Сверление его назначение и применение. Сверление, зенкование и развертывание сущность процесса сверления


Различного диаметра и глубины, или многогранные отверстия различного сечения и глубины.

Назначение сверления

Сверление - необходимая операция для получения отверстий в различных материалах при их обработке, целью которой является:

  • Изготовление отверстий под нарезание резьбы, зенкерование , развёртывание или растачивание.
  • Изготовление отверстий (технологических) для размещения в них электрических кабелей, анкерных болтов, крепёжных элементов и др.
  • Отделение (отрезка) заготовок из листов материала.
  • Ослабление разрушаемых конструкций.
  • Закладка заряда взрывчатого вещества при добыче природного камня.

Станки и инструменты для выполнения сверления

Сверление цилиндрических отверстий, а также сверление многогранных (треугольных, квадратных, пяти- и шестигранных, овальных) отверстий выполняют с помощью специальных режущих инструментов - свёрл . Свёрла в зависимости от свойств обрабатываемого материала изготавливаются нужных типоразмеров из следующих материалов:

  • Углеродистые стали (У8, У9, У10, У12 и др): Сверление и рассверливание дерева, пластмасс, мягких металлов.
  • Низколегированные стали (Х, В1,9ХС,9ХВГ и др): Сверление и рассверливание дерева, пластмасс, мягких металлов. Повышенная по сравнению с углеродистыми теплостойкость (до 250 °C) и скорость резания.
  • Быстрорежущие стали (Р9, Р18, Р6М5, Р9К5 и др): Сверление всех конструкционных материалов в незакалённом состоянии. Теплостойкость до 650 °C.
  • Свёрла, оснащенные твёрдым сплавом , (ВК3, ВК8, Т5К10, Т15К6 и др): Сверление на повышенных скоростях незакалённых сталей и цветных металлов. Теплостойкость до 950 °C. Могут быть цельными, с напайными пластинами, либо со сменными пластинами (крепятся винтами)
  • Свёрла, оснащённые боразоном : Сверление закалённых сталей и белого чугуна , стекла , керамики , цветных металлов.
  • Свёрла, оснащённые алмазом : Сверление твёрдых материалов, стекла, керамики, камней.

Операции сверления производятся на следующих станках:

  • Вертикально-сверлильные станки
  • Горизонтально-сверлильные станки : Сверление - основная операция.
  • Вертикально-расточные станки: Сверление - вспомогательная операция.
  • Горизонтально-расточные станки: Сверление - вспомогательная операция.
  • Вертикально-фрезерные станки: Сверление - вспомогательная операция.
  • Горизонтально-фрезерные станки: Сверление - вспомогательная операция.
  • Универсально-фрезерные станки: Сверление - вспомогательная операция.
  • Токарные станки: Сверло неподвижно, а обрабатываемая заготовка вращается.
  • Токарно-затыловочные станки: Сверление - вспомогательная операция. Сверло неподвижно.
  • Токарно-револьверные станки : Сверление - вспомогательная операция. Сверло может быть неподвижно (статический блок) или вращаться (приводной блок)

И на ручном оборудовании:

  • Механические дрели : Сверление с использованием мускульной силы человека.
  • Электрические дрели: Сверление на монтаже переносным электроинструментом (в том числе ударно-поворотное сверление).

Для облегчения процессов резания материалов применяют следующие меры:

  • Охлаждение: Смазочно-охлаждающие жидкости и газы(вода , эмульсии, олеиновая кислота , углекислый газ, графит и др.)
  • Ультразвук : Ультразвуковые вибрации сверла увеличивают производительность и дробление стружки.
  • Подогрев: Подогревом ослабляют твёрдость труднообрабатываемых материалов.
  • Удар : При ударно-поворотном сверлении (бурении) камня, бетона .

Виды сверления

  • Сверление цилиндрических отверстий.
  • Сверление многогранных и овальных отверстий.
  • Рассверливание цилиндрических отверстий (увеличение диаметра).
  • Центровка: высверливание небольшого количества материала для позиционирования другого сверла (например, при глубоком сверлении) или для фиксирования детали задним центром.
  • Глубокое сверление: Сверление на глубину 5 и более диаметров отверстия. Часто требует специальных технических решений.

Охлаждение при сверлении

Большой проблемой при сверлении является сильный разогрев сверла и обрабатываемого материала из-за трения. В месте сверления температура может достигать нескольких сотен градусов Цельсия.

При сильном разогреве материал может начать гореть или плавиться. Многие стали при сильном разогреве теряют твердость, в результате режущие кромки стальных свёрл быстрее изнашиваются, из-за чего трение только усиливается, что в итоге приводит к быстрому выходу свёрл из строя и резкому снижению эффективности сверления. Аналогично, при использовании твердосплавного сверла или сверла со сменными пластинами, твердый сплав при перегреве теряет твердость, и начинается пластическая деформация режущей кромки, что является нежелательным типом износа.

Для борьбы с разогревом применяют охлаждение с помощью охлаждающих эмульсий или смазочно-охлаждающих жидкостей (СОЖ). При сверлении на станке часто возможно организовать подачу жидкости непосредственно к месту сверления. Подача охлаждающей жидкости также может осуществляться через каналы в самом сверле, если это позволяет станок. Такие каналы делаются во многих цельных сверлах и во всех корпусных. Внутренняя подача СОЖ необходима при сверлении глубоких отверстий (глубиной 10 и более диаметров). При этом важно не столько охлаждение, сколько удаление стружки. Давление СОЖ вымывает стружку из зоны резания, что позволяет избежать её пакетирования или повторного резания. Если в таком случае невозможно организовать подачу СОЖ, то приходится осуществлять сверление с периодическими выводами сверла для удаления стружки. Такой метод крайне непроизводителен.

При сверлении ручным инструментом сверление время от времени прерывают и окунают сверло в ёмкость с жидкостью.

Литература

  • Металлорежущие инструменты. Учебник (гриф УМО). Томск: Изд-во Томского ун-та. 2003. 392 с. (250 экз.).
  • Кожевников Д. В., Кирсанов С. В. Резание материалов. Учебник (гриф УМО). М.: Машиностроение. 2007. 304 с. (2000 экз.).

См. также

Ссылки

Сущность процесса сверления.

Сверление представляет собой про­цесс удаления металла для получения отверстий. Процесс сверления вклю­чает два движения: вращение инстру­мента V (рис. 48) или детали вокруг оси и подачу S вдоль оси. Режущие кромки сверла срезают тонкие слои металла с неподвижно укрепленной де­тали, образуя стружку, которая, скользя по спиральным канавкам сверла, выходит из обрабатываемого отверстия. Сверло является многолез­вийным режущим инструментом. В ре­зании участвуют не только два главных лезвия, но и лезвие перемычки, также два вспомогательных, находя­щихся на направляющих ленточках сверла, что очень усложняет процесс образования стружки. При рассмотрении схемы образования стружки при сверлении хорошо видно, что условия работы режущей кромки сверла в раз­ных точках лезвия различны. Так, пе­редний угол наклона режущей кромки у (рис. 49),

Рис. 48. Схема ре­зания при сверлении. Силы, действующие на сверло

Рис. 49. Образование стружки при сверлении

расположенный ближе к периферии сверла (сечение А-А), является положительным. Режущая кромка работает в сравнительно лег­ких условиях.

Передний угол наклона режущей кромки, расположенный дальше от пе­риферии, ближе к центру сверла (сечение В-В), является отрицатель­ным. Режущая кромка работает в бо­лее тяжелых условиях, чем расположенная ближе к периферии.

