэтому принято считать такие звезды достаточно холодными темными космическими объектами. В инфракрасном и в рентгеновском диапазоне Сириус В светит значительно ярче, продолжая излучать огромное количество тепловой энергии. В отличие от обычных звезд, где источником рентгеновских волн служит корона, источником излучения у белых карликов является фотосфера.

Находясь вне главной последовательности по распространенности эти звезды не самые распространенные объекты во Вселенной. В нашей галактике на долю белых карликов приходится всего 3-10% небесных светил. Для этой части звездного населения нашей галактики неопределенность оценки затрудняет слабость излучения в видимой области поляры. Другими словами, свет белых карликов не в состоянии преодолеть большие скопления космического газа, из которых состоят рукава нашей галактики.

Научный взгляд на историю появления белых карликов

Дальше в небесных светилах на месте иссякших основных источников термоядерной энергии возникает новый источник термоядерной энергии, тройная гелиевая реакция, или тройной альфа-процесс, обеспечивающая выгорание гелия. Эти предположения полностью подтвердились, когда появилась возможность наблюдать поведение звезд в инфракрасном диапазоне. Спектр света обычной звезды существенно отличается от той картины, которую мы наблюдаем, глядя на красные гиганты и белые карлики. Для вырожденных ядер таких звезд существует верхний предел массы, в противном случае небесное тело становится физически неустойчивым и может наступить коллапс.

Объяснить столь высокую плотность, которую имеют белые карлики с точки зрения физических законов практически невозможно. Происходящие процессы стали понятны, только благодаря квантовой механике, которая позволила изучить состояние электронного газа звездного вещества. В отличие от обычной звезды, где для изучения состояния газа используется стандартная модель, в белых карликах ученые имеют дело с давлением релятивистского вырожденного электронного газа. Говоря понятным языком, наблюдается следующее. При огромном сжатии в 100 и более раз, звездное вещество становится похоже на один большой атом, в котором все атомные связи и цепочки сливаются воедино. В таком состоянии электроны образуют вырожденный электронный газ, новое квантовое образование которого может противостоять силам гравитации. Этот газ образует плотное ядро, лишенное оболочки.

При детальном изучении белых карликов с помощью радиотелескопов и рентгеновской оптики оказалось, что эти небесные объекты не такие простые и скучные, как может показаться на первый взгляд. Учитывая отсутствие внутри таких звезд термоядерных реакций, невольно возникает вопрос – откуда берется огромное давление, сумевшее уравновесить силы гравитации и силы внутреннего притяжения.

В результате исследований ученых физиков в области квантовой механики, была создана модель белого карлика. Под действием сил гравитации, звездное вещество сжимается до такой степени, что электронные оболочки атомов разрушаются, электроны начинают свое собственное хаотичное движение, переходя из одного состояния в другое. Ядра атомов в отсутствие электронов образуют систему, образуя между собой прочную и устойчивую связь. Электронов в звездном веществе настолько много, что образуется много состояний, соответственно скорость электронов сохраняется. Большая скорость элементарных частиц создает колоссальное внутренне давление электронного вырожденного газа, который в состоянии противостоять силам гравитации.

Когда стали известны белые карлики?

Несмотря на то, что первым белым карликом, открытым астрофизиками, считается Сириус В, имеются сторонники версии более раннего знакомства научного сообщества со звездными объектами этого класса. Еще в 1785 году астроном Гершель впервые включил в звездный каталог тройную звездную систему в созвездии Эридана, разделив все звезды по отдельности. Только спустя 125 лет астрономы выявили аномально низкую светимость 40 Эридана В при высокой цветовой температуре, что послужило поводом для выделения таких объектов в отдельный класс.

Объект обладал слабым блеском, соответствующим звездной величине +9,52m. Белый карлик обладал массой ½ солнечной и имел диаметр меньше земного. Эти параметры противоречили теории внутреннего строения звезд, где светимость, радиус и температура поверхности звезды являлись ключевыми параметрами определения класса звезды. Маленький диаметр, низкая светимость с точки зрения физических процессов не соответствовали высокой цветовой температуре. Такое несоответствие вызывало много вопросов.

Аналогичным образом выглядела ситуация с другим белым карликом — Сирусом В. Являясь спутником самой яркой звезды белый карлик имеет небольшие размеры и огромную плотность звездного вещества — 106 г/см3. Для сравнения, вещество этого небесного светила количеством со спичечный коробок весило бы на нашей планете более миллиона тонн. Температура этого карлика в 2,5 раза выше главной звезды системы Сириус.

Последние научные выводы

Небесные светила, с которыми мы имеем дело, представляют собой естественный природный полигон, благодаря которому человек может изучить строение звезд, этапы их эволюции. Если рождение звезд можно объяснить физическими законами, которые одинаково действуют в любой обстановке, то эволюция звезд представлена совершенно иными процессами. Научное объяснение многих из них переходит в категорию квантовой механики, науки об элементарных частицах.

Белые карлики выглядят в этом свете самыми загадочными объектами:

  • Во-первых, очень любопытно выглядит процесс вырождения ядра звезды, в результате которого звездное вещество не разлетается в космосе, а наоборот, сжимается до невообразимых размеров;
  • Во-вторых, при отсутствии термоядерных реакций, белые карлики остаются достаточно горячими космическими объектами;
  • В-третьих, эти звезды, имея высокую цветовую температуру, обладают низкой светимостью.

На эти и многие другие вопросы учеными всех мастей, астрофизикам, физикам и ядерщикам еще предстоит дать ответы, которые позволят предугадать судьбу нашего родного светила. Солнце ожидает судьба белого карлика, однако остается под вопросом, сможет ли человек наблюдать Солнце в этой роли.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Б елые карлики - одна из увлекательнейших тем в истории астрономии: впервые были открыты небесные тела, обладающие свойствами, весьма далёкими от тех, с которыми мы имеем дело в земных условиях. И, по всей вероятности, разрешение загадки белых карликов положило начало исследованиям таинственной природы вещества, запрятанного где-то в разных уголках Вселенной.

Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар (США), показало, что их количество превышает 1500. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд. История открытия белых карликов восходит к началу 19в, когда Фридрих Вильгельм Бессель, прослеживая движение наиболее яркой звезды Сириус, открыл, что её путь является не прямой линией, а имеет волнообразный характер. Собственное движение звезды происходило не по прямой линии; казалось, что она едва заметно смещалась из стороны в сторону. К 1844г., спустя примерно десять лет после первых наблюдений Сириуса, Бессель пришёл к выводу, что рядом с Сириусом находится вторая звезда , которая, будучи невидимой, оказывает на Сириус гравитационное воздействие; оно обнаруживается по колебаниям в движении Сириуса. Ещё более интересным оказалось то обстоятельство, что если тёмный компонент действительно существует, то период обращения обеих звёзд относительно их общего центра тяжести равен приблизительно 50 годам.

