Сигнализатор уровня воды своими руками. Схема индикатора уровня воды


  • 07.05.2019

    На аудиопроцессоре TDA7468 совместно с Arduino можно собрать высоко качественный регулятор тембра и громкости. Аудипроцессор имеет 4 стерео входа и один стерео выход. Аудиопроцессор имеет следующие характеристики: Напряжение питания 5…10 В (9 В рекомендуемое) КНИ не более 0.01% Отношение сигнал.шум 100 дБ Разделение каналов 90 дБ Ток потребления 9 мА …

  • 03.10.2014

    Этот стабилизатор напряжения предназначен для питания радиолюбительских конструкций в процессе их налаживания. Он вырабатывает постоянное стабилизированное напряжение от 0 до 25,5В, которое можно изменять с шагом 0,1В. Ток срабатывания защиты от перегрузки можно плавно менять от 0,2 до 2А. Схема устройства показана на рис 1, счетчики DD2 DD3 формируют цифровой …

  • 16.03.2015

    На рисунке показана схема простого регулируемого светодиодного драйвера с максимальной выходной мощностью до 30 Вт (до 1,2А). Регулировка яркости светодиодов осуществляется при помощи внешнего ШИМ-сигнала с выходным напряжением от 0,5 до 2,5В и частотой регулирования от 100Гц до 20кГц. Сигнал подается на DIM вход микросхемы PT4115. Если напряжение ШИМ-сигнала будет больше 2,5В, …

  • 03.01.2016

    На рисунке показана схема простого АМ приемника состоящего всего из двух транзисторов. Транзистор VT1 работает как ВЧ-усилитель с обратной связью и как демодулятор одновременно. Чувствительность приемника зависит от величины обратной связи и может быть отрегулирована при помощи потенциометра VР1. VT2 используется как усилитель НЧ. Катушки антенный намотаны на ферритовом стержне …

Данное устройство было разработано для септика загородного дома, в качестве индикатора, для слежения за уровнем наполнения канализации. Задача была создать надежный датчик, который должен работать в условиях влаги и в разных температурных режимах. В начале, думал применить принцип поплавка в цилиндре, взяв за основу емкость из под силикона (как видно на рисунке возможных вариантов исполнения датчика уровня жидкости). Но, сама жизнь, направляет и подсказывает нужные пути, нужно только уметь осознавать это! Исходя из того, что в моем септике уже имелся вывод канализационных труб на 110мм и на 50мм, решение пришло само по себе. Таким образом, появилась возможность закрепить устройство на 50мм-й трубе, исключив другие варианты крепления. Все материалы должны быть из пластмассы, алюминия, бронзы, нержавейки, и так далее – устойчивыми к среде, к которой вы их собирайтесь применить!

Принцип работы датчика уровня жидкости основан на магните и герконах. Перемещением магнита вдоль двух герконов, происходит срабатывание датчиков и соответственно свечение светодиодов определенным цветом, указывая о мере заполнения резервуара жидкостью. Я пытался максимально упростить схему изделия, и добился использования всего двух герконов. Также, было важно применить как можно меньше деталей для надежной, долгосрочной эксплуатации.

Схема датчика уровня жидкости

Принцип работы датчика уровня жидкости

Возможные варианты исполнения датчика уровня жидкости

По схемам видно, что в нижнем положении поплавка, когда горит зеленый светодиод HL1, задействован 2-йгеркон. То есть уровень жидкости находится ниже поплавка, который ограничен стопором и соответственно магнит замыкает контакты геркона. По мере поднятия уровня жидкости (заполнения резервуара), происходит перемещение магнита и переключение 2-го геркона, который подключает желтый светодиод HL2 и выключает HL1. При достижении критического уровня, магнит задействует 1-й геркон, загорится красный светодиод HL3, а желтый погаснет, оповещая вас о заполнении резервуара. При какой-либо неисправности с поплавком или магнитом, должен будет гореть желтый светодиод (например, опрокидывание поплавка или смешением магнита, поломки стопора, и т.д.). Добавив реле в схему, можно будет применить его в качестве исполнительного устройства для подключения более мощных нагрузок. Также, можно подключить ко 2-у геркону зуммер, для звукового оповещения или мобильный телефон и так далее.

Питание девайса от любого источника 3-12В. Например от телефонной зарядки с импульсным блоком питания на 5 вольт или двух батареек по 1,5В, также подойдет более компактная на 3В. При этом, надо будет снизить сопротивление резистора R1. Кнопка или выключатель подберите поменьше, хотя можно обойтись и без него, держа индикатор включенным постоянно. Монтаж навесной, в доме, например в электрощите. Заранее проведите проводку (она у меня была уже наготове). Таким образом, можно обойтись очень простой схемотехникой, без микроконтроллеров и т.п. Ведь чем проще – тем надежнее!

Итак, нам понадобится следующие материалы:

Муфта соединительная для канализационных труб ПП d=50mm х2шт.
- заглушка канализационная d=50mm х2шт.
- хомут пластиковый (браслет) х1шт.
- профили пластмассовые U-образные (из мебельной фурнитуры).
- термоусадочный кембрик d=30-40mm, d=3-10mm.
- пластмассовая или текстолитовая пластина =4-6mm.
- заклепки алюминиевые х10шт.
- магнит неодиновый (от жесткого диска компьютера) х1шт.
- герконы 3-хконтактные х2шт.
- кнопка или выключатель низковольтный х1шт.
- резистор 680-1,5к. х1шт.
- светодиоды х3шт.
- провода низковольтные (например для охранной сигнализации, 5-и жильный).
- штекер на 4 ножки (например от диммера для RGB LED).
- термоклей или силикон.
- питание 12В или батарейка на 3В (от компьютера).

Из инструмента:

Дрель
- фен строительный
- термопистолет
- паяльник
- также другой подручный инструмент, который найдется у любого мастера.

Изготовление

Сперва надо найти все нужные материалы и запастись терпением. У меня работа заняла дня три, включительно разработка и эксперименты. Схему устройства советую сперва испытать, а потом уже собирать. Будьте внимательны при работе с герконами, очень легко разбить стеклянный корпус при сгибании ножек. Используя пластиковый хомут, закрепите герконы термоклеем. Расстояние для них, подберите экспериментально, оно должно обеспечить срабатывание герконов при прохождении магнита. За герметизируйте соединение термоусадкой и термоклеем или силиконом. Готовый браслет одевается на муфту и позволяет регулировку наилучшего положения срабатывания. Также, его легко заменить при неисправности отсоединением штекера. Штекер найдите влагоустойчивый, на четыре или более ножек. Если штекер подвержен воздействию влаги, закройте его термоусадкой или засиликоньте. Можно обойтись и без него, припаяв провода напрямую.

