Монтаж линии датчиков (1-wire). Подключение датчиков температуры к умному дому Loxone C


Подскажите, проблема следующая, к WB5 по 1 wire подключены 4 температурных датчика DS18B20 не герметичные, работают и определяются нормально. Подключаю дополнительно ваш герметичный датчик DS18B20 совместно с 4 мя, герметичный датчик не определяется и данные не отображает. (подключение напрямую к WB5) По отдельности все работает, а вместе никак.

Негерметичные датчики (GND-GND, 1W - DAT, +5V - VCC)
Герметичный (GND- черный, 1W - желтый, +5V - красный), на сайте у вас распиновка не верно указана, только так он работает у меня в ед числе.

Только что взял два таких же датчика с трёхметровым кабелем, дополнительно взял выводной DS18B20 без кабеля, зажал всё в клеммники Wiren Board, и всё вместе заработало.
Собственно, то, что купленный у нас датчик в одиночестве работает, уже скорее всего значило, что дело не в нём, а в конфигурации шины. Основной способ её “починить” - свериться с подробным руководством по организации 1-Wire шины: https://www.maximintegrated.com/en/app-notes/index.mvp/id/148 .
Случай однозначно негарантийный, но можем вместе с вами попробовать понять, в чём тут дело. Для начала четыре вопроса:

  1. Надеюсь, все датчики подключены тремя проводами (то есть каждый подключён отдельным проводом к 5В, никто не питается от шины данных)?
  2. Какие длины кабелей до ваших датчиков?
  3. Какие кабели в них используются? Не может ли быть наводок?
  4. Работает ли конфигурация “наш датчик + один ваш датчик”?

А можете проанализировать, при каких условиях появляется ошибка контрольной суммы? Как часто повторяется? Какие датчики фигурируют? Можете измерить падение напряжения на датчиках? На шине данных относительно земли и питания (это когда все не работает).

Расстояния 30 см - 1 для шины 1-wire вообще незаметны при любой топологии подключения, если все исправно.
Работает ли конфигурация “наш датчик + один ваш датчик”?

в логах wirenboard-ABZ4PE4F user.warn kernel: [ 1484.461380] w1_slave_driver 28-0000073ba74b: Read failed CRC check. Напряжение когда все не работает ровно 5.00

wirenboard-ABZ4PE4F user.info kernel: [ 1242.799168] w1_master_driver w1_bus_master1: w1_search: max_slave_cou
nt 64 reached, will continue next search. Еще вот это

wirenboard-ABZ4PE4F user.info kernel: [ 1242.799168] w1_master_driver w1_bus_master1: w1_search: max_slave_count 64 reached, will continue next search. Еще вот это

Вот это обычно значит, что у вас потенциал на линии 1-Wire ноль. Где-то КЗ.

Напишите пожалуйста идентификаторы всех датчиков, наших и ваших.

Посмотрел вашу ссылку: у вас не собственно сам датчик DS18B20, а модуль (платка), на которой есть ещё резистор (как я понял, это подтяжка 4.7КОм линии DATA к VCC), и ещё конденсатор (скорее всего, между VCC и GND).
Если это так, то четыре таких модуля дают в сумме подтяжку 1.2КОм. При этом подтяжка на линии должна быть одна - в мастере (контроллере Wiren Board), и она там уже есть - 3КОм. Итоговая подтяжка получается 0.8КОм, и наш датчик на трёхметровом кабеле не может её “перетянуть”.

Проверьте, к каким линиям подключены компоненты на плате. Если всё действительно так, как я сказал, то попробуйте их отпаять на одном вашем модуле, и попробуйте подключить этот модуль вместе с нашим датчиком.

Для одного из проектов по автоматизации потребовалось сделать устройство, которое является подчинённым 1-Wire устройством, принимает команды от мастера и выставляет на своих выходах значение аналогового сигнала в диапазоне от 0 до 10В.
Проанализировав линейку стандартных микросхем 1-Wire от Maxim, стало ясно, что нет микросхемы, которая позволит реализовать подобный функционал.
Потому было принято решение реализовывать 1-Wire slave на микроконтроллере. Надеюсь, данный материал будет интересен и полезен людям, которые делают «умный дом» своими руками, т.к. 1-Wire достаточно популярная шина в подобных проектах. В качестве камня был выбран МК Cortex M0+ ATSAMD20G16 от Atmel, но о реализации в коде расскажем во второй части. Забегая немного вперед, скажу что в третьей части цикла пойдет речь о реализации собственного семейства устройств для линуксовой библиотеки OWFS (One Wire File System). А сегодня расскажем о некоторых аппаратных решениях, к которым мы пришли в процессе разработки.

Речь в основном пойдет о том как подключить ногу микроконтроллера к 1-Wire шине с минимальным вредом для здоровья. Будем двигаться от простого к сложному.