Перенесёмся в 1862г. и из Германии в Кембридж, штат Массачусетс (США). Алвану Кларку, крупнейшему строителю телескопов в США, Университетам штата Миссисипи было поручено сконструировать телескоп с объективом диаметром 18,5 дюйма (46 см), который должен был стать самым большим телескопом в мире. После того как Кларк закончил обработку линзы телескопа, нужно было проверить, обеспечена ли необходимая точность формы её поверхности. С этой целью линзу установили в подвижной трубе и направили на Сириус - самую яркую звезду, являющуюся лучшим объектом для проверки линз и выявления их дефектов. Зафиксировав положение трубы телескопа, Алван Кларк увидел слабый "призрак", который появился на восточном краю поля зрения телескопа в отблеске Сириуса. Затем, по мере движения небосвода, в поле зрения попал и сам Сириус. Его изображение было искажено - казалось, что "призрак" представляет собой дефект линзы, который следовало бы устранить, прежде чем сдать линзу в эксплуатацию. Однако эта возникшая в поле зрения телескопа слабая звёздочка оказалась компонентом Сириуса, предсказанным Бесселем. В заключение следует добавить, что из-за начавшейся первой мировой войны телескоп Кларка так никогда и не был отправлен в Миссисипи - его установили в Дирбоновской обсерватории, вблизи Чикаго, а линзу используют по сей день, но на другой установке.

Таким образом, Сириус стал предметом всеобщего интереса и многих исследований , ибо физические характеристики двойной системы заинтриговали астрономов. С учётом особенностей движения Сириуса, его расстояние до Земли и амплитуды отклонений от прямолинейного движения астрономам удалось определить характеристики обеих звёзд системы, названых Сириус А и Сириус В. Суммарная масса обеих звёзд оказалась в 3,4 раза больше массы Солнца. Было найдено, что расстояние между звёздами почти в 20 раз превышает расстояние между Солнцем и Землёй, то есть примерно равно расстоянию между Солнцем и Ураном; полученная на основании измерения параметров орбиты масса Сириуса А оказалась в 2,5 раза больше массы Солнца, а масса Сириуса В составила 95% массы Солнца. После того как были определены светимости обеих звёзд, обнаружилось, что Сириус А почти в 10 000 раз ярче, чем Сириус В. По абсолютной величине Сириуса А мы знаем, что он примерно в 35,5 раза светит сильнее Солнца. Отсюда следует, что светимость Солнца в 300 раз превышает светимость Сириуса В. Светимость любой звезды зависит от температуры поверхности звезды и её размеров, то есть диаметра. Близость второго компонента к более яркому Сириусу А чрезвычайно осложняет определение его спектра, что необходимо для установки температуры звезды. В 1915г. с использованием всех технических средств, которыми располагала крупнейшая обсерватория того времени Маунт-Вилсон (США), были получены удачные фотографии спектра Сириуса.

Это привело к неожиданному открытию: температура спутника составляла 8000 К , тогда как Солнце имеет температуру 5700 К. Таким образом, спутник в действительности оказался горячее Солнца, а это означало, что светимость единицы его поверхности также больше. В самом деле, простой расчёт показывает, что каждый сантиметр этой звезды излучает в четыре раза больше энергии, чем квадратный сантиметр поверхности Солнца. Отсюда следует, что поверхность спутника должна быть в 300*10 4 раз меньше, чем поверхность Солнца, и Сириус В должен иметь диаметр около 40 000 км. Однако масса этой звезды составляет 95% от массы Солнца. Этот значит, что огромное количество вещества должно быть упаковано в чрезвычайно малом объёме, иначе говоря, звезда должна быть плотной. В результате несложных арифметических действий получаем, что плотность спутника почти в 100 000 раз превышает плотность воды. Кубический сантиметр этого вещества на Земле весил бы 100 кг, а 0,5 л такого вещества - около 50 т.

Такова история открытия первого белого карлика. А теперь зададимся вопросом: каким образом вещество можно сжать так, чтобы один кубический сантиметр его весил 100 кг? Когда в результате высокого давления вещество сжато до больших плотностей, как в белых карликах, то вступает в действие другой тип давления, так называемое "вырожденное давление". Оно появляется при сильнейшем сжатии вещества в недрах звезды. Именно сжатие, а не высокие температуры является причиной вырожденного давления.

Вследствие сильного сжатия атомы оказываются настолько плотно упакованными, что электронные оболочки начинают проникать одна в другую . Гравитационное сжатие белого карлика происходит в течение длительного времени, и электронные оболочки продолжают проникать друг в друга до тех пор, пока расстояние между ядрами не станет порядка радиуса наименьшей электронной оболочки. Внутренние электронные оболочки представляют собой непроницаемый барьер, препятствующий дальнейшему сжатию. При максимальном сжатии электроны уже не связаны с отдельными ядрами, а свободно движутся относительно них. Процесс отделения электронов от ядер происходит в результате ионизации давлением. Когда ионизация становится полной, облако электронов движется относительно решётки из более тяжёлых ядер, так что вещество белого карлика приобретает определённые физические свойства, характерные для металлов. В таком веществе энергия переносится к поверхности электронами, подобно тому как тепло распространяется по железному пруту, нагреваемому с одного конца.

Но электронный газ проявляет и необычные свойства . По мере сжатия электронов их скорость всё больше возрастает, потому что, как мы знаем, согласно фундаментальному физическому принципу, два электрона, находящиеся в одном элементе фазового объёма, не могут иметь одинаковые энергии. Следовательно, чтобы не занимать один и тот же элемент объёма, они должны двигаться с огромными скоростями. Наименьший размер допустимого объёма зависит от диапазона скоростей электронов. Однако в среднем, чем ниже скорость электронов, тем больше тот минимальный объём, который они могут занимать. Иными словами, самые быстрые электроны занимают наименьший объём.

Хотя отдельные электроны носятся со скоростями, соответствующими внутренней температуре порядка миллионов градусов, температура полного ансамбля электронов в целом остаётся низкой. Установлено, что атомы газа обычного белого карлика образуют решётку плотно упакованных тяжёлых ядер, сквозь которую движется вырожденный электронный газ. Ближе к поверхности звезды вырождение ослабевает, и на поверхности атомы ионизированы не полностью, так что часть вещества находится в обычном газообразном состоянии. Зная физические характеристики белых карликов, мы можем сконструировать их наглядную модель. Начнём с того, что белые карлики имеют атмосферу. Анализ спектров карликов приводит к выводу, что толщина их атмосферы составляет всего несколько сотен метров. В этой атмосфере астрономы обнаруживают различные знакомые химические элементы. Известны белые карлики двух типов - холодные и горячие. В атмосферах более горячих белых карликов содержится некоторый запас водорода, хотя, вероятно, он не превышает 0,05%. Тем не менее по линиям в спектрах этих звёзд были обнаружены водород, гелий, кальций, железо, углерод и даже окись титана. Атмосферы холодных белых карликов состоят почти целиком из гелия; на водород, возможно, приходится меньше, чем один атом из миллиона. Температуры поверхности белых карликов меняются от 5000 К у "холодных" звёзд до 50 000 К у "горячих". Под атмосферой белого карлика лежит область невырожденного вещества, в котором содержится небольшое число свободных электронов. Толщина этого слоя 160 км, что составляет примерно 1% радиуса звезды. Слой этот может меняться со временем, но диаметр белого карлика остаётся постоянным и равным примерно 40 000 км.