Исходя от длины держателя поплавка, зависит ход срабатывания устройства. В моем случае, длина составляет примерно 40см. Профиль поплавка надо нагреть строительным феном и уложить на муфту (это делается быстро), в последствии склеить и соединить заклепками. Получившейся хомут, должен обеспечить легкое вращение относительно муфты с герконами. Сам поплавок, установив заглушки, просто крепится к профилю заклепками. То, что конструкция поплавка имеет определенную гибкость, предотвратит, в дальнейшем его поломку. Также крепится к конструкции неодиновый магнит, так чтобы он находился на расстоянии срабатывания герконов. Просверлив отверстия в муфте, установите стопор поплавка, он нужен для правильного положения срабатывания при работе аппарата.

Многие дачники используют в своем хозяйстве различные системы водоснабжения, использующие промежуточные емкости. Они помогают вода очиститься, нагреться, в них оседает песок и окислы железа, вода насыщается кислородом. Часто такие емкости, бочки и баки устанавливают в подвалах и использую подкачивающие насосы. Или наоборот, ставят их на чердаке и втором этаже и тогда вода идет самотеком. Но и в том и в другом случае, желательно знать – сколько осталось воды в баке. Особенно если он не оборудован автоматической системой поддержания уровня воды. Для этого приходится периодически спускаться в подвал или залезать на чердак, что неудобно. А удобно иметь дистанционный указатель уровня воды с индикацией в месте ее основного потребления или в месте, где установлено управление насосом, наполняющим эту емкость. Рассмотрим некоторые варианты устройства, которые можно сделать на даче и дистанционно контролировать уровень воды. Надо сразу сказать, что человека вряд ли интересует точное значение количества воды в баке. Нет разницы, 153 или 162 литра там находится. Здесь – так же как и в автомобиле, важно знать с точностью до 10-15% — «почти полный бак», «половина», «меньше четверти» и т.п.

Механические индикаторы. Самые простые в исполнении, но довольно громоздкие. Как правило, представляют собой довольно большой и тяжелый поплавок, к которому привязан шнур. Шнур переброшен через блок (шкив) и к его другому концу прикреплен груз, по весу примерно равный поплавку, находящемуся в воде. При изменении уровня воды, груз перемещается вверх – вниз и может сам служить индикатором наполнения емкости, если виден. Правда с «перевернутой» шкалой – чем больше воды, тем ниже груз-индикатор.

Но если бак визуально не виден, то необходимо протягивать шнур в место размещения индикатора. Для этого прочный шнур натирают мылом (для лучшего скольжения), пропускают в тонкую трубку и на другом его конце устраивают шкалу. Разумеется, совершенно не требуется шкала размером с высоту возможного уровня воды (а это может быть и целый метр). Поэтому на одну ось с основным шкивом насаживают (и крепят к основному шкиву) шкив со значительно меньшим диаметром. На него наматывают немного шнура и уже он будет двигать стрелку индикатора. Длина индикаторной шкалы теперь будет меньше хода поплавка в столько раз, в сколько раз диаметр малого шкива меньше диаметра большого. А так же будет нормальной — максимум уровня вверху.

Такой же индикатор можно сделать и в случае поплавка на рычаге. Такая система больше подойдет для емкостей небольшой глубины, но с большой площадью поверхности воды. Такие используются обычно для того, что бы избавиться от растворенного в воде железа. В этом варианте необходимый коэффициент мультипликации можно получить просто подобрав точку крепления шнура к рычагу.

Явный недостаток таких индикаторов — обилие движущихся частей, а следовательно – необходимость содержания их в чистоте, смазке. Сложность прокладки коммуникации (трубки) на большое расстояние и через перекрытия.

Пневматические индикаторы. Устроены такие индикаторы следующим образом. В емкость для воды опущена труба, которая имеет заглушку вверху. В трубе образуется воздушный колокол. В заглушку трубы врезан штуцер, от которого тянется тонкая герметичная трубка. На другом ее конце располагается U-образная трубка – индикатор. К одному ее концу подсоединена трубка из емкости, другая — свободна. В индикаторе находится водяная пробка (из подкрашенной воды). Таким образом, в трубке оказывается запертой некоторая порция воздуха.

Когда уровень воды в баке меняется, то соответственно эта порция воздуха двигается вверх –вниз. А вместе с ним – двигается и «цветная» пробка, которая и служит индикатором. В отличие от механических систем, тут нет движущихся частей, требующих ухода. Но системе присущи другие недостатки. В частности — высокие требования к герметичности трубки и зависимость показаний от температуры и атмосферного давления. Погрешность незначительная, но она есть.

Электрические индикаторы. Являются самыми технологичными и могут быть исполнены в самых разнообразных вариантах. Начиная от простейших стрелочных индикаторов, кончая светодиодными шкалами и дисплеями. Но в основе любого электрического индикатора обязательно лежит какой то датчик уровня жидкости. Проще всего его изготовить из переменного резистора, движок которого занимает соответствующее положение в зависимости от уровня воды в баке.

Схема подключения достаточно проста. В качестве индикатора служит любая стрелочная головка микроамперметра. При максимальном уровне воды (движок переменного резистора вверху по схеме) подбором резистора R1 стрелка микроамперметра устанавливается крайнее правое положение — «полный бак». На этом наладка закончена. При минимальном уровне воды (движок резистора внизу по схеме) микроамперметр будет показывать «ноль» — «пустой бак».

Такой переменный резистор можно насадить, например, на ось шкива (см механические индикаторы). А можно сделать его самому. Для этого надо взять проволоку из металла в высоким удельным сопротивлением (нихром, константан, фехраль и др.) и насадить на нее поплавок с упругими скользящими контактами. Например из луженой жести. Проволока вывешивается в баке, внизу прикрепляется груз. К концам проволоки и скользящим контактам припаиваются провода. При изменении уровня воды поплавок будет перемещаться по проволоке от максимального до минимального уровня.

Что бы дистанционный индикатор не потреблял электрический ток попусту, лучше подключить его через кнопку. Тогда одного комплекта батареек хватит на несколько лет. Использование микроаперметрической головки не является единственным способом индикации. Можно сделать простейший компаратор напряжения и использовать его со светодиодной шкалой, оснастить звуковыми индикаторами и т.п. Схемы таких светодиодных шкал можно найти в интернет и соответствующей радиолюбительской литературе.

Основное удобство электрических индикаторов — их точность, отсутствие трансмиссии, легкость проводки, надежность, зрелищность индикации. Недостаток — необходимость электропитания.