Преобразование уровней


Самый простой вариант - двунаправленный преобразователь уровня на транзисторе. Для него потребуется где-то брать 5В со стороны шины 1-Wire.
Первый вариант - делать 5В на своем устройстве (помимо 3.3В) для «запитки» шины. Как следствие, усложнение схемотехники.
Второй вариант - прокладывать шину 1-Wire в три провода . Третьим проводом идёт линия питания +5В. Из проблем - лишний провод, просадка напряжения на длинном проводе.

Согласование уровней

Если очень не хочется использовать +5В можно разделить сигнальную линию на 2 составляющих (вход и выход)

Важно учесть, что при такой схеме линии со стороны контроллера получаются инверсными.
В качестве бонуса, разделение линии данных на 2 части позволяет несколько упростить дальнейшую отладку софта, т.к. позволяет видеть осциллографом отдельно выходящие от нас сигналы (линия 1-Wire Tx ), не смешанные с сигналами других устройств на шине.

Повышаем устойчивость

Для того что бы сделать прием данных по 1-Wire более уверенным необходимо сделать крутые фронты импульсов со стороны микроконтроллера. Для этого воспользуемся компаратором от TI LMV331 , который обеспечит более точный и резкий переход между логическими «0» и «1», а так же гистерезис 160mV. Еще заменим выходной би-полярный транзистор BC547 на полевой IRLML6346 и поставим защитный TVS диод ESD5Z6 на 6В.


Для данной схемы компаратор потребуется запитать от 5В. Где их можно взять было сказано выше.

Развязанный 1-Wire

Для обеспечения электрической развязки шины 1-Wire и внутренней электроники устройства воспользуемся изолированным транслятором уровней ADuM1201 , и изолированным DC/DC конвертор TES 1-1211 . Как и в предыдущем случае, линию данных 1-Wire делим на 2 линии: 1W_Rx и 1W_Tx.


DC/DC конвертор с 12 на 5 вольт взят для примера, можно использовать аналогичный 3.3/5.

Остальная схемотехника

Для полноты картины покажем схемотехнику подключения микроконтроллера, а так же выходных аналоговых каналов 0-10В.




Т.к. протокол 1-Wire требует наличие уникального адреса для каждого устройства на шине, на плату ставим 1-Wire UID от Maxim DS2411 . Будучи для неё мастером шины будем считывать её UID и использовать его в качестве собственного адреса. У DS2411 код семейства 0x01 (family code - старший байт UID’а). Мы же на сайте OWFS выберем незанятый код семейства для нашего нового устройства и будем подменять первый байт.

Как уже было сказано, во второй части приступим к программной реализации протокола 1-Wire Slave.

Цифровые датчики температуры и относительной влажности и автономные регистраторы температуры и относительной влажности, а так же все модули расширения, подключаются к линии датчиков 1-wire прибора ГИГРОТЕРМОН параллельно, используя 3 провода: «DQ» (шина данных 1-wire), «GND» (общий) и «+5В» (питание). Однако для надежности необходимо использовать все контакты разъема 6P6C (RJ12). Внимание: важно, чтобы контакты «DQ» (1-wire) и «GND 1-wire» (контакты 3 и 4 на рис. ниже) были одной витой парой, например, зеленый и бело-зеленый. Внешний вид разъема 6Р6С, а также назначение контактов и рекомендуемая расцветка проводов см. рис. ниже.

Для надежности связи прибора с датчиками и достижения максимальной протяженности линии датчиков 1-wire цифровые датчики и модули расширения рекомендуется подключать по схеме «гирлянда»: кабель от прибора ГИГРОТЕРМОН должен подходить к первому датчику (или модулю расширения), от первого ко второму и т.п., чтобы все датчики и модули были на одной линии, без ответвлений. См. рис. ниже.

Рекомендуемая максимальная протяженность линии 1-wire при использовании кабеля «витая пара» категории 5Е – не более 100 метров. Если фактическая длина кабеля более 100 метров, рекомендуется разбить линию на две малые с использованием дополнительного прибора ГИГРОТЕРМОН. Для удобства подключения и монтажа, все модули расширения и цифровые датчики и адаптеры для цифровых автономных регистраторов имеют не менее 2-х разъемов 6P6C (RJ12) – вход/выход 1-wire.