Как правило, белые карлики не уменьшаются в размерах после того, как достигли этого состояния . Они ведут себя подобно пушечному ядру, нагретому до большой температуры; ядро может менять температуру, излучая энергию, но его размеры остаются неизменными. Чем же определяется окончательный диаметр белого карлика ? Оказывается его массой. Чем больше масса белого карлика, тем меньше его радиус; минимально возможный радиус составляет 10 000 км. Теоретически, если масса белого карлика превышает массу Солнца в 1,2 раза, его радиус может быть неограниченно малым. Именно давление вырожденного электронного газа предохраняет звезду от всяческого дальнейшего сжатия, и, хотя температура может меняться от миллионов градусов в ядре звезды до нуля на поверхности, диаметр её не меняется. Со временем звезда становится тёмным телом с тем же диаметром, который она имела, вступив в стадию белого карлика. Под верхним слоем звезды вырожденный газ практически изотермичен, то есть температура почти постоянна вплоть до самого центра звезды; она составляет несколько миллионов градусов - наиболее реальная цифра 6 млн. К.

Теперь, когда мы имеем некоторые представления о строении белого карлика, возникает вопрос : почему он светится? Очевидно одно: термоядерные реакции исключаются . Внутри белого карлика отсутствует водород, который поддерживал бы этот механизм генерации энергии. Единственный вид энергии, которым располагает белый карлик, -это тепловая энергия. Ядра атомов находятся в беспорядочном движении, так как они рассеиваются вырожденным электронным газом. Со временем движение ядер замедляется, что эквивалентно процессу охлаждения. Электронный газ, который не похож не на один из известных на Земле газов, отличается исключительной теплопроводностью, и электроны проводят тепловую энергию к поверхности, где через атмосферу эта энергия излучается в космическое пространство.

Астрономы сравнивают процесс остывания горячего белого карлика с остыванием железного прута, вынутого из огня. Сначала белый карлик охлаждается быстро, но по мере падения температуры внутри него охлаждение замедляется. Согласно оценкам, за первые сотни миллионов лет светимость белого карлика падает на 1% от светимости Солнца.

В конце концов белый карлик должен исчезнуть и стать чёрным карликом , однако на это могут понадобиться триллионы лет, и, по мнению многих учёных, представляется весьма сомнительным, чтобы возраст Вселенной был достаточно велик для появления в ней чёрных карликов. Другие астрономы считают, что и в начальной фазе, когда белый карлик ещё довольно горяч, скорость охлаждения невелика. А когда температура его поверхности падает до величины порядка температуры Солнца, скорость охлаждения увеличивается и угасание происходит очень быстро. Когда недра белого карлика достаточно остынут, они затвердеют. Так или иначе, если принять, что возраст Вселенной превышает 10 млрд. лет, красных карликов в ней должно быть намного больше, чем белых. Зная это, астрономы предпринимают поиски красных карликов.

Пока они безуспешны. Массы белых карликов определены недостаточно точно. Надёжно их можно установить для компонентов двойных систем, как в случае Сириуса. Но лишь немногие белые карлики входят в состав двойных звёзд. В трёх наиболее хорошо изученных случаях массы белых карликов, измеренные с точностью свыше 10% оказались меньше массы Солнца и составляли примерно половину её. Теоретически предельная масса для полностью вырожденной не вращающейся звезды должна быть в 1,2 раза больше массы Солнца. Однако если звёзды вращаются, а по всей вероятности, так оно и есть, то вполне возможны массы, в несколько раз превышающие солнечную.

Сила тяжести на поверхности белых карликов примерно в 60-70 раз больше, чем на Солнце. Если человек весит на Земле 75 кг, то на Солнце он весил бы 2тонны, а на поверхности белого карлика его вес составлял бы 120-140 тонн. С учётом того, что радиусы белых карликов мало отличаются и их массы почти совпадают, можно заключить, что сила тяжести на поверхности любого белого карлика приблизительно одна и та же. Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар, показало, что их количество превышает 1500. Астрономы полагают, что частота возникновения белых карликов постоянна, по крайней мере в течение последних 5 млрд. лет. Возможно, белые карлики составляют наиболее многочисленный класс объектов на небе.

Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд. Возникает вопрос: все ли звёзды становятся белыми карликами в конце своего эволюционного пути? Если нет, то какая часть звёзд переходит в стадию белого карлика? Важнейший шаг в решении проблемы был сделан, когда астрономы нанесли положение центральных звёзд планетарных туманностей на диаграмму температура - светимость. Чтобы разобраться в свойствах звёзд, расположенных в центре планетарных туманностей, рассмотрим эти небесные тела. На фотографиях планетарная туманность выглядит как протяжённая масса газов эллипсоидной формы со слабой, но горячей звездой в центре. В действительности эта масса представляет собой сложную турбулентную, концентрическую оболочку, которая расширяется со скоростями 15-50 км/с. Хотя эти образования выглядят как кольца, на деле они являются оболочками и скорость турбулентного движения газа в них достигает примерно 120 км/с. Оказалось, что диаметры нескольких планетарных туманностей, до которых удалось измерить расстояние, составляют порядка 1 светового года, или около 10 триллионов километров.

Расширяясь с указанными выше скоростями, газ в оболочках становится очень разряженным и не может возбуждаться, а следовательно, его нельзя увидеть спустя 100 000 лет. Многие планетарные туманности, наблюдаемые нами сегодня, родились в последние 50 000 лет, а типичный их возраст близок к 20 000 лет. Центральные звёзды таких туманностей - наиболее горячие объекты среди известных в природе. Температура их поверхности меняется от 50 000 до 1млн. К. Из-за необычайно высоких температур большая часть излучения звезды приходится на далёкую ультрафиолетовую область электромагнитного спектра.

Это ультрафиолетовое излучение поглощается , преобразуется и переизлучается газом оболочки в видимой области спектра, что и позволяет нам наблюдать оболочку. Это означает, что оболочки значительно ярче, нежели центральные звёзды, - которые на самом деле являются источником энергии, - так как огромное количество излучения звезды приходится на невидимую часть спектра. Из анализа характеристик центральных звёзд планетарных туманностей следует, что типичное значение их массы заключено в интервале 0,6-1 масса Солнца. А для синтеза тяжёлых элементов в недрах звезды необходимы большие массы. Количество водорода в этих звёздах незначительно. Однако газовые оболочки богаты водородом и гелием.