Резание поперечной режущей кром­кой (сечение С-С) представляет со­бой процесс резания, близкий к выдавливанию. При сверлении по сравнению с точением значительно хуже условия отвода стружки и подвода охлаждаю­щей жидкости; имеет место значитель­ное трение стружки о поверхность ка­навок сверла, трение стружки и свер­ла об обработанную поверхность; вдоль режущей кромки возникает рез­кий перепад скоростей резания - от нуля до максимума, в результате чего в различных точках режущей кромки срезаемый слой деформируется и сре­зается с разной скоростью; вдоль ре­жущей кромки сверла деформация различна - по мере приближения к периферии деформация уменьшается. Эти особенности резания при сверле­нии создают более тяжелые по сравне­нию с точением условия стружкообразования, увеличение тепловыделения и повышенный нагрев сверла. Если же рассматривать процесс стружкообразования на отдельных микро участках режущей кромки, то упругие и плас­тические деформации, тепловыделение, наростообразованне, упрочнение, износ инструмента здесь возникают по тем же причинам, что и при точении. На температуру резания при сверлении скорость резания имеет большее влия­ние, чем подача.

Рис.50. Спиральное сверло

Элементы сверла. Наиболее рас­пространенным и имеющим универ­сальное назначение является спираль­ное сверло (рис. 50). Сверло состоит из рабочей части, конусного или цилинд­рического хвостовика, служащего для закрепления сверла, а лапки, являющейся упором при удалении сверла. Рабочая часть сверла представляет со­бой цилиндрический стержень с двумя спиральными или винтовыми канавка­ми, по которым удаляется стружка. Режущая часть заточена по двум коническим поверхностям, имеет переднюю и заднюю поверхности (рис. 50) и две режущие кромки, соединенные пе­ремычкой под углом 55°. На цилинд­рической части по винтовой линии про­ходят две узкие ленточки, центрирую­щие и направляющие сверло в отверс­тии. Ленточки значительно уменьшают трение сверла о стенки обрабатывае­мого отверстия. Для уменьшения тре­ния рабочей части сверла в сторону хвостовика сделан обратный конус. Диаметр сверла уменьшается на каж­дые 100 мм длины на 0,03-0,1 мм.

Режущая часть сверла изготовля­ется из инструментальных сталей в твердых сплавов. Как и резец, сверло имеет передний и задний углы (рис.51). Передний угол у (сечениеБ-Б) в каждой точке режущей кромки является величиной переменной. Наибольшее значение уголу имеет на периферии сверла, наименьшее-у вершины сверла. Вследствие того что сверло во время работы не только вращается, но и перемещается. вдоль оси, действительное значение заднего углаа отличается от угла, по-. лученного при заточке. Чем меньше диаметр окружности, на которой нахо­дится рассматриваемая точка режу­щей кромки, и чем больше подача, тем меньше действительный задний угол.

Действительный же передний угол в процессе резания соответственно бу­дет больше угла, замеренного после заточки. Чтобы обеспечить достаточ­ную величину заднего угла в работе

Рис. 51. Передний и задний углы сверла

(в точках режущей кромки, близко расположенных к оси сверла), а также угла заострения зуба вдоль оси всей длины режущей кромки, задний угол делается: на периферии 8-14°, а у се­редины 20-27°, задний угол на лен­точках сверла равен 0°.

Кроме переднего и заднего углов сверло характеризуется углом на­клона винтовой канавки , углом наклона поперечной кромки , углом при вершине 2, углом обратной конус­ности(рис. 50).=18-30°, =55°,=2-3°, у сверл из инстру­ментальной стали 2=60-140°.

Виды подточек и различные формы заточки показаны на рис. 52.

Рис. 52. Элементы подточки спиральных сверл

Элементы режима резания (рис.53). Как уже указывалось, скорость резания в различных точках режущей кромки различна и изменяется от нуля в центре до максимальной на пе­риферии сверла. При расчетах режимов резания принимается наибольшая скорость резания на периферии (в м/мин)

где D - диаметр сверла, мм; n -час­тота вращения сверла, об/мин; - коэффициент, равный 3,14.

Рис. 53. Элементы резания: а - при сверлении,6 - при рассверливании

Подачей при сверлении s(мм/об) называется величина переме­щения сверла вдоль оси за один обо­рот сверла или за один оборот заго­товки, если заготовка вращается, а сверло только перемещается. У сверла две главные режущие кром­ки. Подача, приходящаяся на каждую кромку,

Минутная подача (мм/мин)

s м = sn .

Толщина среза а , измерен­ная в направлении, перпендикулярном режущей кромке:

Ширина среза b измеряется в направлении вдоль режущей кромки и равняется ее длине:

Силы, действующие на сверло. При сверлении отверстий материал оказы­вает сопротивление снятию стружки. В процессе резания на режущий инст­румент действует сила, которая пре­одолевает силу сопротивления мате­риала, а на шпиндель станка действу­ет крутящий момент (см. рис. 48).

Разложим равнодействующую силу сопротивления на каждой режущей кромке на составляющие силы в трех взаимно перпендикулярных направле­ниях: Р Z , P B , Р Г (см. рис. 48). Гори­зонтальные (радиальные) силы Р Г . действующие на обеих режущих кром­ках, взаимно уравновешиваются вслед­ствие симметрии спирального сверла. При несимметричности заточки длина режущих кромок неодинакова и ради­альная сила не будет равна нулю, в ре­зультате происходит отжим сперла и разбивание отверстия. Силы Р В на­правленные вверх, препятствуют про­никновению сверла в глубину обраба­тываемой детали. В этом же направ­лении действуют силы р 1 поперечной кромки. Кроме того, продвижению сверла препятствуют силы трения на ленточках сверла (трение об обрабо­танную поверхность отверстия) и силы трения от сходящей стружки Р Т . Сум­марная сила от указанных сил сопро­тивления в осевом направлении свер­ла называется осевой силой Р или уси­лием подачи:

Р=
(2Р
В 1 Т ).

Силы сопротивления Р В , возникаю­щие на режущих кромках и мешающие проникновению сверла, составляют 40 % от силыР; силы сопротивленияР 1 , возникающие на поперечной кром­ке, составляют 57 % и силы тренияР Т - около 3 %.

Суммарный момент сил сопротивления

Рис. 54. Виды сверл: а, б - спиральные, в -с прямыми канавками, г - перовое, д - ружейное, е - однокромочное с внутренним отводом стружки, ж – двухкромочное, з – для кольцевого сверления, и – центровочное, к – шнековые.

резанию М складывается из момента от сил Р z , момента от сил скоб­ления и трения на поперечной кромке М ПК , момента от сил трения на ленточках М Л и момента от сил трения струж­ки о сверло и обработанную поверхность отверстия М С , т. е. М=М СР ПК Л +Мс.

По силе Р и моменту М рассчитывает­ся необходимая мощность сверлильно­го станка.

Износ и стойкость сверл . Износ сверл происходит по задней поверхно­сти, ленточкам и уголкам, а иногда и передней поверхности сверл, с твердо­сплавными пластинками - по уголкам и ленточке.

Стойкость сверла зависит от мате­риала обрабатываемой детали и инст­румента, от качества инструмента, от режимов резания, применяемой СОЖ и др.

Типы сверл и их устройство . Свер­ло является инструментом, с помощью которого получают отверстия или увеличивают диаметр ранее просверлен­ного отверстия.

На рис. 54 показаны различные ти­пы сверл: перовые (рис. 54, г), двухкромочные (рис. 54, ж), спиральные (рис. 54,а и б), ружейное (рис. 54, д), для кольцевого сверления (рис. 54, з), центровочные (рис. 54, и), шнековые (рис. 54, к).

Перовое сверло представляет собой круглый стержень, на конце которого находится плоская лопатка, имеющая режущие кромки, наклоненные друг к другу под углом 120°. Перовые сверла обладают недостаточной жесткостью. Недостатком однокромочного сверла является необходимость иметь на­правляющую втулку, а также ограни­ченное пространство для отвода стружки.