Внешний вид платы цифрового датчика 1w-2/3

Внешний вид модуля расширения дискретных датчиков «1wio2»

Внешний вид платы модуля расширения унифицированных (аналоговых) сигналов «HIHx2»

Таблица 1. Результаты испытаний линии связи регистраторов температуры (и относительной влажности) на максимальную протяженность,
при которой наблюдается устойчивая связь регистраторов с прибором Гигротермон

Длина кабеля, м. Тип регистраторов температуры и влажности / наличие связи (да / нет)
Регистраторы температуры
DS1921G-F5, DS1921Z-F5
Регистраторы температуры и относительной влажности DS1923-F5, DS1922L-F5
350 да (с подтяжкой 5В)
нет (без подтяжки 5В)
300 да (с подтяжкой 5В)
нет (без подтяжки 5В)
250 да (с подтяжкой 5В) нет (с подтяжкой 5В)
нет (без подтяжки 5В) нет (без подтяжки 5В)
200 да (с подтяжкой 5В) да (с подтяжкой 5В)
нет (без подтяжки 5В) нет (без подтяжки 5В)
150 да (с подтяжкой 5В) да (с подтяжкой 5В)
да да (без подтяжки 5В)
100 да (с подтяжкой 5В) да (с подтяжкой 5В)
да да (без подтяжки 5В)
  • "да" - наличие устойчивой связи датчика с прибором Гигротермон
  • "нет" - отсутствие устойчивой связи датчика с прибором Гигротермон
  • "с подтяжкой" - использование схемы пассивной подтяжки сигнала +5В на конце линии. http://gigrotermon.ru/imag/shop.product_details/8/flypage.tpl/198.html

Таблица 2. Результаты испытаний линии связи комбинированных датчиков** 2RJ11-HIH5031E-DS18S20
на максимальную протяженность, при которой наблюдается устойчивая связь с прибором Гигротермон

Длина кабеля, м. Измеряемый параметр / наличие связи (да / нет)
Температура Относительная влажность
100 да (без подтяжки) да (без подтяжки)
125 да (с подтяжкой) да (с подтяжкой)
150 да (с подтяжкой) да (с подтяжкой)
175 да (с подтяжкой) да (с подтяжкой)
200 да (с подтяжкой) нет (с подтяжкой)
300 да (с подтяжкой) нет (с подтяжкой)

**) В испытаниях использовано 10 комплектов комбинированных (температура + влажность) датчиков 2RJ11-HIH5031E-DS18S20, подключенных одновременно в конце линии.

Данные получены в "идеальных" лабораторных условиях с использованием кабеля NIKOLAN NKL 4200A-GY F/UTP 4 пары кат.5e, 24 AWG. Поэтому, в реальных производственных условиях значения длин могут отличаться в меньшую сторону из-за присутствия электромагнитных помех или использования другого типа используемого кабеля.

Теперь же перейдем к самой простой платформе для создания умного дома - 1-WIRE. Платформа разрабатывалась с конца 80-х до конца 90-х годов компанией Dallas Semiconductor (с 2001 года - Maxim Integrated) и предназначалась для задач контактной идентификации объектов, в т.ч. с функциями измерения и регистрации температуры, влажности, параметров автономного электропитания, а также с функциями съема, хранения и переноса данных. Пожалуй, самым известным примером применения этой платформы является iButton - ключ-таблетка для домофона:

В данном случае компонент 1-Wire размещается внутри небольшой «таблетки» из нержавеющей стали и подключается к системам шины 1-Wire посредством розеток с контактами, которые касаются «крышки» и «дна» таблетки. Однако в дальнейшем, благодаря умению работы с температурой, шину стали использовать при создании умного дома, в первую очередь в системах контроля микроклимата.

Возможность подключения устройств в «горячем » режиме

Протокол 1-Wire предусматривает выдачу устройством, подключаемым к магистрали в «горячем» режиме, импульса, оповещающего о появлении на магистрали нового устройства. Иными словами, в сеть можно добавлять новые устройства и они тут же смогут работать.

Уникальный идентификатор устройства

Каждая микросхема 1-Wire содержит уникальный 64-битный код, записываемый на этапе производства. Данный код позволяет индивидуализировать все выпускаемые устройства 1-Wire, для чего производитель гарантирует отсутствие одинаковых кодов (аналогично MAC-адресам сетевых адаптеров). При подключении к магистрали данный код считывается контроллером и используется для идентификации связанного с этим устройством объекта, а также для определения типа устройства. При подключении к магистрали нескольких устройств их коды могут использоваться в качестве их адресов, что позволяет строить технологические сети, получившие название MicroLAN.

Топология

В сети обязательно есть центральный контроллер-мастер, благодаря которому происходит обмен информацией, и адаптер - для согласования контроллера с магистралью. Все остальные устройства-слэйвы (подчиненные) подсоединены к двум проводам, сигнальному и общему:


Так как шина двунаправленная, то при наличии одного контроллера топология (принцип устройства сети) - линия, то есть все устройства нанизаны на один общий кабель. Однако при наличии нескольких взаимосвязанных контроллеров возможно сделать и и ветвящуюся древовидную структуру.