Некоторые астрономы считают, что 50-95 % всех белых карликов возникли не из планетарных туманностей . Таким образом, хотя часть белых карликов целиком связана с планетарными туманностями, по крайней мере половина или более из них произошли от нормальных звёзд главной последовательности, не проходящих через стадию планетарной туманности. Полная картина образования белых карликов туманна и неопределенна. Отсутствует так много деталей, что в лучшем случае описание эволюционного процесса можно строить лишь путём логических умозаключений. И тем не менее общий вывод таков: многие звёзды теряют часть вещества на пути к своему финалу, подобному стадии белого карлика, и затем скрываются на небесных "кладбищах" в виде чёрных, невидимых карликов. Если масса звезды примерно вдвое превышает массу Солнца, то такие звёзды на последних этапах своей эволюции теряют устойчивость. Такие звёзды могут взорваться как сверхновые, а затем сжаться до размеров шаров радиусом несколько километров, т.е. превратиться в нейтронные звёзды.

Белые карлики – звезды, имеющие большую массу (порядка солнечной) и малый радиус (радиус Земли), что менее предела Чандрасекара для выбранной массы, являющиеся продуктом эволюции красных гигантов. Процесс производства термоядерной энергии в них прекращен, что приводит к особым свойствам этих звезд. Согласно различным оценкам, в нашей Галактике их количество составляет от 3 до 10 % всего звездного населения.

В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.

Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.

Механизм образования

Белые карлики представляют собой конечную стадию эволюции небольшой звезды с массой, сравнимой с массой Солнца. В каком случае они появляются? Когда в центре звезды, например, как наше Солнце, выгорает весь водород, ее ядро сжимается до больших плотностей, тогда как внешние слои сильно расширяются, и, сопровождаясь общим потускнением светимости, звезда превращается в красного гиганта. Пульсирующий красный гигант затем сбрасывает свою оболочку, поскольку внешние слои звезды слабо связаны с центральным горячим и очень плотным ядром. Впоследствии эта оболочка становится расширяющейся планетарной туманностью. Как видите красные гиганты и белые карлики очень тесно взаимосвязаны.

Сжатие ядра происходит до крайне малых размеров, но, тем не менее, не превышает предела Чандрасекара, то есть верхний предел массы звезды, при котором она может существовать в виде белого карлика.

Виды белых карликов

Спектрально их разделяют по двум группам. Излучение белого карлика делят на наиболее распространенный «водородный» спектральный класс DA (до 80 % от общего количества), в котором отсутствуют спектральные линии гелия, и более редкий «гелиевый белый карлик» тип DB, в спектрах звезд которого отсутствуют водородные линии.

Американский астроном Ико Ибен предложил различные сценарии их происхождения: в виду того, что горение гелия в красных гигантах неустойчиво, периодически развивается слоевая гелиевая вспышка. Он удачно предположил механизм сброса оболочки в разные стадии развития гелиевой вспышки – на ее пике и в период между двумя вспышками. Образование его зависит от механизма сброса оболочки соответственно.

Вырожденный газ

До того как Ральф Фаулер в 1922 году в своей работе «Плотная материя» дал объяснение характеристикам плотности и давления внутри белых карликов, высокая плотность и физические особенности такого строения казались парадоксальными. Фаулер предположил, что в отличие от звезд главной последовательности, для которых уравнение состояния описывается свойствами идеального газа, в белых карликах оно определяется свойствами вырожденного газа.

График зависимости радиуса белого карлика от его массы. Обратите внимание: ультрарелятивистский предел ферми-газа совпадает с пределом Чандрасекара

Вырожденный газ образуется, когда расстояние между его частицами становится меньше волны де-Бройля, а значит, что на его свойствах начинают сказываться квантово-механические эффекты, вызванные тождественностью частиц газа.

В белых карликах, из-за огромных плотностей, оболочки атомов разрушаются под силой внутреннего давления, и вещество становится электронно-ядерной плазмой, причем электронная часть описывается свойствами вырожденного электронного газа, аналогичными поведению электронов в металлах.

Среди них наиболее распространены углеродно-кислородные с оболочкой, состоящей из гелия и водорода.

Статистически радиус белого карлика сравним с радиусом Земли, а масса варьируется от 0,6 до 1,44 солнечных масс. Поверхностная температура находится в пределах – до 200 000 К, что также объясняет их цвет.

Ядро

Основной характеристикой внутреннего строения является очень высокая плотность ядра, в котором гравитационное равновесие обуславливается вырожденным электронным газом. Температура в недрах белого карлика и гравитационное сжатие уравновешивается давлением вырожденного газа, что обеспечивает относительную устойчивость диаметра, а его светимость, в основном, происходит за счет остывания и сжатия внешних слоев. Состав зависит насколько успела проэволюционировать материнская звезда, в основном это углерод с кислородом и небольшие примеси водорода и гелия, которые превращаются в вырожденный газ.

Эволюция

Гелиевая вспышка и сброс внешних оболочек красным гигантом продвигает звезду по диаграмме Герцшпрунга-Рассела, обуславливая его превалирующий химический состав. Жизненный цикл белого карлика, после этого, остается стабилен до самого своего остывания, когда звезда теряет свою светимость и становится невидимой, входя в стадию так называемого «черного карлика», — конечный результат эволюции, хотя в современной литературе этот термин используется все реже.

Перетекание вещества со звезды на белый карлик, который из за низкой светимости не виден

Присутствие рядом звездных компаньонов продляет их жизнь из-за падения вещества на поверхность через формирование аккреционного диска. Особенности аккреции вещества в парных системах могут приводить к накоплению вещества на поверхности белых карликов, что в результате приводит к взрыву новой или сверхновой звезды (в случае особо массивных) типа Ia.

Взрыв сверхновой в представлении художника

В случае если в системе «белый карлик – красный карлик» аккреция нестационарна, результатом может быть своеобразный взрыв белого карлика (например U Gem (UG)) или же новоподобных переменных звезд, взрыв которых носит катастрофический характер.

Остаток сверхновой SN 1006 — представляет собой взорвавшейся белый карлик, который находился в двойной системе. Он постепенно захватывал вещество звезды-компаньона и возрастающая масса спровоцировала термоядерный взрыв, который разорвал карлика

Положение на диаграмме Герцшпрунга-Рассела

На диаграмме они занимают левую нижнюю часть, принадлежа ветви звезд, покинувших главную последовательность из состояния красных гигантов.

Здесь находится область горячих звезд с низкой светимостью, которая является второй по численности среди звезд наблюдаемой Вселенной.

Спектральная классификация

Множество Белых карликов в шаровом скоплении М4, снимок Хаббла

Они выделены в особый спектральный класс D (от английского Dwarfs – карлики, гномы). Но в 1983 году Эдвард Сион предложил более точную классификацию, которая учитывает различия их спектров, а именно: D (подкласс) (спектральная особенность) (температурный индекс).