Иногда требуется узнать, сколько воды или иной токопроводящей жидкости осталось в какой-либо закрытой емкости. Например в металлической бочке закопанной в землю либо поднятой на высоту так, что не возможно определить ее содержимое. Для решения этой проблемы рекомендую собрать схему простого датчик уровня воды. Устройство состоит всего из нескольких радиокомпонентов: резисторов, транзисторов и трех светодиодов.


Из-за меняющегося давления в отопительной системе и нагрева жидкости расширительный бочек делают открытым, поэтому через какое-то время часть воды выкипает, и это приводит к остановке циркуляции воды и перегреву нагревательных элементов. Данное устройство покажет когда уровень воды снизиться ниже датчика.

VT1 и VT2 практически любые маломощные,BC547, BC337-40 или C9014. IC1- LM358 или 741. Светодиоды любые на напряжение 3-4В. Все резисторы мощностью 0.125Вт.

Транзисторы VT1 и VT2 образуют усилитель с гальванической связью. Сопротивление R2 задает смещение на базу второго транзистора и в то-же время являясь нагрузкой первого. Резистор R3 предназначен для нагрузки VT2.

Если контакты устройства находятся в воде или иной токопроводящей жидкости, то плюс питания окажется соединен с резистором R1 через воду, поэтому на базу транзистора VT1 поступает напряжение и он отпирается, при этом VT2 остается закрытым и не инвертирующий вход операционного усилителя будет подключен к минусу через сопротивление R3. На выходе операционного усилителя будет присутствовать логический ноль и первый светодиод засветится, говоря о нормальном уровне воды.

Если уровень жидкости снизится и водяной контакт разомкнется, то напряжения смещения перехода на базе VT1 исчезнет и он будет закроется. Соответственно база VT2 будет соединена с плюсом питания и он отпирается, соединив не инвертирующий вход ОУ с плюсом, и поэтому на его выходе формируется уровень логической единицы, второй светодиод начинает сигнализировать о снижении уровня жидкости.

Индикатор уровня воды можно также подключить и к звуковой индикации. Подсоединив вывод OUT индикатора уровня к выводу блока аудио сигнализации ().

В роли датчика подойдут обычные два провода можно применить толстый двужильный провод, оголив концы. Датчик монтируемый на необходимый нам уровень контроля.

Датчик уровня воды своими руками

Внешний вид датчика уровня жидкости показан на фотографиях ниже. В качестве зондов применяется проволока из нержавеющей стали, которая припаивается к контактам разъема, после чего это пространство заполняется герметиком или клеем.


В состав конструкции входят три зонда: - общий, - включение и - выключение. Изолирующие втулки изготовлены из внутренней изоляции коаксиального кабеля большого диаметра. Конструкция соединяется с блоком автоматики при помощи экранированного кабеля с двумя изолированными жилами. Экранирующая оплетка подключена к общему зонду.

Датчик уровня жидкости с звуковым оповещением

В роли датчика используются два металлических стержня погруженных в жидкость. Принцип работы преобразователя основана на способности подовляющего большинства жидкостей проводить ток. Высокая чувствительность преобразователя обеспечивается применением логической микросборки КМОП на полевых транзисторах с изолированным затвором. Отечественная микросборка К561ЛА7 состоит из четырех логических элементов «И-НЕ». На DD1.1 и DD1.2 собран классический генератор прямоугольных импульсов, работающий на частоте 3 Гц.

Генератор, выполненный на DD1.3 и DD1.4, работает на частоте 1 кГц. Если погружаемый датчик соприкасается с жидкостью, емкость C1 начинает заряжатся и запускает генератор DD1.1 – DD1.2, который, каждые 350 миллисекунд запускает генератор на DD1.3 – DD1.4. Поэтому на выходе радиолюбительской самоделки появляется генерируется прерывистый звуковой сигнал. Чувствительность можно настраивать подбором сопротивления R1. Чем больше его номинал, тем выше чувствительность. Емкость C1 защищает высокоомный вход микросборки от вероятных помех.

Более простой вариант схемы:

Для сборки этого датчика уровня воды вам потребуется: полевой транзистор IRF540N или аналогичный, например IRFZ44N; Любой Активный зуммер (пищалка); Сопротивление на 1 МОм; Источник питания 12В, например аккумуляторная батарея.


Принцип работы схемы для контроля уровня жидкости показан в видео инструкции ниже:

Для регулирования и контроля уровня жидкости либо твердого вещества (песка или гравия) на производстве, в быту используют специальный прибор. Он получил название датчик уровня воды (или другого интересующего вещества). Существует несколько разновидностей подобных устройств, значительно отличающихся друг от друга принципом действия. Как работает датчик, преимущества, недостатки его разновидностей, на какие тонкости при выборе устройства стоит обратить внимание и как сделать упрощенную модель с реле своими руками, читайте в этой статье.

Общая классификация приборов

Датчик уровня воды используется для следующих целей:

  • Для восприятия изменения количества жидкости и передачи дискретного сигнала в случае завышения максимально допустимой отметки в резервуаре на реле;
  • Для включения реле сигнализации (световой или звуковой) в главном корпусе управления;
  • Для передачи показателей уровня жидкости на табло пульта управления с отображением конкретных резервуаров;
  • Для организации замкнутой схемы системы автоматического контроля воды в резервуаре. Для этого дополнительно потребуется контроллер, электродвигатель насоса.

Возможные методы определения загруженности резервуара

Существует несколько методов измерения уровня жидкости:

  1. Бесконтактный – зачастую приборы такого типа используются для контроля уровня вязких, токсичных, жидких либо твердых, сыпучих веществ. Это емкостные (дискретные) приборы, ультразвуковые модели;
  2. Контактный – устройство располагается непосредственно в резервуаре, на его стенке, на определенном уровне. По достижению водой этого показателя датчик срабатывает. Это поплавковые, гидростатические модели.

По принципу действия различают следующие виды датчиков:

  • Поплавкового типа;
  • Гидростатические;
  • Емкостные;
  • Радарные;
  • Ультразвуковые.

Кратко о каждом виде приборов

  1. Датчик уровня жидкости поплавковый – отличается простотой конструкции, зачастую используется в сочетании с электрическим реле. Система действует просто: при достижении определенного уровня вода воздействует на поплавок. Он в свою очередь изменяет положение, замыкает контакт реле, к которому прикреплен одним концом.

Поплавковые модели бывают дискретные и магнитострикционные. Первый вариант — дешевый, надежный, а второй – дорогой, сложной конструкции, но гарантирует точное показание уровня. Однако общий недостаток поплавковых приборов – это необходимость погружения в жидкость.