Основные параметры интерфейса 1-Wire следующие:

  • максимальная длина магистрали при использовании витой пары - до 300 м;
  • максимальное количество абонентов на магистрали максимальной длины - до 250;
  • скорость обмена по магистрали максимальной длины - до 16,3 кбит/c.
Принцип работы сети

Обмен данными по магистрали включает три фазы:

  • фазу сброса, включающую импульс сброса от контроллера и ответный импульс подтверждения присутствия от абонента (абонентов);
  • фазу выборки устройства, включающую команду его выборки (по коду, без кода, групповую, поиска) и его код, если командой он предусмотрен;
  • фазу записи/чтения данных, включающую код команды и данные.

Логика всех устройств тактируется отрицательным фронтом сигналов контроллера как в режиме записи, так и в режиме чтения. Биты кодируются длительностью положительного импульса: «1» передается длинным импульсом, а «0» - коротким. В режиме записи все импульсы данных формируются контроллером. В режиме чтения контроллер формирует последовательность единиц, а абонент накладывает на них свою маску нулей:

Иными словами контроллер пускает в сеть последовательность единиц, подключенное к сети устройство в нужном месте меняет 1 на 0 (тем самым обеспечивая себе питание), а на контроллер приходит последовательность нулей и единиц - ответ от слэйва.

Программное обеспечение

Фирма Maxim Integrated (создатель шины 1-WIRE) предоставляет для программирования систем на базе 1-Wire библиотеки API и SDK для широкого ряда платформ - персональных компьютеров с ОС Windows/Linux/MacOS, мобильных устройств, микроконтроллеров, .NET и JAVA. Так же предлагается программный cканер сети OneWire Viewer, позволяющий находить и идентифицировать подключенные к сети устройства и отображать полный перечень их параметров и данных. Из сторонних разработок наибольший интерес представляют следующие:

  • OWFS - One Wire File System. Свободно распространяется по лицензии GPLv2. Предназначен для UNIX-платформ, но при использовании UNIX-эмулятора cygWin может работать и в среде Windows. Имеет веб-интерфейс, что делает возможным удаленный доступ, например, через Интернет. OWFS является самой популярной программной средой для домашней автоматизации на базе платформы 1-Wire.
  • Бенукс - программная среда для различных задач автоматизации. Является коммерческим продуктом. Позволяет взаимодействовать с системой автоматизации по различным каналам, в т.ч. с помощью веб-интерфейса и SMS. Предоставляет возможности автоматизированного управления по сценариям.
  • jHomeNet - свободно распространяемый программный комплекс для сервера 1-Wire на Java.

Информационное взаимодействие с "таблетками"?логгерами iButton и любая их поддержка осуществляется посредством т.н. 1-Wire-интерфейса, разработанного в конце 90?х годов фирмой Dallas Semiconductor, которая с 2001 году является частью компании Maxim Integrated. Этот интерфейс регламентирован разработчиками для применения в четырех основных сферах?приложениях:

  • обслуживание устройств, упакованных в специальные корпуса can F# (ранее MicroCAN), для решения задач идентификации, аутентификации, авторизации, защиты информации, контроля доступа, обеспечения электронных платежей, переноса или преобразования информации (технология iButton),
  • программирование встроенной памяти интегральных компонентов,
  • идентификация элементов оборудования и защита доступа к ресурсам электронной аппаратуры,
  • элементы и системы автоматизации (технология 1-Wire-сетей).

Первое из этих направлений, связанное в том числе с обслуживанием "таблеток"?логгеров iButton, очень широко распространено в мире, как и сами устройства iButton (подробнее см. здесь). Второе с успехом обеспечивает возможность легкой перестройки функций полупроводниковых компонентов, производимых компанией Maxim Integrated и имеющих малое количество внешних выводов. Третье позволяет обеспечить недорогую, но достаточно эффективную идентификацию и надежную защиту самого разнообразного оборудования. Что касается четвертого применения, то реализация локальных распределенных систем на базе 1-Wire-сетей является оптимальным для многих практических задач автоматизации.

Так в чем же особенность этого сетевого стандарта? Ведь в качестве среды для передачи информации по 1-Wire-магистрали чаще всего возможно использование обычного телефонного кабеля и, следовательно, скорость обмена в этом случае невелика. Однако если внимательно проанализировать большинство реальных объектов, требующих автоматизации, то больше чем для 60% из них предельная скорость обслуживания в 16,3 Кбит/с будет более чем удовлетворительной. А другие преимущества 1-Wire-технологии, такие как:

  • простое и оригинальное решение адресуемости абонентов,
  • несложный протокол,
  • простая структура магистрали,
  • малое потребление компонентов,
  • легкое изменение конфигурации сети,
  • значительная протяженность магистрали,
  • исключительная дешевизна всей технологии в целом,
отражают очевидную рациональность и высокую эффективность этого инструмента при решении задач комплексной автоматизации в самых различных областях деятельности.