Существуют следующие подклассы спектров DA, DB, DC, DO, DZ и DQ, которые уточняют наличие или отсутствие линий водорода, гелия, углерода и металлов. А спектральные особенности P, H, V и X уточняют наличие или отсутствие поляризации, магнитного поля при отсутствии поляризации, переменность, пекулярность или неклассифицируемость белых карликов.

  1. Какой ближайший белый карлик к Солнцу? Ближайший это звезда ван Маанена, которая представляет собой тусклый объект находящийся всего в 14,4 световых лет от Солнца. Она расположена в центре созвездия Рыб.

    Звезда ван Маанена — самый близкий, одиночный белый карлик

    Звезда ван Маанена является слишком слабой, чтобы мы смогли ее увидеть невооруженным глазом, ее звездная величина 12,2. Однако если рассматривать белый карлик в системе со звездой, то ближайшим является Сириус Б, удаленный от нас на расстояние 8.5 световых лет. Кстати, самый известный белый карлик это Сириус Б.

    Сравнение размеров Сириуса В и Земли

  2. Самый большой белый карлик располагается в центре планетарной туманности М27 (NGC 6853), которая больше известна как туманность Гантель. Она находится в созвездии Лисички, на расстоянии около 1360 световых лет от нас. Ее центральная звезда больше, чем любой другой известный белый карлик, на данный момент.

  3. Самый маленький белый карлик имеет неблагозвучное название GRW +70 8247 и находится примерно в 43 световых лет от Земли в созвездии Дракона. Его звездная величина около 13 и виден он только через большой телескоп.
  4. Срок жизни белого карлика зависит от того, как медленно он будет остывать. Иногда на его поверхности накапливается достаточно газа и он превращается в сверхновую типа Ia. Продолжительность жизни весьма велика – миллиарды лет, а точнее 10 в 19 степени и даже больше. Большая продолжительность жизни связана с тем, что они очень медленно остывают и у них есть все шансы дожить до конца Вселенной. А время остывания пропорционально четвертой степени температуры.

  5. Среднестатистический белый карлик размеры имеет в 100 раз меньше чем наше Солнце, а при плотности 29000 кг/кубический сантиметр, вес 1 кубического см равняется 29 тоннам. Но стоит учитывать, плотность может варьировать в зависимости от размеров, от 10*5 до 10*9 г/см3.
  6. Наше Солнце в конечной стадии превратится в белый карлик. Как бы грустно это не звучало, но масса нашей звезды не позволяет ей превратиться в нейтронную звезду или черную дыру. Солнце превратится в белого карлика и будет в таком виде существовать еще миллиарды лет.
  7. Как превращается звезда в белый карлик? В основном все зависит от массы, давайте рассмотрим на примере нашего Солнца. Пройдет еще несколько миллиардов лет и Солнце начнет увеличиваться в размерах, превращаясь в красного гиганта, связанно это с тем, что весь водород выгорит в его ядре. После того, как водород выгорит начнется реакция синтеза гелия и углерода.

    В результате этих процессов звезда становится нестабильной и возможно образование звездных ветров. Так как реакции горения более тяжелых элементов чем гелий, приводят к большему выделению тепла. При синтезе гелия, некоторым участкам, расширившейся внешней оболочки Солнца, удастся оторваться и вокруг нашей звезды сформируется планетарная туманность. В результате от нашей звезды в конечном итоге останется одно ядро и когда Солнце превратится в белый карлик в нем уже прекратятся реакции ядерного синтеза.

  8. Планетарная туманность, которая образуется в результате расширения и сброса своих внешних оболочек часто очень ярко светится. Причина заключается в том, что оставшееся от звезды ядро (считай белый карлик) остывает очень медленно, а высокая температура поверхности в сотни тысяч и миллионы градусов по Кельвину, излучает, в основном, в далеком ультрафиолете. Газы туманности поглощая эти УФ кванты, переизлучают их в видимой части света, попутно поглотив часть энергии кванта и светят очень ярко, в отличии от остатка, который в видимом диапазоне очень тусклый.

Ответы на вопросы

  1. Чем отличается белый карлик от ? Вся эволюция звезды основывается на первоначальной ее массе, от этого параметра и будет зависть ее светимость, продолжительность жизни и во что она превратится в конце. Для звезды массой 0,5-1,44 солнечной, жизнь закончится тем, что звезда расширится и превратится в красного гиганта, который сбросив свои внешние оболочки образует планетарную туманность оставит после себя лишь одно ядро, состоящее из вырожденного газа.


































    Это упрощенный механизм того, как образуется белый карлик. Если масса звезды больше 1,44 массы Солнца (так называемый предел Чандрасекара, при котором звезда может существовать как белый карлик. Если масса будет превышать его, то она станет нейтронной звездой.), то звезда израсходовав весь водород в ядре начинает синтез более тяжелых элементов, вплоть до железа. Дальнейший синтез элементов, которые тяжелее железа, невозможен т.к. требует больше энергии чем выделяется в процессе синтеза и ядро звезды коллапсирует в нейтронную звезду. Электроны срываются с орбит и падают в ядро, там сливаются с протонами и в итоге образуются нейтроны. Нейтронное вещество весит в сотни и миллионы раз больше чем любое другое.

  2. Отличие белого карлика и пульсара. Все те же самые отличия что и в случае с нейтронной звездой, только стоит учитывать, что пульсар (а это и есть нейтронная звезда) еще и очень быстро вращается, десятки раз в секунду, а период вращения белого карлика составляет, на примере звезды 40 Eri B, 5 часов 17 минут. Разница ощутима!

    Пульсар PSR J0348 +0432 — нейтронная звезда и белый карлик

  3. Из-за чего светятся белые карлики? Так термоядерные реакции уже не происходят все имеющееся излучение это тепловая энергия, так почему они светятся? По сути он медленно остывает, как раскаленное железо, которое сперва ярко белое, а затем краснеет. Вырожденный газ очень хорошо проводит тепло из центра и он остывает на 1% за сотни миллионов лет. Со временем остывание замедляется и он может просуществовать триллионы лет.
  4. Во что превращаются белые карлики? Возраст Вселенной слишком мал, для того чтобы могли образоваться, так называемые, черные карлики, конечной стадия эволюции. Так что видимых подтверждений у нас пока нет. На основе расчетов его остывания мы знаем лишь одно, что их продолжительность жизни, имеет поистине огромную, превышающую возраст Вселенной (13,7 млрд. лет) и теоретически составляющую триллионы лет.
  5. Существует ли белый карлик с сильным магнитным полем как у нейтронной звезды? Некоторые из них обладают мощными магнитными полями, гораздо сильнее, чем любые созданные нами на Земле. Например, сила магнитного поля на поверхности Земли составляет всего от 30 до 60 миллионных долей тесла, в то время как напряженность магнитного поля белого карлика может достигать 100 000 тесла.