Спиральное сверло получило наи­большее распространение в промыш­ленности. Его устройство описано вы­ше (см. рис. 50). Остальные типы сверл имеют специальное назначение.

Шнековые сверла дают возмож­ность получать отверстия глубиной до 40 диаметров за один рабочий ход без периодических выводов для удаления стружки. Они позволяют работать на более высоких скоростях резания, что в сочетании с сокращением вспомога­тельного времени (отсутствие проме­жуточных выводов сверла) дает повы­шение производительности в 2-3 раза по сравнению с работой удлиненными стандартными сверлами.

Сверла, оснащенные твердым спла­вом. Сверла, оснащенные пластинка­ми из твердого сплава, обладают боль­шой стойкостью, позволяют работать на высоких скоростях, дают высокое качество обработанной поверхности и обеспечивают высокую производи­тельность. Ими можно обрабатывать детали из чугуна, закаленной стали, стекла, мрамора, пластмасс и др. Осо­бенно эффективно применение твердо­сплавных пластинок при сверлении чугунов и рассверливании чугунов и сталей.

Твердосплавные сверла имеют пе­редний угол у =0-7°; задний угола =8-16°, угол 2=118-150°. На рис. 55 показаны несколько типов твердо­сплавных сверл. Сверло конструкции Института твердых сплавов (рис. 55, а) сделано со стальным хвостовиком. Сверло ВНИИ (рис. 55,6) сделано целиком из твердого сплава. Твердосплавный монолитный инструмент не­больших размеров (сверла, метчики, развертки до 6 мм) изготовляется из твердосплавных стержней шлифова­нием. Монолитные сверла изготовля­ется из сплавов ВК6М, ВК8М и ВК10М. Они предназначены для обра­ботки тугоплавких металлов - воль­фрама, бериллия, титановых и молиб­деновых сплавов, высокопрочных чу­гунов, нержавеющих, хромоникелевых, жаропрочных сталей и сплавов. Стои­мость монолитных твердосплавных сверл в 10 раз дороже, чем стоимость сверл из быстрорежущих сталей.

Рис. 55. Сверла из твердого сплава: а - со стальным хвостовиком,б - изготовленное по методу ВНИИ,в -с косыми канавками, ос­нащенное твердым сплавом,г -спиральное, ос­нащенное пластинойиз твердого сплава,д-с прямыми канавкамии твердосплавной пластинкой

Сверла с косыми канавками (рис. 55, в) состоят из державки, в паз ко­торой впаяна пластинка из сплава ВК8. .Такие сверла применяются для сверления неглубоких отверстий. Свер­ла с винтовыми канавками (рис. 55, а) применяют для сверления деталей из вязких и хрупких металлов на высо­ких режимах работы. На рис. 55, д по­казано сверло с прямыми канавками московского завода «Фрезер», предна­значенное для сверления деталей из чугуна и хрупких материалов глуби­ной (2-3) D . При обработке сталей ре­комендуется применять твердый сплав Т15К6, при обработке чугунов - сплав ВК8. При обработке твердо­сплавными сверлами необходимо вы­держивать симметричность заточки сверл.

Сверла с поворотными неперетачи­ваемыми твердосплавными пластинка­ми. На рис. 56 показано сверло с дву­мя треугольными неперетачиваемыми твердосплавными пластинками. Плас­тинки1 и2 расположены в двух прямоугольных канавках6 в специаль­ных гнездах3 и закреплены болтами 7. Пластинки расположены так, что их режущие кромки образуют взаимно пе­рекрывающие поверхности резания. Пластинки являются как бы токарны­ми резцами, укрепленными в державке4, вставленной во втулку 5. Процесс

Рис. 56. Сверло с поворотны­ми неперетачиваемыми пластинками

резания этим сверлом переходит в про­цесс точения, выполняемый двумя рез­цами, позволяя использовать рабочие качества и простоту современных то­карных резцов. Форма пластинок и их расположение означают, что сверло не нуждается в предварительной подго­товке отверстия. Это сверло позволяет сверлить в обоих направлениях, выво­дить и вводить сверло вновь. Сверло предназначено для отверстий от 18 до 56 мм и глубиной до двух диаметров сверла. При использовании пластинок с двойным покрытием можно работать с подачами, значительно превосходя­щими (до 5 раз) подачи, применяемые при работе спиральными сверлами, по­лучая то же качество обработанной по­верхности.

Применение сверл с неперетачивае­мыми поворотными пластинками пре­вращают операцию сверления из мед­ленной в быструю и дешевую. Учиты­вая, что операция сверления неглубо­ких отверстий в станках с ЧПУ, агрегатных станках и автоматических линиях является обычной и распрост­раненной, технология обработки с ис­пользованием сверл с неперетачивае­мыми поворотными пластинками будет прогрессивной.

Для сверления глубоких отверстий применяют длинные сверла с непере­тачиваемыми поворотными пластинка­ми типа «Эжектор» (рис.57), имеющими автономное устройство подачи СОЖ и удаления стружки. Сверло глубокого сверления 2 работает в паре со сверлом1. Операция сверления выполняется в два рабочих хода.

Рис. 57. Сверло для глубоких отверстий с пластинками типа «Эжектор»

Снача­ла сверлится неглубокое отверстие сверлом 1. Затем сверлом 2 произво­дится окончательное сверление глубо­кого отверстия.

Зенкерование и развертывание

Процесс зенкерования осуществляется зенкером. Операция зенкерования более точная, чем сверление. Сверлением достигается 11-12-й квалитеты и шероховатость поверхности R z 20 мкм, а зенкерованием - 9-11-й квалитеты и шероховатость поверхно­сти Ra 2,5мкм.

Развертывание является операцией более точной, чем сверление и зенкерование. Развертыванием достигается 6-9-й квалитеты и шероховатость поверхности Ra 1,25-0,25 мкм.

Операция зенкерования подобна рассверливанию. На рис. 58 показана конструкция зенкера. Зенкер состоит из рабочей части 1, шейки 2 и хвостовика 3. Рабочая часть состоит из режущей части l 1 и калибрующей l 2 . Режущая (заборная) часть наклонена к оси под главным углом в плане и выполняет резание. Обычно при обработке стали=60°, для чугуна- 45-60°. Для зенкеров, оснащенных твердосплавными пластинками, =60-75°. Угол наклона винтовой канавки= 10-30°, при обработке чугуна>0.

На рис. 58 показаны зенкеры различной конструкции, применяемые при работе на агрегатных станках и автоматических линиях.

Рис. 58. Зенкеры: а -цельный с коническим хвостовиком, б-насадной цельный,в -насадной с наборными ножками,г -оснащенный твердосплавной пластинкой,д -cнаправлением для цилиндрических углублений

Зенкеры с кониче­ским хвостовиком (рис. 58,а) с мини­мальным количеством зубьев z<3, диаметром 10 мм и выше применяются для окончательной обработки и под развертывание. Зенкеры насадные и со вставными ножами (рис. 58,б ив ) применяются для обработки отверстий.

Зенкеры изготовляются из быстро­режущих сталей Р18 и Р9 и твердо­сплавных материалов Т15К6, применяемых при обработке сталей, и ВК8, ВК6 и ВК4-при обработке чугунов.

Процесс развертывания является чистовой операцией для получения точных отверстий. Резание осуществ­ляется разверткой. Как указы­валось, развертывание более точная операция, чем сверление и зенкерование. Развертка во многом напоминает зенкер, основное ее отличие от зенкера в том, что она снимает значительно меньший припуск и имеет большое чис­ло зубьев - от 6 до 12. Развертка со­стоит из рабочей части и хвостовика (рис. 59). Рабочая часть в свою очередь состоит из режущей частиВ и ка­либрующейГ. Режущая часть наклонена к оси под главным углом в планеи выполняет основную работу резания. Угол конуса режущей (за­борной) части составляет 2.