Основные принципы

1-Wire-net представляет собой информационную сеть, использующую для осуществления цифровой связи 1-Wire-магистраль, состоящую из шины данных (DATA) и возвратной шины (RET). Таким образом, для реализации среды обмена этой сети могут быть применены доступные кабели, содержащие неэкранированную витую пару той или иной категории, и даже обычный телефонный шнур. Такие кабели при их прокладке не требуют наличия какого?либо специального оборудования, а ограничение максимальной протяжённость кабеля 1-Wire-магистрали регламентировано разработчиками на уровне 300 м.

Основой архитектуры 1-Wire-сетей является топология общей шины, когда каждый из абонентов подключён непосредственно к единой магистрали, без каких?либо каскадных соединений или ветвлений. При этом в качестве базовой используется структура сети с одним ведущим или мастером и многочисленными ведомыми абонентами (подробнее см. здесь).

Конфигурация любой 1-Wire-сети может произвольно меняться в процессе её работы, не создавая помех дальнейшей эксплуатации и работоспособности всей системы в целом, если при этих изменениях соблюдаются принципы организации 1-Wire-интерфейса. Эта возможность достигается благодаря присутствию в протоколе 1-Wire-интерфейса специальной команды поиска ведомых устройств (Поиск ПЗУ), которая позволяет быстро определить новых участников информационного обмена. Стандартная скорость отработки такой команды составляет ~75 узлов сети в секунду.

[Каждый из 1-Wire-компонентов имеет уникальный номер (адрес), как и денежные знаки] Благодаря наличию в составе любого устройства, снабженного 1-Wire-интерфейсом, индивидуального адреса, столь же уникального, как и номер денежной купюры (отсутствие совпадения адресов для компонентов, когда?либо выпускаемых Maxim Integrated, гарантируется самой фирмой?производителем), такая сеть имеет практически неограниченное адресное пространство. При этом каждый из 1-Wire-компонентов сразу готов к использованию в составе 1-Wire-сети, без каких?либо дополнительных аппаратно?программных модификаций.

1-Wire-компоненты являются самотактируемыми полупроводниковыми устройствами, в основе обмена информацией между которыми лежит управление длительностью импульсных сигналов, предаваемых по 1-Wire-магистрали, и их измерение. Передача сигналов для 1-Wire-интерфейса - асинхронная и полудуплексная, а вся информация, циркулирующая в сети, воспринимается абонентами либо как команды, либо как данные. Команды сети генерируются мастером и обеспечивают различные варианты поиска и адресации ведомых устройств, определяют активность на 1-Wire-магистрали даже без непосредственной адресации отдельных абонентов, управляют обменом данными в сети и т.д.

[Схема порта мастера 1-Wire-сети] Стандартная скорость работы 1-Wire-сети, изначально нормированная на уровне 16,3 Кбит/с, была выбрана, во?первых, исходя из обеспечения максимальной надёжности передачи данных на большие расстояния, и, во?вторых, с учётом быстродействия наиболее широко распространённых типов универсальных микроконтроллеров, которые в основном должны использоваться при реализации ведущих устройств 1-Wire-сети. Эта скорость обмена может быть снижена до любой возможной, благодаря введению принудительной задержки при передаче по магистрали отдельных битов данных (т.е. растягиванию временных слотов протокола). Однако увеличение скорости обмена в 1-Wire-сети с длиной кабеля магистрали более 1 м выше значения 16,3 Кбит/с приводит к сбоям и ошибкам. Если же протяженность 1-Wire-магистрали не превышает 0,5 м, то скорость обмена может быть значительно увеличена за счёт перехода на специальный режим ускоренной передачи (Overdrive ? до 125 Кбит/с), который допускается для отдельных типов 1-Wire-компонентов. Как правило, такой режим обмена аппаратно реализован для 1-Wire-компонентов, имеющих большой объём встроенной памяти, предназначенных для эксплуатации в составе небольшой, но качественной и не перегруженной другими устройствами 1-Wire-сети. Типичным примером таких компонентов являются микросхемы семейства iButton.

[Вид оболочки пакета OneWireViewer (для боле подробного просмотра щелкните левой кнопкой мыши)] Пожалуй, особенно привлекательным качеством 1-Wire-технологии является исключительная простота настройки, отладки и обслуживания сети практически любой конфигурации, построенной по этому стандарту. Действительно, для начала работы достаточно любого персонального компьютера, недорогого адаптера 1-Wire-интерфейса, а также свободно распространяемого компанией Maxim Integrated тестового программного пакета разработчика OneWireViewer. При наличии этого небольшого числа составляющих организация функционирования 1-Wire-сети практически любой сложности, построенной на базе стандартных 1-Wire-компонентов, реализуется буквально в течении нескольких минут. Возможности, предоставляемые программным пакетом OneWireViewer, позволяют с максимальным комфортом для разработчика идентифицировать любой 1-Wire-компонент, подключённый к 1-Wire-магистрали, ведомой компьютером через адаптер, и проверить в полном объёме правильность его функционирования в составе конфигурируемой 1-Wire-сети. Организация ведущих

Компания Maxim Integrated выпускает несколько видов адаптеров, которые позволяют наделить любой персональный компьютер функциями мастера 1-Wire-сети. К ним относятся адаптеры семейства DS9097U для COM?порта и адаптеры семейства DS9490R для USB?порта. А адаптер типа DS9481R обеспечивает возможность реализации на базе компьютера мастера 1-Wire-сети по спецификации USB 2.0. Эти устройства имеют различные функциональные возможности и конструктивные особенности, что обеспечивает разработчику максимальную свободу выбора при конструировании.