    Но нейтронная звезда, обладает поистине сильным магнитным полем – 10*11 Тл и называется магнетаром! На поверхности некоторых магнетаров могут образовываться толчки, которые формируют колебания в звезде. Эти колебания часто приводят к огромным выбросам гамма-излучения магнетаром. Так, например, магнетар SGR 1900+14, который находится на расстоянии на 20 000 световых лет, в созвездии Орла, взорвался 27 августа 1998 г. Мощная вспышка гамма излучения была настолько сильной, что заставила выключить аппаратуру космического аппарата NEAR Shoemaker в целях ее сохранения.

Научно-популярный фильм о героях нашей статьи

Открытие белых карликов

Первым открытым белым карликом стала звезда 40 Эридана B в тройной системе 40 Эридана , которую ещё в 1785 году Вильям Гершель включил в каталог двойных звёзд . В 1910 году Генри Норрис Расселл обратил внимание на аномально низкую светимость 40 Эридана B при её высокой цветовой температуре , что и послужило впоследствии выделению подобных звёзд в отдельный класс белых карликов.

Вторым и третьим открытыми белыми карликами стали Сириус B и Процион B . В 1844 году директор Кёнигсбергской обсерватории Фридрих Бессель , анализируя данные наблюдений, которые велись с 1755 года, обнаружил, что Сириус , ярчайшая звезда земного неба, и Процион периодически, хотя и весьма слабо, отклоняются от прямолинейной траектории движения по небесной сфере . Бессель пришёл к выводу, что у каждой из них должен быть близкий спутник. Сообщение было встречено скептически, поскольку слабый спутник оставался ненаблюдаемым, а его масса должна была быть достаточно велика - сравнимой с массой Сириуса и Проциона, соответственно.

Парадокс плотности

«Я был у своего друга … профессора Э. Пиккеринга с деловым визитом. С характерной для него добротой он предложил получить спектры всех звёзд, которые Хинкс и я наблюдали … с целью определения их параллаксов . Эта часть казавшейся рутинной работы оказалась весьма плодотворной - она привела к открытию того, что все звёзды очень малой абсолютной величины (то есть низкой светимости) имеют спектральный класс M (то есть очень низкую поверхностную температуру). Как мне помнится, обсуждая этот вопрос, я спросил у Пиккеринга о некоторых других слабых звёздах…, упомянув, в частности, 40 Эридана B . Ведя себя характерным для него образом, он тут же отправил запрос в офис (Гарвардской) обсерватории, и вскоре был получен ответ (я думаю, от миссис Флеминг), что спектр этой звезды - A (то есть высокая поверхностная температура). Даже в те палеозойские времена я знал об этих вещах достаточно, чтобы сразу же осознать, что здесь имеется крайнее несоответствие между тем, что мы тогда назвали бы „возможными“ значениями поверхностной яркости и плотности. Я, видимо, не скрыл, что не просто удивлён, а буквально сражён этим исключением из того, что казалось вполне нормальным правилом для характеристик звёзд. Пиккеринг же улыбнулся мне и сказал: „Именно такие исключения и ведут к расширению наших знаний“ - и белые карлики вошли в мир исследуемого»

Удивление Расселла вполне понятно: 40 Эридана B относится к относительно близким звёздам, и по наблюдаемому параллаксу можно достаточно точно определить расстояние до неё и, соответственно, светимость. Светимость 40 Эридана B оказалась аномально низкой для её спектрального класса - белые карлики образовали новую область на Г-Р диаграмме . Такое сочетание светимости, массы и температуры было непонятно и не находило объяснения в рамках стандартной модели строения звёзд главной последовательности, разработанной в 1920-х годах.

Высокая плотность белых карликов оставалась необъяснимой в рамках классической физики и астрономии и нашла объяснение лишь в рамках квантовой механики после появления статистики Ферми - Дирака . В 1926 году Фаулер в статье «О плотной материи» («On dense matter», Monthly Notices R. Astron. Soc. 87, 114-122 ) показал, что, в отличие от звёзд главной последовательности, для которых уравнение состояния основывается на модели идеального газа (стандартная модель Эддингтона), для белых карликов плотность и давление вещества определяются свойствами вырожденного электронного газа (ферми-газа) .

Следующим этапом в объяснении природы белых карликов стали работы Якова Френкеля , Э. Стоунера ?! и Чандрасекара . В 1928 году Френкель указал, что для белых карликов должен существовать верхний предел массы, то есть эти звёзды с массой выше определённого предела неустойчивы и должны коллапсировать . К этому же выводу независимо пришёл в 1930 году Э. Стоунер, который дал правильную оценку предельной массы. Более точно её вычислил в 1931 году Чандрасекар в работе «Максимальная масса идеального белого карлика» («The maximum mass of ideal white dwarfs», Astroph. J. 74, 81-82 ) (предел Чандрасекара) и независимо от него в 1932 году Л. Д. Ландау .

Происхождение белых карликов

Решение Фаулера объяснило внутреннее строение белых карликов, но не прояснило механизм их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи: мысль астронома Эрнста Эпика , что красные гиганты образуются из звёзд главной последовательности в результате выгорания ядерного горючего, и предположение астронома Василия Фесенкова , сделанное вскоре после Второй мировой войны , что звёзды главной последовательности должны терять массу, и такая потеря массы должна оказывать существенное влияние на эволюцию звёзд . Эти предположения полностью подтвердились.

Тройная гелиевая реакция и изотермические ядра красных гигантов

В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода - нуклеосинтез с образованием гелия (см. цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатию и, соответственно, к повышению температуры и плотности в её ядре. Рост температуры и плотности в звёздном ядре ведёт к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов.

При температурах порядка 10 8 К кинетическая энергия ядер гелия становится достаточно высокой для преодоления кулоновского барьера : два ядра гелия ( 4 He , альфа-частицы) могут сливаться с образованием нестабильного изотопа бериллия 8 Be :

2 4 He + 2 4 He → 4 8 Be . {\displaystyle {}_{2}^{4}{\textrm {He}}+{}_{2}^{4}{\textrm {He}}\rightarrow {}_{4}^{8}{\textrm {Be}}.}

Бо́льшая часть 8 Be снова распадается на две альфа-частицы, но при столкновении 8 Be с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода 12 C :

4 8 Be + 2 4 He → 6 12 C {\displaystyle {}_{4}^{8}{\textrm {Be}}+{}_{2}^{4}{\textrm {He}}\rightarrow {}_{6}^{12}{\textrm {C}}} + 7,3 МэВ .

Несмотря на весьма низкую равновесную концентрацию 8 Be (например, при температуре ~10 8 К отношение концентраций [ 8 Be]/[ 4 He] ~10 −10), скорость такой тройной гелиевой реакции оказывается достаточной для достижения нового гидростатического равновесия в горячем ядре звезды. Зависимость энерговыделения от температуры в тройной гелиевой реакции чрезвычайно высока, так, для диапазона температур T {\displaystyle T} ~1-2⋅10 8 К энерговыделение ε 3 α {\displaystyle \varepsilon _{3\alpha }} :

ε 3 α = 10 8 ρ 2 Y 3 ⋅ (T 10 8) 30 , {\displaystyle \varepsilon _{3\alpha }=10^{8}\rho ^{2}Y^{3}\cdot \left({T \over {10^{8}}}\right)^{30},}

где Y {\displaystyle Y} - парциальная концентрация гелия в ядре (в рассматриваемом случае «выгорания» водорода близка к единице).