Поплавковый датчик определения уровня жидкости в баке

  1. Гидростатические устройства – в них все внимание обращено на гидростатическое давление столба жидкости в резервуаре. Чувствительный элемент прибора воспринимает давление над собой, отображает его по схеме для определения высоты столба воды.

Главные преимущества таких агрегатов – компактность, непрерывность действия и доступность по ценовой категории. Но использовать их в агрессивных условиях нельзя, потому как без контакта с жидкостью не обойтись.

Гидростатический датчик уровня жидкости

  1. Емкостные приборы – для контроля уровня воды в баке предусмотрены пластины. По изменению показателей емкости можно судить о количестве жидкости. Отсутствие подвижных конструкций и элементов, простая схема устройства гарантируют долговечность, надежность работы прибора. Но нельзя не отметить недостатки — это обязательность погружения в жидкость, требовательность к температурному режиму.
  2. Радарные устройства – определяют степень повышения воды путем сравнения частотного сдвига, задержки между излучением и достижением отраженного сигнала. Таким образом, датчик действует как излучатель и улавливатель отражения.

Подобные модели считаются лучшими, точными, надежными устройствами. Они обладают рядом достоинств:

  • Не имеют подвижных деталей;
  • Не контактируют с жидкой средой;
  • Не привередливы к среде, условиям функционирования;
  • Точность показателей.

К недостаткам модели можно отнести только их высокую стоимость.

Радарный датчик уровня жидкости в резервуаре

  1. Ультразвуковые датчики – принцип функционирования, схема устройства аналогичны радарным приборам, только используется ультразвук. Генератор создает ультразвуковое излучение, которое по достижению поверхности жидкости отражается и попадает через некоторое время на приемник датчика. После небольших математических вычислений, зная временную задержку и скорость движения ультразвука, определяют расстояние до поверхности воды.

Плюсы радарного датчика присущи и ультразвуковому варианту. Единственное, менее точные показатели, более простая схема работы.

Тонкости выбора подобных устройств

При покупке агрегата обратите внимание на функциональность прибора, некоторые его показатели. Крайне важные вопросы при покупке прибора – это:

  1. Для каких веществ может использоваться прибор, условия работы, схема устройства;
  2. Влияет ли материал резервуара на точность показаний, принцип действия устройства;
  3. Используется встроенная схема обработки, преобразования сигнала, либо датчик работает как реле;
  4. Точность показаний, в том числе при быстром понижении или повышении уровня жидкости;
  5. Входит ли в комплектацию дисплей для отображения действительных показателей, регулирования заданных параметров, изменения настроек;
  6. Наличие сертификатов на продукцию;
  7. Реагирование системы на температурные перепады;
  8. Как на прибор и его точность могут влиять внешние факторы, например, вибрация, агрессивность среды или электромагнитные волны;
  9. Материал исполнения устройства и возможность его работы в заданных условиях;
  10. Собственно отзывы об агрегате, гарантии срока службы.

Варианты датчиков определения уровня воды или твердых сыпучих веществ

prokommunikacii.ru

Индикатор(датчик) уровня воды на микроконтроллере PIC16F628А – устройство, которое позволит визуально контролировать уровень воды в непрозрачной ёмкости. Предлагаемое устройство может пригодиться всем, у кого есть загородный дом с летним душем или дача, огород, да что угодно лишь была бы емкость с водой. После некоторых модернизаций из индикатора получилось реле уровня воды.

Сам индикатор состоит из двух основных частей:

  1. Датчики уровня воды;
  2. Электроника, которая обрабатывает информацию, полученную от датчиков.

Теперь подробнее рассмотрим каждую из составных частей индикатора.

О схеме.

Схема индикатора собиралась из того, что было под рукой, и разрабатывалась вообще для микроконтроллера PIC16F84, но позже было принято решение добавить поддержку более дешевого и доступного микроконтроллера — PIC16F628A.

Принципиальная схема индикатора уровня воды (рисунок 1) проста, как пять копеек. FM приемник на RDA5807 — проще не бывает!

Рисунок 1 — Принципиальная схема индикатора уровня воды на микроконтроллере PIC16F628A

Рассмотрим основные узлы. Сердцем устройства является микроконтроллер PIC16F628A фирмы Microchip. Для стабильного питания которого, применяется выпрямитель на диодном мосте, конденсаторах и интегральном стабилизаторе L7805.


Для понижения напряжения настоятельно рекомендуется применить понижающий трансформатор, который обеспечит необходимую гальваническую развязку. Гасящие конденсаторы лучше не ставить, так как появляется риск оказаться под опасным потенциалом напряжения.

Датчики подключаются к схеме через барьерные резисторы.

Четыре светодиода отображают текущее количество воды в емкости. В зависимости от того какой датчик замыкает с общим проводом, светодиод того датчика и будет светиться. Весь перечень деталей сведён в таблицу 1.

О датчиках.

В качестве датчиков используются тонкие хомуты из оцинкованной жести, которые, в свою очередь, располагаются на пластиковой трубе, на определенном расстоянии друг от друга. Труба крепится к тяжелому основанию(рисунок 2).

Рисунок 2 – Тяжелое основание для пластиковой трубы с датчиками.

К хомутам подводятся провода, соединяющие датчики и схему (можно использовать витую пару). Вся эта конструкция устанавливается в емкость с водой. Замыкать датчики между собой будет вода. Расстояния между датчиками выбираются произвольные. В моем случае, емкость была условно разделена на три части, и по уровню каждой части на трубе был установлен хомут. Если для емкости был предусмотрен перелив, то последний хомут должен быть установлен на уровне перелива.


Конструкция датчиков может быть и иной. Главное соблюдать требуемую последовательность.

Как работает.

Работает такая конструкция очень просто. На самом низу трубы (или на основании) крепится общий провод для работы с датчиками. Относительно этого провода будут происходить все измерения. Вода, наполняя емкость, постепенно начнет замыкать общий провод с датчиками. Первый на очереди — датчик 1. Когда общий провод с ним замкнется тогда включиться первый светодиод. Далее к первому датчику добавится второй датчик, при этом включится второй светодиод, а первый выключиться и т.д. Когда произойдет замыкание с четвертым датчиком — включиться четвертый светодиод. Который, в свою очередь, будет мерцать с частотой 2 Гц.

Подобный алгоритм работы можно легко организовать на обычной логике. Так поначалу и делалось, однако, из-за частых ошибочных состояний, было принято решение заменить схему на современное микроконтроллерное устройство. Рабочая программа для PIC-микроконтроллера была написана на языке ассемблер и отлажена в программе MPLab 8.8

Моделирование.

Работа устройства моделировалась в программе протеус см. рисунок 3. Модель сделана для микроконтроллера PIC16F84A! Внимательно выбираем прошивку.