Часто в качестве ведущего 1-Wire-сети выступает не компьютер, а простейший универсальный микроконтроллер. Для организации его сопряжения с 1-Wire-магистралью используются различные программно?аппаратные методы. От простейшего, когда управляющая программа контроллера полностью реализует протокол 1-Wire-интерфейса на одном из своих функциональных двунаправленных выводов, связанных с шиной данных 1-Wire-магистрали, до вариантов, позволяющих высвободить значительные ресурсы контроллера, благодаря использованию специализированных микросхем поддержки взаимодействия с 1-Wire-сетью. Такие микросхемы подключаются к процессору, играющему роль ведущего 1-Wire-сети, через периферийные узлы ввода/вывода, входящие в состав любого универсального микроконтроллера. Например, драйвера семейства DS2482 позволяют управлять 1-Wire-сетью, используя популярный микроконтроллерный интерфейс I2C. Если же мастер 1-Wire-сети должен быть организован на базе типового узла последовательного интерфейса UART микроконтроллера, используется микросхема DS2480В. Эта микросхема, также как микросхемы DS2482 и DS2483, реализует так называемый программируемый механизм активной подтяжки шины данных 1-Wire-магистрали. Использование активной подтяжки гарантирует качественную передачу сигналов в проблемных 1-Wire-сетях с протяжённой магистралью. Также применение активной подтяжки обеспечивает увеличение нагрузочной способности ведущего по количеству обслуживаемых им ведомых абонентов сети. Кстати, адаптеры семейства DS9097U для COM?порта персонального компьютера, также построены именно на базе микросхемы DS2480В. Более того, учитывая особенности современных операционных сред Windows, именно использование микросхемы?драйвера DS2480В, которая по своей сути является управляемым по последовательному интерфейсу цифровым автоматом, способным взять на себя значительную часть функций по реализации сетевого протокола, и обеспечивает полномасштабное обслуживание 1-Wire-сети в реальном масштабе времени.

Ведомые 1-Wire-компоненты

[Кристалл 1-Wire в корпусе MicroCAN] [Так выглядят кристаллы 1-Wire-компонентов] Ведомые 1-Wire-компоненты, содержащие в составе своей схемы узел 1-Wire-интерфейса, выпускаются в двух различных видах. Либо в корпусах MicroCAN, похожих внешне на дисковый металлический аккумулятор, либо в обычных корпусах для монтажа на печатную плату. Футляр MicroCAN полый внутри. Он выполняет функцию защиты содержащегося в нём полупроводникового кристалла микросхемы с узлом 1-Wire-интерфейса, который соединён с внешним миром лишь через две, изолированные друг от друга, половинки металлического корпуса, являющиеся, по существу, контактными площадками для подключения 1-Wire-магистрали. В подобных “таблеточных” корпусах поставляются устройства iButton. Компоненты, которые предназначены для использования в составе 1-Wire-сетей, упаковываются в пластиковые корпуса, используемые для изготовления транзисторов и интегральных схем. Такой подход объясняется тем, что в отличие от устройств iButton компоненты, специально ориентированные для применения в составе 1-Wire-сетей, часто имеют более двух выводов. Помимо выводов, которые требуются для обмена данными по 1-Wire-магистрали, они располагают дополнительными выводами, необходимыми для обеспечения их питания и организации внешних цепей, связывающих такие устройства с объектами автоматизации, например, датчиками или исполнительными устройствами.

К наиболее простым ведомым 1-Wire-компонентам относятся кремниевый серийный номер DS2401 (или модифицированный вариант этого устройства с внешним питанием DS2411) и электронный ключ DS2413P, управляемый по 1-Wire-интерфейсу. Первое из этих устройств часто используется в качестве электронной метки, которая позволяет идентифицировать состояние, например, механического переключателя, коммутирующего шину данных 1-Wire-магистрали. С помощью DS2413P можно дистанционно осуществить простейшие функции переключения внешнего оборудования, изменяя состояние управляемого ключа относительно возвратной шины 1-Wire-магистрали (в настоящее время ключ DS2405 уже не поставляется, поскольку доступна более функционально совершенная замена – DS2413P).