Рис. 69. Развертка

Калибрующая часть развертки со­стоит из двух участков: цилиндриче­ского Д и конического Е, так называе­мого обратного конуса. Обратный ко­нус делается для уменьшения трения инструмента об обработанную поверх­ность и увеличения диаметра отвер­стия. Передний угол разверткиу ра­вен 0-10° (0° принимается для чис­товых работ и при резании хрупких металлов). Задний угола на режущей части развертки делается 6-15° (боль­шие значения для малых диаметров). Задний угол на калибрующей части равен нулю, так как имеется цилинд­рическая ленточка.

Главный угол в плане у машин­ных разверток (из инструментальных сталей) при обработке вязких сталей равен 15°, при обработке чугунов 5°. При развертывании глухих и сквозных отверстий 9-го квалитета и грубее=45-60°. У разверток, оснащенных пластинками твердых сплавов,=30-45°.

На рис. 60, 61 показаны различные типы разверток. По своей конструкции развертки делятся на ручные и машинные, цилиндрические и конические, насадные и цельные.

Рис. 60. Типы разверток


Рис. 61. Машинные регулируемые развертки

Ручные развертки изго­товляются с цилиндрическим хвосто­виком (рис. 60, г). Ими обрабатыва­ются отверстия от 3 до 50 мм. Машин­ные развертки (рис. 61) делаются с цилиндрическими и коническими хвос­товиками и используются для развер­тывания отверстий диаметром от 3 до 100 мм. Этими развертками обрабаты­ваются отверстия на сверлильных и токарных станках. Насадные разверт­ки служат для развертывания отвер­стий от 25 до 300 мм. Их насаживают на специальную оправку, имеющую ко­нусный хвостовик для крепления на станке. Насадные развертки изготов­ляют из быстрорежущей стали Р9 или Р18 и оснащают пластинками из твер­дого сплава.

Коническими развертками развер­тывают конусные отверстия. Обычно в комплект входят три развертки: обди­рочная, промежуточная и чистовая. Цельные развертки изготовляются из углеродистой или легированной стали. При развертывании отверстий в твер­дых металлах применяются развертки с пластинками из твердых сплавов.

Элементы режима резания и срезапри зенкеровании и развертывании. Элементы режима резания подсчитывают по формуле и методике, приве­денной в разделе «Сверление» (коэф­фициенты и показатели степеней вы­бирают из таблиц и справочников при­менительно к конкретной операции).

Глубину резания t (рис. 62 и 63) определяют исходя из припуска на об­работку при зенкеровании до 2 мм на сторону. Средние значения припуска под зенкерование после сверления, сни­маемого за один рабочий ход (т. е.t = h ), составляют:

Рис. 62. Элементы резания при зенкеровании

Припуск под чистовое развертывание принимается 0,05-0,25 мм на сторону. Припуск под предварительно развертывание может быть увеличен в 2-3 раза. Средние значения глубин

резания (припуска) при чистовом раз­вертывания составляют:

Толщина среза а при развертыва­нии (рис. 63) обычно незначительна и составляет 0,02-0,05 мм.

Машинное время (в. мин) при зенкеровании и развертывании

где L - путь, проходимый инструмен­том в направлении подачи, мм;l - глубина зенкерования или развертывания, мм;У- величина врезания, мм (рис. 62,6);=1-3 мм-величина перебега, мм.

Рис. 63. Элементы резания при развертывании

Сверление - это один из видов материала резанием. В этом методе используется специальный режущий инструмент - сверло. С его помощью можно сделать отверстие разного диаметра, а также глубины. Кроме того, имеется возможность создания многогранных отверстий с разным сечением.

Назначение операции

Сверление - это необходимая операция, если требуется получить отверстие в металлическом изделии. Чаще всего для сверления имеется несколько следующих причин:

  • требуется создать отверстие под нарезание резьбы, или растачивание;
  • необходимо разместить в отверстиях электрические кабели, крепежные элементы, продеть через них анкерные болты и т. д.;
  • отделение заготовок;
  • ослабить разрушающиеся конструкции;
  • в зависимости от диаметра отверстия, его можно использовать даже для закладки взрывчатки, к примеру, при добыче природного камня.

Данный список можно продолжать еще долго, но уже можно сделать вывод, что операция сверления - это одна из наиболее простых и в то же время довольно нужных и распространенных вещей.

Расходные материалы

Естественно, что для осуществления процесса сверления необходимо иметь сверла. В зависимости от этого расходника будет меняться диаметр отверстия, а также количество его граней. Они могут быть круглого сечения, а могут быть многогранными - треугольными, квадратными, пятигранными, шестигранными и т. д.

Кроме того, сверление - это операция, при которой сверло будет нагреваться до высоких температур. По этой причине необходимо точно подбирать качество этого элемента, основываясь на требованиях материала, с которым придется работать.

  • Довольно распространенный материал для производства приспособлений для сверления - углеродистая сталь. Элементы этой группы маркируются следующим образом: У8, У9, У10 и т. д. Основное предназначение таких расходников - это сверление отверстий в дереве, пластмассе, мягких металлах.
  • Далее идут сверла, изготовленные из низколегированной стали. Они предназначаются для сверления тех же материалов, что и углеродистые, но их отличие заключается в том, что у этой марки элементов повышено значение теплостойкости до 250 градусов по Цельсию, а также увеличена скорость сверления.

Улучшенные сверла

Имеется несколько типов сверл, которые предназначены для более качественных материалов:

  • Первый тип сверл изготавливается из быстрорежущей стали. Теплостойкость этих расходников намного выше - 650 градусов по Цельсию, а предназначены они для сверления любых конструкционных материалов в незакаленном состоянии.
  • Следующая группа - это сверла с твердыми сплавами. Применяются для того, чтобы делать отверстия в любых конструкционных незакаленных сталях, а также в цветном металле. Особенностью является то, что используется сверление на повышенных скоростях. По этой же причине теплостойкость повышена до 950 градусов по Цельсию.
  • Одни из наиболее стойких элементов - это сверла с боразоном. Применяются для работ с чугуном, сталями, стеклом, керамикой, цветными металлами.
  • Последняя группа - это сверла с алмазом. Применяются для сверления наиболее твердых материалов, стекла, керамики.

Типы станков для сверления

Для проведения операции сверления могут быть использованы следующие виды сверлильных станков:

  • Вертикальные и горизонтальные сверлильные устройства. Сверление отверстий для таких машин - основная операция.
  • Используются вертикальные и горизонтальные типа. Сверление считается вспомогательными операциями для этих устройств.
  • Вертикальные, горизонтальные и универсальные станки фрезеровочного типа. Для этих агрегатов сверление также является второстепенной операцией.
  • Токарные и токарно-затыловочные станки. На первом типе устройств сверло является неподвижной частью, а вращается сама заготовка. Для второго типа устройства сверление не основная операция, а сверло является неподвижным элементом, как и в первом случае.

Это все типы сверлильных станков, на которых можно проводить все требуемые операции.

Ручные инструменты и вспомогательные операции

Для того чтобы облегчить процесс сверления, используются несколько вспомогательных операций. К ним можно отнести следующие:

  • Охлаждение. При сверлении используются разнообразные смазочно-охлаждающие вещества. К ним относится, например, вода, эмульсии, олеиновая кислота. Также могут быть использованы газообразные вещества, к примеру углекислый газ.
  • Ультразвук. Ультразвуковые вибрации, которые производит сверло, используются для увеличения производительности процесса, а также для усиления дробления стружки.
  • Подогрев. Для того чтобы улучшить сверление металла, имеющего высокую плотность, его предварительно разогревают.
  • Удар. Для работы с некоторыми поверхностями, например с бетоном, необходимо использовать ударно-поворотные движения, чтобы увеличить производительность.