Рисунок 3 – Модель уровня воды на микроконтроллере.

О печатной плате.

Печатная плата получилась размерами 55х50мм (рисунки 4-5 !!! не в масштабе).



Рисунок 4 – Печатная плата индикатора уровня воды в баке на микроконтроллере PIC16F628A (низ) не в масштабе.

Рисунок 5 – Печатная плата индикатора уровня воды в баке на микроконтроллере PIC16F628A (верх) не в масштабе.

Внешний вид индикатора показан на рисунке 6.

Рисунок 6 – Готовая плата индикатора уровня воды.

Корпус.

Схему готового индикатора разместил в корпусе небольшого приемника рисунки 7-8.



Рисунок 6 – Готовая плата индикатора уровня воды на микроконтроллере PIC16F628A в корпусе приемника.

Рисунок 7 – Кнопка включения питания.

Отверстия для динамика заклеил клеем, а на лицевую сторону приклеил глянцевую фотография рисунки 8-9

Индикатор, собранный из заведомо рабочих деталей, начинает работать сразу и в наладке не нуждается.

Рисунок 8 – Заклееные отверстия.

Рисунок 9 – Лицевая панель индикатора уровня воды на микроконтроллере PIC16F628A.


Видео работы устройства.

pichobby.lg.ua

Схема уровень воды своими руками

Первым делом, после ознакомления с фотографией: схема уровня воды в баке своими руками, является заготовка деталей и материалов. Нам потребуется микросхема ULN2004, её можно купить в радиомагазине или в Китае, на Алиэкспресс . Цена за одну микросхему в радиомагазине и за десять на Алиэкспресс примерно равны, так что выбирайте подходящее, единственное неудобство - это то, что посылку из Китая нужно ждать около месяца или больше.

Детали собраны

Светодиоды можно использовать сигнальные любого цвета, какой Вам понравится, диаметром 4 – 5 миллиметров. Цоколёвка светодиодов и микросхемы есть на схеме.
Конденсатор C1 нужен полярный 100 микрофарад 25 вольт, или больших параметров (какой есть).
Резисторы (сопротивления) мощностью от 0.125 до 0.5 ватта или больше (чем больше мощность, тем больше габариты и будет не очень красиво, это относится и к конденсатору).
Резисторы R1 – R7 сопротивлением 47 ком (немного меньше или немного больше – не критично).
Резисторы R 8 – R14 сопротивлением 1 ком (примерно). Чем больше сопротивление, тем слабее будет светиться светодиод и наоборот, но слишком маленькое сопротивление может привести к выходу светодиода из строя.
Печатную плату можно не изготавливать, а применить макетную, как у меня, стоит копейки, особенно в Китае. Соотношение цены в радиомагазине и Китае 5 – 10 к одному.
Кабель к датчикам уровня воды можно применить любой восьми жильный сигнальный (в магазинах, где продают устройства сигнализации, есть всякий). Концы кабеля, помещаемые в воду как датчик уровня, освободить от изоляции на длину 5 – 10 миллиметров и зачищенные концы залудить (покрыть оловом при помощи паяльника) для уменьшения окисляющего действия воды на металл. Плюсовой электрод нужно изготовить из нержавейки (например, чайная ложка), а место соединения её к проводу защитить от воды при помощи клеевого пистолета. Если место контакта не защитить, то через короткое время электрохимическая реакция сожрёт. Шаг между датчиками нужно рассчитать исходя из глубины ёмкости. Если нужно измерять большую глубину воды и хочется разместить датчики чаще, то можно изготовить ещё одну или даже несколько подобных схем контроля уровня воды и разместить их последовательно в ёмкости. Конструкция датчиков может быть самой разнообразной и зависит только от Вашей фантазии, главное соблюдать общие принципы.

Клеммные колодки любые, но важно удобство подключения и использования.
Для микросхемы лучше всего применить разъём для беспаечного размещения. Это гнездо можно паять и не бояться, что перегреешь ножки, или подействует статическое электричество. Если микросхема вышла из строя, по каким – то причинам, то заменить её можно за пару секунд. Стоит такая панелька копейки.
Олово (проволока с канифолью) лучше использовать Российское. Китайское олово хорошее не встречал.
После сбора деталей нужно подумать о размещении деталей на плате. Я сделал, так как на фото, а Вы вольны расположить их по своему вкусу. Главное, чтобы расположение деталей отвечало задачам уменьшения количества перемычек и пайки, а главное удобству эксплуатации. Аккуратность в сборке схемы не последнее дело, не нужно торопиться как я и будет всё красиво. Итак, приступим.

Питание указателя уровня воды в баке можно сделать от любого аккумулятора 12 вольт (даже старого, лишь бы он давал не меньше чем 10 вольт), например, от компьютерного блока бесперебойного питания, да и продают сейчас их много всяких маломощных. Или можно на даче использовать обычные батарейки. Если их соединить последовательно 8 штук по 1.5 вольта = 12 вольт. Вполне достаточно. А если батарейки подключить через кнопку, чтобы схема работала только при нажатии на кнопку, то такого питания хватит на много лет.
Осталось только испытать указатель уровня воды в баке и тут главное не перепутать плюс с минусом. Провода питания лучше подключать разного цвета. Плюс всегда обозначается красным цветом, а минус чёрным, если к этому привыкнуть, то уже не перепутаете.

sdelaysam-svoimirukami.ru

Метод измерения

Уровнемеров в продаже великое множество. Но мне как-то даже и мысль в голову не пришла искать что-то готовое, не спортивно это, не по «нашему». Вот и решил сделать прибор сам. Более того, мне недостаточно было знать, верхний и нижний уровень, я хотел знать, сколько точно литров в баке. Конечно, для данной цели – контроль уровня воды в баке, эта информация избыточна, но так солидней. Поскольку моя нынешняя работа связана с ультразвуковой дефектоскопией, то выбор способа измерения был нетрудным. В продаже есть много предложений ультразвуковых датчиков расстояния. Есть дорогие с цифровым интерфейсом и на большое расстояние, есть дешевые с более простым интерфейсом, на меньшее расстояние. Выбор пал на самый простой и дешевый датчик HC-SR04 .

Датчик

Датчик представляет из себя печатную плату. На которой установлены передающий и приёмные пьезоэлементы. На плате собрана схема формирования зондирующей пачки импульсов с частотой 40кГц, которая подается на драйвер, выполненный на преобразователе уровня TTL в RS232.
Да-да, вот такое необычное применение. Не совсем правильное, но дешевое и работоспособное решение позволяющее обойтись без дополнительного высокого напряжения для раскачки излучающего пьезоэелемента. Также плата содержит усилитель для приемного пьезоэлемента и небольшой управляющий микроконтроллер. У датчика четыре ножки управления: питание +5 Вольт (VCC), вход запуска (Trig), выход (Echo), и земля (GND).