[Термометры с 1-Wire-интерфейсом применяют во многих лабораториях мира] Однако наиболее популярными ведомыми 1-Wire-компонентами, на базе которых реализовано, пожалуй, наибольшее количество практических приложений, безусловно, являются цифровые термометры типа DS18S20 (более известные до 2001 года под обозначением уже давно снятого с производства устройства DS1820, успевшего стать международным брендом). Преимущества этих цифровых термометров с точки зрения организации магистрали, по сравнению с любыми другими интегральными температурными сенсорами, а также неплохие метрологические характеристики и хорошая помехоустойчивость, уже на протяжении двух десятков лет неизменно выводят их на первое место при построении многоточечных систем температурного контроля в диапазоне от –55°С до +125°С. Такие сенсоры позволяют не только осуществлять непосредственный мониторинг температуры в режиме реального времени, но и благодаря наличию встроенной энергонезависимой памяти температурных уставок, могут обеспечивать [Внешний вид популярнейших цифровых термометров семейства DS18#2# от Maxim Integrated] приоритетную оперативную сигнализацию в 1-Wire-сети о факте выхода контролируемого параметра за пределы заданных значений. Также поставляются более совершенные термометры DS18В20, у которых скорость преобразования определяется разрядностью результата, программируемой непосредственно по 1-Wire-интерфейсу. Цифровой код, считываемый с такого термометра, является прямым результатом измеренного значения температуры и не нуждается в дополнительных преобразованиях. Некалиброванная, но в тоже время более дешёвая версия микросхемы DS18B20 под обозначением DS1822 представляется оптимальным решением для разработчиков недорогих многоточечных систем контроля температурных процессов.

До 2010 года компания Maxim Integrated также поставляла целый спектр дискретных микросхем, оснащённых 1-Wire-интерфейсом и реализующих функции отдельных элементов систем автоматизации. Среди них: четырехканальный 16?разрядный АЦП типа DS2450, двухканальный счетчик, совмещённый с буферной памятью, типа DS2423, цифровой потенциометр на 256 градаций типа DS2890, узлы часов реального времени и календаря типа DS2415 и типа DS2417, причём последнее устройство через особый вывод прерывания, обеспечивало управление по времени переключением внешнего оборудования. Однако, как показал десятилетний опыт развития 1-Wire-сетей, для реальных объектов автоматизации, 1-Wire-компоненты, исполняющие отдельные функции, [Микросистемы, содержащие множество функциональных узлов, обеспечивают эффективную поддержку управления питанием многих портативных устройств] менее востребованы по сравнению с устройствами ориентированными на реализацию сразу нескольких функций на одном кристалле. Такие решения получили название 1-Wire-микросистем. Наиболее характерным представителем 1-Wire-микросистемы является микросхема DS2438, которая помимо узла 1-Wire-интерфейса также содержит узлы: цифрового термометра, АЦП с недифференциальным входом, токовый АЦП с дифференциальным входом, программируемый таймер, Flash?память, набор регистров для хранения данных общего назначения. Весь этот арсенал в составе одного 1-Wire-компонента позволяет легко решить, например, задачу по эффективному обслуживанию и сопровождению энергетических элементов питания различных типов. В настоящее время компания Maxim Integrated выпускает более эффективные 1-Wire-микросистемы: DS2760, DS2775, DS2776, DS2777, DS2781 и т.п.

[Сдвоенный ключ DS2406 – самый универсальный и востребованный элемент 1-Wire-сетей] Тем не менее наиболее незаменимыми «кирпичиками», лежащими в основе фундамента 1-Wire-сетей автоматизации, оказались универсальные сдвоенные адресуемые транзисторные ключи типа DS2406P. На базе этих устройств может быть реализована масса применений и, прежде всего, узлы контроля логических состояний (уровней) и схемы обслуживания датчиков «сухого контакта», а также разнообразные ключевые схемы. Таким образом, именно благодаря использованию этих компонентов осуществляется сбор дискретной информации с территориально рассредоточенных датчиков (мониторов дверей, контакторов положения арматуры, любых сенсоров, имеющих выход ДА/НЕТ, как?то: датчики положения, прохода, присутствия, пожарной и охранной сигнализации и т.д.).

[Универсальный двунаправленный порт DS2408 значительно расширяет возможности 1-Wire-сетей] Однако при всём многообразии 1-Wire-компонентов, все?таки наиболее универсальным из них является уникальная микросхема DS2408. Это двунаправленный восьмиразрядный свободно поразрядно программируемый по 1-Wire-магистрали порт ввода/вывода, который позволяет реализовать любой интерфейс между всяким цифровым устройством и 1-Wire-сетью. Использование порта DS2408 позволяет посредством 1-Wire-интерфейса обеспечить простое и гибкое управление вводом/выводом по 8 независимым каналам. Таким образом, на базе этого устройства возможна организация привода светодинамических или жидкокристаллических индикаторов и дисплеев различных видов, осуществление сканирования матричных клавиатур и дискретных датчиков самых различных типов.