Осуществлять эту процедуру можно не только на станках в автоматическом режиме, но и на ручном оборудовании. Ручное сверление предполагает использование таких инструментов, как:

  • Механическая дрель. Для сверления используется механическая сила человека.
  • Электрическая дрель. Может осуществлять обычное и ударно-поворотное сверление. Работает от электрической сети.

Виды процедуры и охлаждение

Имеется несколько основных видов сверления - это оборудование цилиндрических отверстий, многогранных или же овальных, а также рассверливание уже имеющихся цилиндрических отверстий для увеличения их диаметра.

Основная проблема, которая возникает в процессе сверления металла, - это сильный нагрев расходуемого элемента, то есть сверла, а также места проведения работ. Температура материала может достигать 100 градусов по Цельсию и больше. Если она дойдет до определенных значений, то возможно возникновение горения или плавки. Здесь важно отметить, что множество сталей, которые используются для производства сверл, теряют свою твердость при нагреве, из-за чего трение будет только увеличиваться, поэтому элемент, к сожалению, будет изнашиваться быстрее.

Для того чтобы бороться с этим недостатком, используют различные охлаждающие вещества. Чаще всего при вертикальном сверлении на станке имеется возможность организовать подачу охлаждающего вещества непосредственно к месту проведения работы. Если же она осуществляется с применением ручных приборов, то через определенный промежуток времени необходимо прерывать процесс и окунать сверло в жидкость.

Суть сверления

Технология сверления отверстий - это процесс образование канавок посредством снятия стружки в сплошном материале при помощи режущего инструмента. Данный элемент совершает вращательные и поступательные или же вращательно-поступательные движения одновременно, чем и образовывает отверстие.

Использование этого вида обработки материала используется для того, чтобы:

  • получить неответственные отверстия с низкой степенью точности и классом шероховатости, используемые для крепежных болтов, заклепок и т. д.;
  • получить отверстия под нарезание резьбы, развертывание и т. д.

Параметры обработки

Используя процедуру глубокого сверления или рассверливания можно получить отверстия, которые будут характеризоваться 10-й или 11-й степенью квалитета шероховатости поверхности. Если необходимо получить более качественное отверстие, то после завершения процесса обработки необходимо дополнительно зенкеровать и развертывать его.

Для того чтобы увеличить точность работы, в некоторых случаях можно прибегнуть к тщательному регулированию положения станка, правильно заточенному расходному элементу. Также применяется способ, при котором работа осуществляется через специальный прибор, повышающий точность. Данное устройство называется кондуктором. Также имеется разделение сверл на несколько классов. Бывают спиральные с прямыми канавками, перовые, используемые для глубокого или кольцевого сверления, а также центровочные сверла.

Описание конструкции сверла

Чаще всего для работы используется обычное Специальные используются намного реже.

Спиральный элемент представляет собой двузубую режущую деталь, которая включает в себя всего две основных части - это хвостовик и рабочая часть.

Если говорить о рабочей части, то ее можно разделить на цилиндрическую и калибрующую. На первой части сверла располагаются две винтовые канавки друг напротив друга. Основное предназначение этой части - стружки, которая выделяется во время работы. Здесь важно отметить, что канавки обладают правильным профилем, который обеспечивает правильное образование режущих кромок сверла. Кроме того, создается и необходимое пространство, которое нужно для отвода стружки из отверстия.

Технология сверления

Здесь важно знать несколько определенных правил. Очень важно, чтобы форма канавок, а также угол наклона между направлением оси сверла и касательной к ленте были такими, чтобы обеспечить легкий отвод стружки, при этом не ослабив сечения зубьев. Однако же здесь стоит отметить, что эта технология, а особенно числовые значения, будет заметно меняться в зависимости от диаметра сверла. Все дело в том, что увеличение угла наклона приводит к ослаблению действия сверла. Этот недостаток проявляется тем сильнее, чем меньше диаметр элемента. По этой причине приходится подстраивать угол под сверло. Чем меньше сверло - тем меньше угол, и наоборот. Общий угол наклона канавок составляет от 18 до 45 градусов. Если речь идет о сверлении стали, то необходимо использовать сверла с углом наклона от 18 до 30 градусов. Если отверстия делаются в хрупких материалах, например, как латунь или бронза, то угол сокращается до 22-25 градусов.

Принципы проведения работы

Тут важно начать с того, что в зависимости от материала инструмента будет меняться и К примеру:

  • Если сверление проводится с использованием элементов из инструментальной стали, то минимальная скорость составляет 25 м/мин, а максимальная - 35 м/мин.
  • Если механическая обработка осуществляется сверлами, принадлежащими к категории быстрорежущих, то минимальная скорость - 12 м/мин, а максимальная - 18 м/мин.
  • Если используются сверла их твердосплавных материалов, то значения равны 50 м/мин и 70 м/мин.

Здесь важно отметить, что технология сверления предполагает выбор скорости процедуры в зависимости от диаметра самого элемента и малой подачи (с увеличением диаметра растет и скорость).

Характерная особенность проведения работы - это использование стандартного угла при вершине для сверла, который равен 118 градусов. Если необходимо работать с сырьем, которое характеризуется высокой твердостью сплава, то угол нужно увеличить до 135 градусов.

Сохранность сверл

Одной из важных задач при проведении такого типа механической обработки стало то, что нужно сберечь режущие свойства расходника. Сохранность этих параметров напрямую зависит от того, какой способ эксплуатации был выбран и подходил ли он к данному материалу. Например, для того чтобы устранить поломку сверла на проходе, необходимо сильно уменьшать подачу в момент вывода сверла из отверстия.

Особое внимание технологии сверления нужно уделить в тех ситуациях, когда глубина отверстия превышает длину винтовой канавки расходника. В момент ввода сверла стружка все еще будет образовываться, а вот во время выхода ее уже не будет. Из-за этого сверла ломаются очень часто. Если никакого выхода из ситуации нет, то нужно периодически выводить сверло и вручную очищать его от ненужных элементов, то есть стружки.

Коронки для сверления

Для того чтобы проделать отверстие в определенном покрытии, необходимо использовать коронки. Однако и их тоже нужно выбрать правильно, основываясь на определенных параметрах. В настоящее время используется три основных вида материала для создания коронок - это алмаз, победит и карбидо-вольфрам. Особенностью алмазной коронки стало то, что она осуществляет безударное сверление. В таком случае получается более правильная геометрия отверстия.

Основными преимуществами алмазных насадок стало следующее: возможность резки железобетонных материалов, низкий уровень шума и пыли, отсутствие нарушения структуры конструкции, так как технология не использует ударное усилие.

Определение, назначение и сущность процесса сверления и растачивания

Сверление отверстий - широко распространенная операция в слесарном деле. Сверлением называется процесс образования отверстий в сплошном материале с помощью инструмента, называемого сверлом.

Сверление применяется: для получения неответственных отверстий, невысокой степени точности и чистоты, например, под крепежные болты, заклепки, шпильки и т.д.

Для получения отверстий под нарезание резьбы, применяется развертывание и зенкерование.

Рассверливанием называется процесс увеличения диаметра отверстия при помощи сверла.

Точность сверления может быть повышена благодаря тщательному регулированию станка, правильно заточенному сверлу или сверлением при помощи специального приспособления, называемого кондуктором (рис. 1).