На вход Trig мы подаем импульс 10 мкС, на выходе Echo, при получении датчиком эхо-сигнала (отражения), будет сформирован импульс длительностью пропорциональной времени прохождения звука от датчика до отражателя и обратно. Это время мы делим на два и умножаем на скорость звука в воздухе, среднее значение 340 м/с – получаем расстояние до отражателя (объекта). Ниже диаграмма работы датчика.

Схема

Прототип был собран на макетной плате на микроконтроллере ATmega16 и индикаторе TIC3321. Для дополнительной визуализации есть линейка из десяти светодиодов. Схему прототипа я не привожу, кому будет нужно, в приложенном архиве проект для Протеус.
В конечном варианте я решил поставить светодиодный индикатор вместо TIC3321 – лучше подходил по габаритам к корпусу, четыре против трех разрядов и лучше видно в темноте. Микроконтроллер поставил ATmega32, давно валявшийся у меня на полке.
Две кнопки, для включения наполнения и слива. Эти же кнопки используются при процедуре калибровки, пара транзисторов и реле для включения электромагнитных клапанов или насоса.

Конструктив

Некоторое время назад, мой бывший коллега принес мне три сломанных теплосчетчика мол: сделаешь что-нибудь полезное.

Из полезного - отрезал от теплосчетчиков термодатчики, пока лежат на полке. Понравился конструктив теплосчетчика. Корпус состоит из двух половинок. В нижней половинке, устанавливаемой стационарно, стоят две платы с клемниками для внешних подключений и колодка для соединения с платой в верхней части корпуса. А в верхней части корпуса стоит основная плата счетчика. Вот этот корпус и будем использовать с такой же идеологией.

Для верхней части корпуса была изготовлена печатная плата, в нижнюю часть, плату делать я не стал – собрал все на монтажной плате.

Питается устройство от импульсного блока питания некогда служившим для питания ADSL-роутера. После был списан на пенсию за слабость свою, после ремонта вновь введен в строй, но уже для питания моего устройства.

Передняя панель

Для передней панели была изготовлена наклейка. Приятным бонусом для меня оказалось то, что при печати на прозрачном полимере краски получаются полупрозрачными, это позволило мне отказаться от светофильтра индикатора, я просто сделал прямоугольную заливку красного цвета.

Поскольку минимальный формат печати оказался А3, то наклеек я заказал три варианта в двух экземплярах. Мне больше понравился темный. Ну, или если надоест, то всегда можно заказать новую наклейку.

Монтаж датчика

Датчик, я установил в корпус от елочной гирлянды.

Корпус закрепил на крышке бака.

Просверлил отверстия для установки датчика.

Припаял кабель, электролитический конденсатор и залил все термоклеем.

Описание работы

При подаче питания на схему сначала проходит тестирование семисегментного индикатора и линейки светодиодов. Если прибор не калиброван, то на индикаторе мы увидим, лишь измеренную дистанцию. Линейка светодиодов не работает, так же не доступна функция управления наполнения и слива бака. Больше про работу не калиброванного прибора рассказывать нечего.
Ну, так давайте откалибруем его!

Калибровка

Калибровка состоит из трех этапов:
1. Калибровка нуля. Показываем прибору нижний уровень бака – пустой бак.
2. Калибровка верхнего уровня. Показываем прибору максимальный уровень.
3. Ввод объема бака.

Вход в режим калибровки происходит после теста индикатора при удерживании обеих кнопок. После отпускания кнопок на индикаторе отображается дистанция до дна в миллиметрах, а на линейке светодиодов горит нижний светодиод, символизируя режим калибровки нуля.

Для калибровки параметра на пустом баке нажимаем кнопку «Слить», переходим к следующему этапу – калибровке максимального уровня. На индикаторе так же отображается дистанция в миллиметрах. На линейке горят все светодиоды, символизируя режим калибровки максимального уровня. Дальше возможны варианты – либо мы наполняем бак на сто процентов и после этого жмем кнопку «Наполнить» для установки верхнего уровня. Или можно просто поднести отражатель к датчику на предполагаемый максимальный уровень.

После калибровки уровней переходим к вводу объема бака. Кнопкой «Наполнить» меняем значение разряда, а кнопкой «Слить» меняем разряд и так все четыре разряда по очереди. В калибровке предусмотрены две блокировки. Не критическая – если объем не введен, то устанавливается объем 100, соответственно отображение будет в процентах или в литрах, если бак при этом на сто литров. Вторая - критическая блокировка, поскольку расположение датчика у нас верхнее, то значение верхнего уровня не может быть больше нижнего.
В этом случае прибор калибровку не проходит, а просто отображает дистанцию.

Описание работы и видео в действии

После успешной калибровки прибор отображает объем воды в литрах и уровень в десятках процентов на линейке светодиодов. Также становятся доступными функции наполнения и слива бака. В приборе предусмотрено автоматическое наполнение, которое неактивно после подачи питания. Для активации автоматического наполнения необходимо нажать кнопку «Наполнить» после чего бак наполнится на 90%.

При наполнении бака, уровень на светодиодной линейке будет отображаться как при зарядке аккумулятора в телефоне. Повторное наполнение включиться автоматически при отпускании уровня ниже 10%. Наполнение бака можно запускать в любой момент. Для остановки наполнения нужно нажать кнопку «Слить» во время наполнения. Функция слива предусмотрена для вывода бака из эксплуатации на зимний период. Может быть, и не очень нужная функция, прибор опытный трудно вот так все сразу продумать, пускай пока будет.

Для активации слива нажимаем кнопку «Слить», включается реле включения клапана слива. Реле выключается при достижении нулевого уровня после задержки необходимой для слива воды с трубопровода. Теперь, во время слива, батарейка - бак будет уже не заряжаться, а разряжаться. После активации слива, режим автоматического наполнения выключается, повторно включить его можно нажав на кнопку «Наполнить».

Вот собственно и все, смотрим демо-видео.

Видео прототипа:

Файлы (обновлено 05-04-2014):

Схема, плата, даташиты:  ▼ Shema-plata-datashity.7z ? 06/04/14 ⚖️ 467,61 Kb ⇣ 202
Файл прошивки для варианта на led-индикаторах:  ▼ TankControl-led-hex-05042014.7z ? 06/04/14 ⚖️ 4,28 Kb ⇣ 161

Внимание!
Описанное устройство с усовершенствованиями
доступно в виде нового датагорского кита —
набор для сборки или как готовое изделие !