Следует, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете : в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода . По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются всё более высокие температуры, и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступивших в реакцию.

Дополнительным фактором, по-видимому, влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции и реакций синтеза более тяжёлых ядер с механизмом нейтринного охлаждения : при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино -антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере . В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро (рис. 2).

В случае красных гигантов с относительно небольшой массой (порядка солнечной) изотермические ядра состоят, в основном, из гелия, в случае более массивных звёзд - из углерода и более тяжёлых элементов. Однако в любом случае плотность такого изотермического ядра настолько высока, что расстояния между электронами образующей ядро плазмы становятся соизмеримыми с их длиной волны Де Бройля λ = h / m v {\displaystyle \lambda =h/mv} , то есть выполняются условия вырождения электронного газа. Расчёты показывают, что плотность изотермических ядер соответствует плотности белых карликов, то есть ядрами красных гигантов являются белые карлики .

Таким образом, для белых карликов существует верхний предел массы. Интересно, что для наблюдаемых белых карликов существует и аналогичный нижний предел: поскольку скорость эволюции звёзд пропорциональна их массе, то мы можем наблюдать маломассивные белые карлики как остатки лишь тех звёзд, которые успели проэволюционировать за время от начального периода звездообразования Вселенной до наших дней.

Особенности спектров и спектральная классификация

Белые карлики выделяются в отдельный спектральный класс D (от англ. Dwarf - карлик), в настоящее время используется классификация, отражающая особенности спектров белых карликов, предложенная в 1983 г. Эдвардом Сионом; в этой классификации спектральный класс записывается в следующем формате :

D [подкласс] [особенности спектра] [температурный индекс] ,

при этом определены следующие подклассы:

  • DA - в спектре присутствуют линии бальмеровской серии водорода , линии гелия не наблюдаются;
  • DB - в спектре присутствуют линии гелия He I, линии водорода или металлов отсутствуют;
  • DC - непрерывный спектр без линий поглощения;
  • DO - в спектре присутствуют сильные линии гелия He II, также могут присутствовать линии He I и H;
  • DZ - только линии металлов, линии H или He отсутствуют;
  • DQ - линии углерода, в том числе молекулярного C 2 ;

и спектральные особенности:

  • P - наблюдается поляризация света в магнитном поле;
  • H - поляризация при наличии магнитного поля не наблюдается;
  • V - звёзды типа ZZ Кита или другие переменные белые карлики;
  • X - пекулярные или неклассифицируемые спектры.

Эволюция белых карликов

Белые карлики начинают свою эволюцию как обнажившиеся вырожденные ядра красных гигантов, сбросивших свою оболочку - то есть в качестве центральных звёзд молодых планетарных туманностей . Температуры фотосфер ядер молодых планетарных туманностей чрезвычайно высоки - так, например, температура центральной звезды туманности NGC 7293 составляет от 90 000 К (оценка по линиям поглощения) до 130 000 К (оценка по рентгеновскому спектру) . При таких температурах большая часть спектра приходится на жёсткое ультрафиолетовое и мягкое рентгеновское излучение.

Вместе с тем, наблюдаемые белые карлики по своим спектрам преимущественно делятся на две большие группы - «водородные» спектрального класса DA, в спектрах которых отсутствуют линии гелия, которые составляют ~80 % популяции белых карликов, и «гелиевые» спектрального класса DB без линий водорода в спектрах, составляющие большую часть оставшихся 20 % популяции. Причина такого различия состава атмосфер белых карликов долгое время оставалась неясной. В 1984 году Ико Ибен рассмотрел сценарии «выхода» белых карликов из пульсирующих красных гигантов, находящихся на асимптотической ветви гигантов , на различных фазах пульсации . На поздней стадии эволюции у красных гигантов с массами до десяти солнечных в результате «выгорания» гелиевого ядра образуется вырожденное ядро, состоящее преимущественно из углерода и более тяжёлых элементов, окружённое невырожденным гелиевым слоевым источником, в котором идёт тройная гелиевая реакция. В свою очередь, над ним располагается слоевой водородный источник, в котором идут термоядерные реакции цикла Бете превращения водорода в гелий, окружённый водородной оболочкой; таким образом, внешний водородный слоевой источник является «производителем» гелия для гелиевого слоевого источника. Горение гелия в слоевом источнике подвержено тепловой неустойчивости вследствие чрезвычайно высокой зависимости от температуры, и это усугубляется большей скоростью преобразования водорода в гелий по сравнению со скоростью выгорания гелия; результатом становится накопление гелия, его сжатие до начала вырождения, резкое повышение скорости тройной гелиевой реакции и развитие слоевой гелиевой вспышки .

За крайне короткое время (~30 лет) светимость гелиевого источника увеличивается настолько, что горение гелия переходит в конвективный режим, слой расширяется, выталкивая наружу водородный слоевой источник, что ведёт к его охлаждению и прекращению горения водорода. После выгорания избытка гелия в процессе вспышки светимость гелиевого слоя падает, внешние водородные слои красного гиганта сжимаются, и происходит новый поджог водородного слоевого источника.

Ибен предположил, что пульсирующий красный гигант может сбросить оболочку, образовав планетарную туманность, как в фазе гелиевой вспышки, так и в спокойной фазе с активным слоевым водородным источником, и, поскольку поверхность отрыва оболочки зависит от фазы, то при сбросе оболочки во время гелиевой вспышки обнажается «гелиевый» белый карлик спектрального класса DB, а при сбросе оболочки гигантом с активным слоевым водородным источником - «водородный» карлик DA; длительность гелиевой вспышки составляет около 20 % от длительности цикла пульсации, что и объясняет соотношение водородных и гелиевых карликов DA:DB ~ 80:20 .

Крупные звёзды (в 7-10 раз тяжелее Солнца) в какой-то момент «сжигают» водород, гелий и углерод и превращаются в белые карлики с богатым кислородом ядром. Звёзды SDSS 0922+2928 и SDSS 1102+2054 с кислородсодержащей атмосферой это подтверждают.

Поскольку белые карлики лишены собственных термоядерных источников энергии, то они излучают за счёт запасов своего тепла. Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, пропорциональна четвёртой степени температуры тела:

j = σ T 4 , {\displaystyle j=\sigma T^{4},}

где j {\displaystyle j} - мощность на единицу площади излучающей поверхности, а σ {\displaystyle \sigma } - постоянная Стефана - Больцмана .