Рис. 1 Кондуктор и зажим

Рис. 2 Рабочие движения при сверлении

При сверлении различают сквозные, глухие и неполные отверстия. Высококачественное отверстие обеспечивается правильным выбором приемов сверления, правильным расположением сверла относительно обрабатываемой поверхности и совмещением оси сверла с центром (осью) будущего отверстия.

Процесс резания при сверлении может быть осуществлен при наличии двух рабочих движений режущего инструмента по отношению к обрабатываемой детали: вращательного движения и подачи (рис. 2).

Для сверления обрабатываемую заготовку (деталь) неподвижно закрепляют в приспособлении, а сверлу сообщают два одновременных движения:

Вращательное - которое называется главным (рабочим) движением, или движением резания.

Поступательное направленное вдоль оси сверла, которое называется движением подачи.

При сверлении под влиянием силы резания происходит отделение частиц металла и образование элементов стружки.

Скорость резания, подача и глубина составляют режим резания.

Скоростью резания V называется окружная скорость сверла, измеряемая по его наружному диаметру. Скорость резанья рассчитывается по формуле:

сверление технологический вращательный

где V - скорость резанья, D-диаметр сверла, n - число оборотов в минуту сверла;

Величина скорости резанья зависит от обрабатываемого материала, диаметра и материала сверла и формы его заточки, подачи, глубины резания и охлаждения.

Подача s - величина перемещения сверла вдоль оси за один оборот или за один оборот заготовки (если вращается заготовка, а сверло движется поступательно). Она измеряется в мм/об. так сверло имеет две режущие кромки, то подача на одну режущую кромку будет:

Правильный выбор подачи имеет большое значение для стойкости режущего инструмента. Всегда выгоднее работать с большой подачей и меньшей скоростью резания, в этом случае сверло изнашивается медленнее.

Однако при сверлении отверстий малых диаметров величина подачи ограничивается прочностью сверла. С увеличением диаметра сверла прочность его возрастает, позволяя увеличивать подачу; следует учесть, что увеличение подачи ограничивается прочностью станка. Глубина резания t - расстояние от обработанной поверхности до оси сверла (т.е. радиус сверла). Определяется глубина резанья по формуле

t=D/2 мм

При выборе режимов резания в первую очередь подбирают наибольшую подачу в зависимости от качества обрабатываемой поверхности, прочности сверла и станка и других факторов (данные приведены в справочниках); затем устанавливают такую максимальную скорость резания, при которой стойкость инструмента между переточками будет наибольшая.

Выбор способа (последовательности) обработки отверстий в зависимости от их размеров, требуемой точности обработки и вида заготовки (сплошной металл, прошитые и литые отверстия) производится по данным таблиц, в которых приведены данные о технологической точности, достигаемой при обработке отверстий 44 вин.

Различают следующие способы и виды сверления:

1. Сверление по разметке (для одиночных отверстий)

По разметке сверлятся одиночные отверстия. Предварительно на

деталь наносят осевые риски, затем кернят углубление в центре отверстия.

Сверление осуществляют в два приема: сначала выполняют пробное

сверление, а затем окончательное.

2. Сверление глухих отверстий на заданную глубину осуществляют по втулочному упору на сверле. Многие сверлильные станки имеют механизмы автоматической подачи с лимбами, которые определяют ход сверла на заданную глубину.

3. Сверление отверстий в плоскостях расположенных под углом производят следующим образом: сначала подготавливают площадку перпендикулярно оси просверливаемого отверстия (фрезеруют или зенкеруют), между плоскостями вставляют вкладыши, и подкладки, а затем сверлят обычным путем.

4. Сверление точных отверстий : в этом случае сверление производят в два приема. Первый проход - сверлом диаметр, которого меньше на 1-3 мм диаметра отверстия. После этого отверстия сверлят в размер хорошо заправленным сверлом.

5. Сверление отверстий небольших диаметров производят на станках повышенной точности соответствующими подачами или ультразвуковым и электроискровым способами.

6. Сверление глубоких отверстий (глубина превышает диаметр сверла 5 и более раз). В зависимость от технологии различают сплошное и кольцевое сверление с применением специальных технологий.

Сверлильные станки, виды, характеристики, область применения

Станки сверлильной группы предназначены для обработки всех типов круглых отверстий и в редких случаях - многогранных отверстий.

В зависимости от вида технологических операции, выполняемых на станках, а также степени автоматизации и специализации станка все металлорежущие станки подразделяются на 9 групп 132 вин.

Сверлильные станки согласно классификации относятся ко второй группе (первая цифра в обозначении станка -2).

Сверлильные станки делятся на три группы: универсальные (общего назначения), специализированные и специальные.

Универсальные станки являются самой многочисленной группой в парке сверлильного оборудования. На них можно производить все технологические операции, характерные для обработки отверстий (сверление, нарезание резьбы, зенкерование, развертывание и т.д.). К универсальным относятся вертикально- и радиально-сверлильные станки.

Все вертикально-сверлильные станки могут быть разделены на 4 группы:

Станки легкие

Настольные с наибольшим диаметром сверления 3, 6 и 12 мм;

Средних размеров с наибольшим диаметром сверления 18, 25, 35 и 50 мм;

Тяжелые станки с наибольшим диаметром сверления 75 мм.

Наибольшее распространение имеет одношпиндельные вертикально сверлильные станки.

Характерной особенностью вертикально-сверлильных станков является вертикальное расположение шпинделя. Одной из разновидностей вертикально-сверлильных станков являются настольные станки.

Настольные вертикально-сверлильные (см. рис. 3) станки применяют в единичном и мелкосерийном производстве - в механических, инструментальных и других цехах металлообрабатывающих предприятий для сверления в мелких изделиях отверстий диаметром от 5 до 12 мм. Они устанавливаются на верстаке и крепятся к нему болтами. Эти станки выпускаются различных моделей. Однако почти у всех станков вращение передается шпинделю от электродвигателя клиноременной передачей. Кроме того, режущий инструмент в осевом направлении перемещается не механически, а вручную, рукояткой осевой подачи шпинделя.

Ручная подача шпинделя вращением рукоятки ручной подачи 6. Гайка 8 предназначена для снятия с конуса шпинделя сверлильного патрона. В нем крепится режущий инструмент.

Вертикально-сверлильные станки (основной и наиболее распространенный тип) применяются преимущественно для обработки отверстий в изделиях сравнительно небольшого размера в производственных цехах мелко серийного производства Винник 136.

Ручная подача шпинделя осуществляется во всех станках этой группы.

Радиально-сверлильные станки бывают стационарные, переносные, передвижные, с поворотной головкой и пр.

На радиально-сверлильных станках выполняют те же технологические операции, что и на вертикально-сверлильных, а именно: сверление отверстий в сплошном материале, рассверливание и зенкерование предварительно просверленных отверстий, зенкерование торцовых поверхностей, развертывание отверстий, нарезание внутренней резьбы метчиками.

С помощью специальных инструментов и приспособлений на радиально-сверлильных станках можно растачивать отверстия, канавки, вырезать отверстия большого диаметра в дисках из листового материала, притирать точные отверстия цилиндров, клапанов и т.д. Согласно перечню технологических операций, радиально-сверлильные станки являются универсальными. Основное назначение их обработка отверстий в крупных деталях в условиях единичного и мелкосерийного производства.

Принципиальное отличие от вертикально-сверлильных станков состоит в том, что при работе на них приходится перемещать обрабатываемую деталь относительно сверла, а в радиально-сверлильных станках, наоборот, сверло перемещают относительно обрабатываемой детали. Это сделано не случайно, так как при обработке тяжелых деталей на их установку, выверку и закрепление требуется больше времени, чем на подвод сверла.