Заключение

Хотя на дворе уже весна, но дачный сезон еще не наступил, поэтому придется подождать, пока можно будет начать пользоваться баком. Более того, мне еще долго не придется использовать прибор в полном объеме, так как в старой бане нет постоянно подключенного водоснабжения, а новую я еще не достроил.
Но смотреть уровень уже можно!!!

datagor.ru

Поплавковые датчики

Надежные и дешевые устройства для контроля уровня жидкостей с помощью поплавков наиболее распространены. Конструктивно они могут различаться. Рассморим их виды.

Вертикальное расположение

Часто применяется поплавковый датчик уровня воды с вертикальным штоком. Внутри него размещен круглый магнит. Шток представляет собой полую пластиковую трубку с расположенными внутри герконами.«> Поплавок с закрепленным магнитом всегда располагается на поверхности жидкости. Подходя к геркону, поле магнита вызывает срабатывание его контактов, что является сигналом о заполнении емкости до определенного объема. При последовательном соединении контактных пар между собой через резисторы можно постоянно следить за уровнем воды по общему сопротивлению цепи. Стандартный сигнал при этом меняется от 4 до 20 мА. Датчик уровня воды чаще всего размещается в верхней части резервуара на участке длиной до 3 м.

Электрические схемы с герконами могут отличаться при внешнем сходстве механической части. Датчики располагаются на одном, двух и большем количестве уровней, подавая сигнал о том, насколько наполнен бак. Они также могут быть линейными, непрерывно передавая сигнал.

Горизонтальное расположение

Если сверху датчик установить не удается, его крепят горизонтально к стене резервуара. Магнит с поплавком устанавливают на рычаге с шарниром, а геркон помещают в корпусе. При подъеме жидкости в верхнее положение магнит подходит к коннтактам и датчик срабатывает, сигнализируя о достижении предельного положения.«>

При повышенной загрязненности или замерзании жидкости применяется более надежный поплавковый датчик уровня воды на гибком тросе. Он состоит из размещенной на глубине небольшой герметичной емкости с металлическим шариком с герконовым контактом или тумблером внутри. При совпадении уровня воды с положением датчика происходит переворот емкости и срабатывание контакта.

Одними из самых точных и надежных поплавковых датчиков являются магнитострикционные. Они содержат поплавок с магнитом, которые скользят по металлическому стержню. Принцип работы заключается в изменении продолжительности прохождения через стержень ультразвукового импульса. Отсутствие электрических контактов существенно повышает четкость срабатывания при достижении границы раздела сред заданного положения.

Емкостные датчики

Бесконтактное устройство реагирует на разницу между диэлектрической проницаемостью разных материаллов. Датчик уровня воды в резервуаре устанавливается снаружи боковой стенки емкости. В этом месте должна быть вставка из стекла или фторопласта, чтобы через нее можно было различить границу раздела сред. Расстояние, на котором чувствительный элемент улавливает изменение контролируемой среды, составляет 25 мм.

Герметичное исполнение емкостного датчика дает возможность помещать его в контролируемую среду, например, в трубопровод или в крышку резервуара. При этом он может находиться под давлением. Таким образом поддерживается наличие жидкости в закрытом реакторе при осуществлении технологического процесса.

Электродные датчики

Датчик уровня воды с помещенными в жидкость электродами реагирует на изменение электропроводности между ними. Для этого их крепят зажимами и размещают на предельно верхнем и нижнем уровнях. С более длинным в паре устанавливают еще один проводник, но обычно вместо него используют металлический корпус резервуара.«>

Схема датчика уровня воды соединяется с системой управления электродвигателем насоса. При полном баке все электроды погружены в жидкость и между ними протекает ток управления, который является сигналом на отключение двигателя водяного насоса. Вода также не поступает, еслти она не касается оголенного верхнего проводника. Сигналом включения насоса является снижение уровня ниже длинного электрода.

Проблемой всех датчиков является окисление контактов, находящихся в воде. Чтобы уменьшить его влияние, применяют нержавеющую сталь или графитовые стержни.

Датчик уровня воды своими руками

Простота устройства дает возможность изготовить его самостоятельно. Для этого нужен поплавок, рычаг и клапан. Вся конструкция размещается в верхней части бака. Поплавок с рычагом соединяется со штоком, перемещающим поршень.«>

При достижении водой верхнего предельного уровня поплавок перемещает рычаг, который воздействует на поршень и закрывает подачу через нижнюю трубу.

По мере расхода воды поплавок опускается, после чего поршень снова открывает отверстие, через которое можно опять наполнять резервуар.

При правильном выборе и изготовлении датчик уровня воды, своими руками собранный, надежно работает в домашнем хозяйстве.

Заключение

Датчик уровня воды незаменим в частном секторе. С ним не теряется время при контроле за наполнением бака на огороде, уровнем в колодце, скважине или септике. Простое устройство без помощи хозяина вовремя запустит или отключит водяной насос. Только не стоит забывать о его профилактике.

www.syl.ru

Конструкция выходного дня ставшая неожиданно востребованной. Несмотря на обилие подобных схемотехнических решений в данном устройстве микроконтроллер используется намеренно – стоит копейки и есть у каждого радиолюбителя и в каждом магазине радиодеталей. Чего не скажешь о теряющей популярность КМОП “логике” и пр. “рассыпухе”. Дело в том, что авторы подобных схем зачастую просто “выкручиваются из ситуации”, когда нужно во что бы то ни стало сделать индикатор уровня из того, что под рукой. Таким образом, интернет завален схемами подобных устройств на различных “диковинных” микросхемах и специализированных транзисторах, которые имеются только у того, кто их (схемы) придумал. Именно с такой ситуацией в свое время столкнулся я сам, когда не нашел нужные микросхемы для повторения схемы с интересующим меня функционалом. Поэтому пришлось самостоятельно разработать схему на самом “народном” микроконтроллере.

Особенности устройства и краткие характеристики:

Дешевый и доступный микроконтроллер ATtiny13A в DIP-корпусе;
Индикация 3-уровней воды 2-мя светодиодами;
Измерение 3-уровней воды 2-мя электродами;
Звуковое сопровождение индикации “высокого” уровня;
Низкий уровень (внимание) – мигает красный светодиод:
Средний уровень (норма) – горит зеленый светодиод;
Высокий уровень (авария) мигает красный светодиод и сопровождается звуковым сигналом;
Высокая чувствительность устройства позволяет использовать его для контроля даже грязной воды, влажности почвы и пара;
Потребляемый ток не более тока потребляемого примененным светодиодом (т.е. около 20мА);
Напряжение питания 3-30В;
Текущий уровень воды индицируется соответствующим светодиодом (другие не горят);
Защита от переполюсовки.