Как уже отмечалось, в уравнение состояния вырожденного электронного газа температура не входит - то есть радиус белого карлика и излучающая площадь остаются неизменными: в результате, во-первых, для белых карликов не существует зависимость масса - светимость, но существует зависимость возраст - светимость (зависящая только от температуры, но не от площади излучающей поверхности), и, во-вторых, сверхгорячие молодые белые карлики должны достаточно быстро остывать, так как поток излучения и, соответственно, темп остывания, пропорционален четвёртой степени температуры.

В пределе, после десятков миллиардов лет остывания любой белый карлик должен превратиться в так называемый Чёрный карлик (не излучающий видимый свет). Хотя пока таких объектов во Вселенной не наблюдается (по некоторым [каким? ] подсчётам минимум 10 15 лет требуется для остывания белого карлика до температуры 5 K ), так как время, прошедшее со времени образования первых звёзд во Вселенной, составляет (по современным представлениям) около 13 миллиардов лет, но некоторые белые карлики уже охладились до температур ниже 4000 кельвинов (например, белые карлики WD 0346+246 и SDSS J110217, 48+411315.4 с температурами 3700-3800 K и спектральным классом M0 на расстоянии около 100 световых лет от Солнца ), что, наряду с малыми размерами, делает их обнаружение весьма сложной задачей.

Астрономические феномены с участием белых карликов

Рентгеновское излучение белых карликов

Температура поверхности молодых белых карликов, изотропных ядер звёзд после сброса оболочек, очень высока - более 2⋅10 5 К , однако достаточно быстро падает за счёт излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT). В рентгеновском диапазоне светимость белых карликов превышает светимость звёзд главной последовательности: иллюстрацией могут служить снимки Сириуса , сделанные рентгеновским телескопом «Чандра» (см. рис. 10) - на них белый карлик Сириус Б выглядит ярче, чем Сириус А спектрального класса A1, который в оптическом диапазоне в ~10 000 раз ярче Сириуса Б .

Температура поверхности наиболее горячих белых карликов - 7⋅10 4 К , наиболее холодных - меньше 4⋅10 3 К (см., например, Звезда ван Маанена и WD 0346+246 с SDSS J110217, 48+411315.4 спектрального класса M0).

Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера , что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона , разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низка для испускания рентгеновского излучения.

Аккреция на белые карлики в двойных системах

При эволюции звёзд различных масс в двойных системах темпы эволюции компонентов неодинаковы, при этом более массивный компонент может проэволюционировать в белый карлик, в то время как менее массивный к этому времени может оставаться на главной последовательности. В свою очередь, при сходе в процессе эволюции менее массивного компонента с главной последовательности и его переходе на ветвь красных гигантов размер эволюционирующей звезды начинает расти до тех пор, пока она не заполняет свою полость Роша . Поскольку полости Роша компонентов двойной системы соприкасаются в точке Лагранжа L 1 , то на этой стадии эволюции менее массивного компонента чего через точку L 1 начинается переток материи с красного гиганта в полость Роша белого карлика и дальнейшая аккреция богатой водородом материи на его поверхность (см. рис. 11), что приводит к ряду астрономических феноменов:

  • Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик , приводит к возникновению карликовых новых (звёзд типа U Gem (UG)) и новоподобных катастрофических переменных звёзд .
  • Аккреция на белые карлики, обладающие сильным магнитным полем , направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения аккрецирующей плазмы в околополярных областях магнитного поля карлика вызывает сильную поляризацию излучения в видимой области (поляры и промежуточные поляры).
  • Аккреция на белые карлики богатого водородом вещества приводит к его накоплению на поверхности (состоящей преимущественно из гелия) и разогреву до температур реакции синтеза гелия, что, в случае развития тепловой неустойчивости, приводит к взрыву, наблюдаемому как вспышка

С массами порядка массы Солнца (М?) и радиусами, примерно в 100 раз меньшими, чем радиус Солнца. Средняя плотность вещества белых карликов 10 8 -10 9 кг/м 3 . Белые карлики составляют несколько процентов всех звёзд Галактики. Многие белые карлики входят в двойные звёздные системы. Первой звездой, отнесённой к белым карликам, был Сириус В (спутник Сириуса), открытый американским астрономом А. Кларком в 1862 году. В 1910-е годы белые карлики выделены в особый класс звёзд; их название связано с цветом первых представителей этого класса.

Имея массу звезды и размер небольшой планеты, белый карлик обладает колоссальным притяжением вблизи своей поверхности, которое стремится сжать звезду. Но она сохраняет устойчивое равновесие, поскольку гравитационным силам противостоит давление вырожденного газа электронов: при высокой плотности вещества, характерной для белых карликов, концентрация практически свободных электронов в нём столь велика, что, согласно принципу Паули, они обладают большим импульсом. Давление вырожденного газа практически не зависит от его температуры, поэтому при остывании белый карлик не сжимается.

Чем больше масса белого карлика, тем меньше его радиус. Теория указывает для белых карликов верхний предел массы около 1,4М? (так называемый Чандрасекара предел), превышение которого приводит к гравитационному коллапсу. Наличие такого предела обусловлено тем, что по мере роста плотности газа скорость электронов в нём приближается к скорости света и далее возрастать не может. В результате давление вырожденного газа уже не способно противостоять силе тяготения.

Белые карлики образуются в конце эволюции обычных звёзд с начальной массой менее 8М? после исчерпания ими запаса термоядерного горючего. В этот период звезда, пройдя через стадию красного гиганта и планетарной туманности, сбрасывает свои внешние слои и обнажает ядро, имеющее очень высокую температуру. Постепенно остывая, ядро звезды переходит в состояние белого карлика, продолжая ещё долго светить за счёт запасённой в недрах тепловой энергии. С возрастом светимость белого карлика падает. При возрасте около 1 миллиарда лет светимость белого карлика в тысячу раз ниже солнечной. Температуpa поверхности у изученных белых карликов лежит в диапазоне от 5·10 3 до 10 5 К.

У некоторых белых карликов обнаружена оптическая переменность с периодами от нескольких минут до получаса, объясняемая проявлением гравитационных нерадиальных колебаний звезды. Анализ этих колебаний методами астросейсмологии позволяет изучать внутреннее строение белых карликов. В спектрах около 3% белых карликов наблюдается сильная поляризация излучения или зеемановское расщепление спектральных линий, что указывает на существование у них магнитных полей индукцией 3·10 4 -10 9 Гс.

Если белый карлик входит в тесную двойную систему, то существенный вклад в его светимость может давать термоядерное горение водорода, перетекающего с соседней звезды. Это горение часто носит нестационарный характер, что проявляется в виде вспышек новых и новоподобных звёзд. В редких случаях накопление водорода на поверхности белого карлика приводит к термоядерному взрыву с полным разрушением звезды, наблюдаемому как вспышка сверхновой.

Лит.: Блинников С. И. Белые карлики. М., 1977; Шапиро С., Тьюколски С. Черные дыры, белые карлики и нейтронные звезды: В 2 часть М., 1985.