Шпиндель радиально-сверлильного станка легко можно перемещать как в радиальном направлении, так и по окружностям различных радиусов. Это дает возможность сверлить отверстия в любой точке участка детали, ограниченного двумя концентрическими секторами окружностей: одна из них образована радиусом наибольшего, а другая - наименьшего вылета шпинделя при круговом вращении рукава относительно колонны станка. Благодаря своей универсальности радиально-сверлильный станки находят широкое применение - от ремонтного до машиностроительных цехов крупно серийного производства.

Многошпиндельные сверлильные станки

Такие станки применяются главным образом в серийном производстве для обработки изделий в, которых требуется одновременно просверлить, развернуть, нарезать резьбу в большом количестве отверстий на разных плоскостях изделия, так как использование для этих целей одношпиндельных станков было бы не экономично.

Шпиндели в сверлильной головки могут быть установлены в зависимости от расположения отверстий у обрабатываемого изделия.

Специализированные сверлильные станки

К станкам этой группы относят станки для глубокого сверления. Так как условия обработки глубоких изделий разнообразны, на производстве встречается большое число типов этих станков.

Сверлильные станки с ЧПУ

По сравнению с обычными автоматами и полуавтоматами такие станки имеют следующие преимущества:

сокращения времени на переналадку станка для обработки новой детали (смена

программоносителя и инструментальной оснастки).

получение высокой степени точности и стабильности качества.

небольшая затрата времени на изготовление программы.

возможность управления скоростями и подачами без участия рабочего.

По технологическому признаку системы ПУ делят на 2 группы:

Позиционная и контурная (непрерывная). Для станков сверлильно-расточной группы применяют позиционную систему. Программа обеспечивает перемещение стола с заготовки или инструмента в нужную точку обработки в заданной последовательности.

Электроискровой и ультразвуковой станки для обработки отверстия

Такие станки применяются для образования отверстий в деталях из твердых сплавов и закаленных сталей так как режущий инструмент для таких работ очень быстро выходит из строя. Электроискровой метод обработки основан на электроэрозии металлов: металл разрушается под воздействием электрических разрядов, посылаемых источником электрического тока.

Ультразвуковой метод основан на использовании упругих колебаний среды со сверх звуковой частотой (свыше 20 кГц).

С помощью этого метода можно изготовлять отверстия любой формы и глубины в заготовках из твердых сплавов, жаропрочных и нержавеющих сталей, фарфора, стекла и др.

Инструменты и технологическая оснастка, применяемая при сверлении

Инструменты:

Отверстие на сверлильных станках обрабатываются различными режущими инструментами: сверлами, зенкерами, развертками, резцами и метчиками.

Изготавливаются из быстрорежущих углеродистых и легированных сталей, также они могут быть оснащены пластинками из твердых сплавов.

Наибольшее распространение в промышленности получили спиральные сверла. Они изготавливаются диаметром от 0,1 до 80 мм. Спиральные сверла состоят из рабочей части, хвостовика (конусного или цилиндрического), служащего для крепления сверла в шпинделе станка или патроне, и лапки которые являются упором для удаления сверла из шпинделя.

Форма хвостовой части сверла выбирается в зависимости от способа его крепления (для патрона - квадратный хвостовик, для конуса шпинделя-конусный). Рабочая часть сверла представляет собой цилиндрический стержень с двумя спиральными канавками, направленными под углом 60 к оси сверла и предназначенными для образования режущей части и отвода стружки.

На рисунке 4 изображены спиральные сверла.

Кроме спиральных сверл применяют также перовые сверла, сверла для глубокого сверления, центровочные сверла и.т.д.

Служит для дальнейшей обработки ранее просверленных отверстий. В отличии от спиральных сверл зенкеры имеют 3 или 4 режущие кромки и у них отсутствует перемычка.

Зенкеры бывают двух типов: цельные с коническим хвостовиком и насадные (цельные и со вставными ножами).

Рабочая часть цельного зенкеры выполняется из быстрорежущей стали, и приваривается к коническому хвостовики из конструкционной стали. Они как сверла закрепляются в коническом отверстии шпинделя станка. Их изготавливают трехзубыми. Ими обрабатывают отверстия диаметром до 35 мм.

У насадных зенкеров ножи изготавливают из быстрорежущей стали или твердого сплавов. Их насаживают на специальную оправку с коническим хвостовиком для крепления в шпинделе станка. Они имеют 4 зуба и служат для обработки отверстий диаметром до 100 мм. Есть также ряд конструкции зенкеров, у которых в качестве режущей части используются многогранные твердосплавные пластинки.

Развертки

Применяют для окончательной обработки отверстий с целью получения высокой точность и меньших параметров шероховатости поверхности. По своей конструкции и назначению развертки делятся: на ручные и машинные, цилиндрические и конические, насадные и цельные.

Ручные - изготавливают с цилиндрическим хвостовиком, ими вручную обрабатывают отверстия диаметром от 3 до 50 мм.

Машинные - выпускают с цилиндрическими и коническими хвостовиками, обрабатывают отверстия на сверлильном или токарном станке диаметром от 3 до 100 мм.

Насадные развертки-изготавливают из быстрорежущей стали или оснащаются пластинками из твердых сплавов. Их крепят на станке через специальную оправку. Они служат для развертывания отверстия диаметром от 25 до 300 мм.

Конические - применяют для развертывания конических отверстий.

Цельные - изготавливают из инструментальной углеродистой легированной или быстрорежущей стали.

Для работы в твердых металлах развертки оснащают пластинками из твердого сплава.

Метчики

Применяют для нарезания внутренних резьб. По своей конструкции и назначению они делятся на следующие виды:

ручные - для нарезания дюймовых, метрических и трубных резьб вручную (в комплекте 2-3 метчика).

гаечные - для нарезания метрических и дюймовых резьб в гайках и различных деталях на сверлильных станках.

машинные - для нарезания метрических, дюймовых и трубных резьб в сквозных или глухих отверстиях на сверлильных или токарных станках.

Метчики изготавливаются из инструментальных углеродистых, легированных и быстрорежущих сталей.

В процессе резания все выше рассмотренные инструменты изнашиваются.

Виды износа, причины поломок и способы их устранения определяется по специальным таблицам. Для повышения износостойкости инструмента применяют следующие методы упрочения: электроэрозионный, плазменный, лазерный, и т.д.

Режущие инструменты подвергаются заточке по мере их затупления. Правильная заточка увеличивает, стойкость инструмента и производительность, обеспечивает получение требуемого параметра шероховатости поверхности и точности обработки отверстий. Рекомендуемые формы заточек и размеров режущих элементов выбираются из специальных таблиц в зависимости от обрабатываемого материала и назначения.

Качество заточки сверла проверяют по специальным шаблонам и прибором для измерения углов заточки.

Технологическая оснастка

Для правильной установки и закрепления обрабатываемых заготовок на столе сверлильного станка применяют различные приспособления: тиски машинные (винтовые, эксцентриковые и пневматические), призмы, упоры, угольники, кондукторы, специальные приспособления и др.

Машинные тиски. Машинные винтовые тиски (см. рисунок 4) широко используют в единичном производстве. Они состоят из основания 4, закрепляемого на столе станка болтами, подвижной губки 2, неподвижной губки 3, винта 1 и рукоятки 5. Заготовка крепится между губками поворотом рукоятки, сообщающей вращение винту.

Кроме того, применяются быстродействующие машинные тиски с рычажно - кулачковым механизмом; в серийном и массовом производстве применяются пневматические машинные тиски и пневмогидравлические тиски.

Кондукторы для закрепления заготовок

Обеспечивают правильное положение инструментаотносительно осиобрабатываемого отверстия на сверлильных станках.