Схема. Классическая для подключения такого типа МК. Защита от переполюсовки сделана на диоде включенном последовательно с “питанием”. Помимо основного входа “питания” (через стабилизатор напряжения) имеется вход 5V для питания устройства от 5-вольтового блока питания, например “зарядника” от сот. телефона. Пищалка-зуммер 5-вольтовая, включается транзистором, поэтому может быть любой.
Настройка схемы не требуется, устройство начинает работать сразу после прошивки МК.

При необходимости уменьшить (“загрубить”) чувствительность входов нужно уменьшить сопротивление подтягивающих резисторов входов электродов HI и MID. В одном случае, из-за обильного парообразования в расширительном баке, мне пришлось уменьшить сопротивление этих резисторов до 4.7кОм.

Низкий уровень индицируется когда ни один электрод не касается воды. Подразумевается, что рашир. бак металлический и “общий” провод прикручивается непосредственно к баку. Иначе (как на фото ниже) потребуется 3 электрода. Когда электрод MID касается воды индикация переключается в реж. “норма”. Так будет до тех пор пока электрод MID в воде или пока воды не коснется еще и электрод HI – тогда индицируется высокий уровень.

Плата. Односторонняя, разведена в DipTrace 3.0. Все компоненты для поверхностного монтажа. Светодиоды и зуммер припаиваются с торца платы – для удобства вывода индикации из корпуса готового устройства. Платы готовых устройств покрыты тонированным цапон-лаком. Шелкография на верхней стороне платы выполнена ЛУТ, как, впрочем, и вся плата.

В последнее время на Драйве стало "модно" выкладывать свои ваяния без схемы или без прошивки. Модератор сообщества упорно это поощряет. Но, нужно отдать должное, поощряет он и возможность заработать на том, что сделано своими руками. За что - спасибо. Скачать исходники к статье можно здесь. Всем спасибо, нападайте - я готов к критике. Заранее прошу не умничать "диванных экспертов" - я с вами разговаривать не буду. Конструктивная критика "по делу" приветствуется.

www.drive2.ru

Простой, но очень полезный и эффективный указатель уровня воды сделаем сами. А эта статья поможет вам сделать такое нужное и очень полезное дело.

Для начала рассмотрим принципиальную схему этого устройства.

Схема указателя уровня воды.

Схема очень простая, но работает прекрасно. В конце статьи будет видео, где наглядно показана работа этого указателя уровня воды, который мы сделаем вместе с вами.
Для начала работы соберём детали, которые нам потребуются для изготовления устройства.

Детали для изготовления схемы указателя уровня воды.

Нам понадобится:
Микросхема ULN2004 или ей подобная, контактная площадка для установки микросхемы на плату. При наличии такой площадки отсутствует риск перегреть ножки микросхемы паяльником или повредить её внутреннее устройство статическим электричеством. Да и ремонт схемы, при необходимости, сокращается до нескольких секунд. Достаточно вынуть из гнезда горелую микросхему и вставить на её место новую. Сплошная выгода, особенно для не очень опытных радиолюбителей.
Резисторы R1 — R7 — 47Kom.
R8 — R14 — 1Kom.
Светодиоды любого цвета по вашему выбору, диаметром 3 — 5 мм.
Конденсатор 100Mkf 25v.
Клеммные колодки любого типа, а можно и вообще без них, но удобство пользования устройством несколько снизится.
Макетная плата любая, лишь бы все компоненты влезли. Я пользуюсь такими платами, потому что не хочется заморачиваться на изготовление печатной платы, просто так мне удобнее и более привычно.

Компоненты все собрали и приступаем к изготовлению нашего устройства.

Размещаем на плате часть компонентов.
Сразу запаиваем установленные детали, иначе они будут постоянно выскакивать из гнёзд.

Запайка деталей по очереди.
Устанавливаем следующие детали схемы.

Никакой системы нет, работайте как вам удобнее и проще.

Нужно просто постоянно сверяться со схемой, какой бы простой она не была. Запутаться может каждый, а переделывать уже выполненную работу не хочется.

Аккуратность и внимательность, тоже не лишняя штука.

И так по порядку. Устанавливаем деталь, запаиваем и переходим к следующей.

Приближаемся к финишу.

Я установил светодиоды с обратной стороны платы только лишь потому, что этот блок схемы указателя уровня воды будет устанавливаться в щиток управления на лицевую панель. Панель будет просверлена под светодиоды, а снаружи будут нарисованы очертания ёмкости. И на щите будет наглядно отображаться наличие количества воды. Плата закрепится на четыре болтика в существующие отверстия.

Это первый готовый элемент будущей системы очистки воды от железа, бактерий, всяческих вредных примесей и прочей «каки». Система у меня дома работает уже почти три года, показала себя как надёжная, удобная и вообще мне нравится. Качеством воды полностью доволен. Но настало время для модернизации. Появились новые требования (у меня), хочется чтобы было более удобное обслуживание, хочу чтобы вся информация о работе системы была постоянно перед глазами. Первую систему очистки воды я строил без всякого опыта и допустил некоторые ошибки, о которых непременно напишу в следующих статьях, но в целом было всего две незначительных поломки. В одной поломке виноват я, а в другой не качественное комплектующее изделие (опять я виноват, немного сэкономил и купил не то, что следовало).

Всё оборудование будет блочным (так возрастают возможности модернизации и упрощается ремонт), по возможности дешёвым и простым, чтобы многие могли повторить.

Для чего нужны белые проводки расскажу в одной из следующих статей.
Указатель (сигнализатор) уровня воды готов.

Кабель, который идёт к датчикам уровня, можно поставить любой восьмижильный сигнальный, их продают сейчас всякие и в разных магазинах, которые занимаются сигнализацией, электрикой. Сечение жил и длина кабеля не играют особой роли. Есть кабели совсем тоненькие и дешёвые.

Как изготовить датчики уровня, нужно думать и изготавливать по месту применения. Контакты датчика выполнить лучше всего из нержавейки. Плюсовой общий электрод нужен массивный. Я делал из маленькой нержавеющей ложки, электрод работает нормально и совсем не поддаётся электрохимическому растворению. Места где припаиваются провода к электродам, лучше всего заизолировать при содействии любого клеевого пистолета (надёжно сохраняются от растворения).

Впрочем, если запитать схему посредством кнопки без фиксации, то растворения не будет. Нужно посмотреть, сколько воды — нажал на кнопку. Отпустил и питание схемы выключилось. На даче питание схемы можно применить от батареек или пальчиковых аккумуляторов, соединённых последовательно, и с кнопкой (хватит на длительный период) или от старенького аккумулятора. Данное устройство не требовательно к напряжению питания.

Удачи вам.