Для направления режущего инструмента в корпусе кондуктора имеются кондукторные втулки, которые обеспечивают точную обработку отверстий в соответствии с чертежом. Они бывают постоянные (мелкосерийное производство обработка одни инструментом) и быстросменные (для массового и крупносерийного производства). Правильное положение обрабатываемых заготовок относительно инструмента обеспечивается установочными опорами.

Применение кондукторов устраняет необходимость в разметке, нанесении центровых отверстий, и других операций, связанных со сверлением по разметке. Поэтому их широко используют в серийном и массовом производстве.

Поворотные и передвижные приспособления

К числу поворотных и передвижных приспособлений, используемых сверлильных станках, относятся нормализованные стойки, поворотные и передвижные столы, применяемые для обработки отверстий обычно вместе со съемными рабочими приспособлениями - поворотным кондукторами для установки и закрепления обрабатываемой заготовки и направления режущего инструмента. Поворотные приспособления, имеющие горизонтальную ось вращения делительной планшайбы, называют поворотными стойками, а приспособления с вертикальной осью вращения - поворотными столами.

Патроны

Для закрепления сверл, а также разверток, зенкеров и зенковок применяются специальные приспособления - патроны и переходные втулки. Патроны укрепляются в шпинделе сверлильного станка или дрели и от шпинделя передают вращение и подачу сверлу.

Патроны бывают различной конструкции:

Двухкулачковый патрон состоит из корпуса, в пазах которого перемешаются навстречу друг другу или раздвигаются два стальных закаленных кулачка. Кулачки перемещаются при вращении винта, имеющего на одном конце правую, а на другом - левую резьбу. Такая же резьба имеется и на кулачках.

Трехкулачковый патрон, представляющий собой хвостовик, на который навинчена втулка, с резьбой на наружной поверхности. На эту резьбу навертывается корпус с внутренним конусом. При навертывании корпуса три кулачка, прижатые к нему пружиной, сходятся и зажимают сверло.

Более точным является трехкулачковый патрон с наклонно расположенными кулачками.

Цанговый патрон представляет собой приспособление, служащее для зажима сверл небольшого диаметра с цилиндрическим хвостовиком в сверлильных станках. Цанговые патроны обеспечивают сильное и точное закрепление легкого и среднего инструмента. При больших нагрузках цанги работают плохо.

Переходные втулки

Применяется для инструмента имеющий конический хвостовик. Наиболее прост, удобен и точен метод установки режущего инструмента непосредственно в конус шпинделя сверлильного станка. Но не всегда внутренние конические гнезда шпинделя могут быть использованы для непосредственного крепления инструмента. Если размеры хвостовика не подходит к шпинделю применяют переходные короткие и длинные втулки. Их наружные и внутренние поверхности представляют собой стандартные конусы. Номера переходных втулок выбираются по размерам конусов режущего инструмента.

Список используемой литературы

1)Винников И.З. Сверлильные станки и работа на них. М.: Высшая школа, 1988. - 255 с.

2)Данилевский В.В. Технология машиностроения. М.: Высшая школа, 1972.-537 с.

)Космачев И.Г. Справочник инструментальщика. Ленинград: Лениздат, 1963.-356 с.

)Лоскутов В.В. Сверлильные и расточные станки М.: Машиностроение, 1981. - 150 с.

)Макеенко Н.И. Слесарное дело с основами материаловедения. М.: Высшая школа, 1973-458с

7)http://www.mirstan.ru/index.php? page=art11


Сверление

Сверление, зенкерование и развертывание

Сверление представляет собой про­цесс удаления металла для получения отверстий. Процесс сверления вклю­чает два движения: вращение инстру­мента V (рис. 48) или детали вокруг оси и подачу S вдоль оси. Режущие кромки сверла срезают тонкие слои металла с неподвижно укрепленной де­тали, образуя стружку, которая, скользя по спиральным канавкам сверла, выходит из обрабатываемого отверстия. Сверло является многолез­вийным режущим инструментом. В ре­зании участвуют не только два главных лезвия, но и лезвие перемычки, также два вспомогательных, находя­щихся на направляющих ленточках сверла, что очень усложняет процесс образования стружки. При рассмотрении схемы образования стружки при сверлении хорошо видно, что условия работы режущей кромки сверла в раз­ных точках лезвия различны. Так, пе­редний угол наклона режущей кромки у (рис. 49),

Рис. 48. Схема ре­зания при сверлении. Силы, действующие на сверло

Рис. 49. Образование стружки при сверлении

расположенный ближе к периферии сверла (сечение А-А), является положительным. Режущая кромка работает в сравнительно лег­ких условиях.

Передний угол наклона режущей кромки, расположенный дальше от пе­риферии, ближе к центру сверла (сечение В-В), является отрицатель­ным. Режущая кромка работает в бо­лее тяжелых условиях, чем расположенная ближе к периферии.

Резание поперечной режущей кром­кой (сечение С-С) представляет со­бой процесс резания, близкий к выдавливанию. При сверлении по сравнению с точением значительно хуже условия отвода стружки и подвода охлаждаю­щей жидкости; имеет место значитель­ное трение стружки о поверхность ка­навок сверла, трение стружки и свер­ла об обработанную поверхность; вдоль режущей кромки возникает рез­кий перепад скоростей резания - от нуля до максимума, в результате чего в различных точках режущей кромки срезаемый слой деформируется и сре­зается с разной скоростью; вдоль ре­жущей кромки сверла деформация различна - по мере приближения к периферии деформация уменьшается. Эти особенности резания при сверле­нии создают более тяжелые по сравне­нию с точением условия стружкообразования, увеличение тепловыделения и повышенный нагрев сверла. Если же рассматривать процесс стружкообразования на отдельных микро участках режущей кромки, то упругие и плас­тические деформации, тепловыделение, наростообразованне, упрочнение, износ инструмента здесь возникают по тем же причинам, что и при точении. На температуру резания при сверлении скорость резания имеет большее влия­ние, чем подача.

Рис.50. Спиральное сверло


Элементы сверла. Наиболее рас­пространенным и имеющим универ­сальное назначение является спираль­ное сверло (рис. 50). Сверло состоит из рабочей части, конусного или цилинд­рического хвостовика, служащего для закрепления сверла, а лапки, являющейся упором при удалении сверла. Рабочая часть сверла представляет со­бой цилиндрический стержень с двумя спиральными или винтовыми канавка­ми, по которым удаляется стружка. Режущая часть заточена по двум коническим поверхностям, имеет переднюю и заднюю поверхности (рис. 50) и две режущие кромки, соединенные пе­ремычкой под углом 55°. На цилинд­рической части по винтовой линии про­ходят две узкие ленточки, центрирую­щие и направляющие сверло в отверс­тии. Ленточки значительно уменьшают трение сверла о стенки обрабатывае­мого отверстия. Для уменьшения тре­ния рабочей части сверла в сторону хвостовика сделан обратный конус. Диаметр сверла уменьшается на каж­дые 100 мм длины на 0,03-0,1 мм.

Режущая часть сверла изготовля­ется из инструментальных сталей в твердых сплавов. Как и резец, сверло имеет передний и задний углы (рис.51). Передний угол у (сечение Б-Б) в каждой точке режущей кромки является величиной переменной. Наибольшее значение угол у имеет на периферии сверла, наименьшее-у вершины сверла. Вследствие того что сверло во время работы не только вращается, но и перемещается. вдоль оси, действительное значение заднего угла а отличается от угла, по-. лученного при заточке. Чем меньше диаметр окружности, на которой нахо­дится рассматриваемая точка режу­щей кромки, и чем больше подача, тем меньше действительный задний угол.

Действительный же передний угол в процессе резания соответственно бу­дет больше угла, замеренного после заточки. Чтобы обеспечить достаточ­ную величину заднего угла в работе