Если же эксплуатация 1-Wire-сети или любого иного электронного оборудования, имеющего минимум выводов для реализации обмена данными, требует обеспечения хранения дополнительных объёмов информации, в распоряжении разработчика имеются специальные 1-Wire-компоненты, содержащие только лишь узлы ЕPROM (DS2502/ DS2505/ DS2506) или EЕPROM (DS2431/ DS2432/ DS2433/ DS28E02/ DS28E04/ DS28EC20) различных объёмов. Причём некоторые из этих микросхем имеют специальные узлы механизма шифрования SHA, что позволяет довольно просто обеспечить достаточно высокий уровень криптографической защиты данных, как при их передаче, так и при их хранении. "Таблетки" iButton и 1-Wire-сеть

[На базе устройств iButton также возможно построение 1-Wire-сетей] Целый ряд компонентов семейства iButton в корпусах MicroCAN также может быть использован в составе 1-Wire-сетей в качестве ведомых абонентов, которые решают специфические задачи идентификации, преобразования, накопления, хранения и переноса информации. Например, для реализации процедуры идентификации в системах промышленной автоматизации обычно достаточно применения распространённых носимых электронных меток DS1990A. Более сложное устройство DS1904 позволяет синхронизовать работу узлов часов/календаря микропроцессорных систем. [Устройство ТЕРМОХРОН DS1921 является удобным защищённым автономным логгером] А многоточечный температурный контроль может быть выполнен сетью из нескольких “таблеток” DS1920. Если же использовать “таблетки”-логгеры DS1921/DS1922/DS1923/DS1925 или иначе устройства ТЕРМОХРОН и устройства ГИГРОХРОН, каждое из которых регистрирует или температурные значения, или значения температуры и относительной влажности, измеренные через определённые, заранее заданные, промежутки времени и сохраняет полученную информацию в собственной энергонезависимой памяти, легко построить территориально распределённую систему мониторинга микроклимата любой сложности.

Для решения проблемы переноса данных, накопленных территориально удалённой автономной 1-Wire-системой, к стационарному персональному компьютеру удобны различные типы микросхем памяти из семейства iButton, которые в этом случае играют роль так называемых «транспортных таблеток». К подобным устройствам относятся, прежде всего, устройства энергонезависимой памяти, включающие в состав своей конструкции литиевый элемент питания. Это целый ряд “таблеток”: DS1992L (1 Кбит), DS1993L (4 Кбита), DS1995L (16 Кбит), DS1996L (64 Кбита). Кроме того, для целей транспорта информации могут быть использованы устройства с памятью типа EEPROM модификаций DS1971(32 байта), DS1972(128 байт), DS1973(512 байт) и DS1977(32 Кбайта). «Транспортные таблетки» входящие в состав семейства микросхем iButton EPROM?памяти? DS1982 (1 Кбит), DS1985 (16 Кбит), DS1986 (64 Кбита), ? удобны для заполнения памяти микропроцессорных систем (например, калибровочными константами или начальными установочными значениями).

Для сопряжения устройств в корпусах MicroCAN с шинами 1-Wire-магистрали используют специальные защелки типа DS9100 или DS9098P, или же более простые зажимы типа DS9094. Однако следует учитывать, что при организации 1-Wire-сети на базе “таблеток” iButton с помощью таких приспособлений теряется весь смысл в суперзащитных свойствах их корпуса. Поскольку подобные варианты включения этих “таблеток” в состав абонентов 1-Wire-сети делают соединение в любом случае уязвимым для внешних воздействий (воды, пыли, грязи, инея и т.д.). Поэтому вопрос об организации защищённых от внешних воздействий 1-Wire-сетей, реализованных на базе устройств iButton, требует особого подхода.

Магистраль и топология 1-Wire-сети

Большую роль при построении 1-Wire-сетей играет исполнение 1-Wire-магистрали. Как правило, протяжённые 1-Wire-магистрали имеют структуру, состоящую из трёх основных проводников: DATA ? шина данных, RET (GND) – возвратная шина или земляной провод, EXT_POWER – внешнее питание не только обслуживаемых ведомых абонентов, но и внешних относительно них цепей датчиков и органов управления. В зависимости от технологии прокладки кабеля, способа его сопряжения с ведомыми абонентами, особенностей используемых приёмов монтажа и качества применяемых материалов, в соответствии с нижеследующей Таблицей, различают четыре основных варианта организации 1-Wire-сетей, каждый из которых подразумевает использование особой технологии и аксессуаров при реализации магистрали.

Классификация 1-Wire-сети Протяжённость кабеля магистрали Количество ведомых абонентов Тип используемого кабеля Топология Мастер 1-Wire-сети
Миниатюрная До 5 м До 10 шт Любой Свободная Любой ведущий с пассивной подтяжкой (резистор к питанию)
Короткая До 30 м До 50 шт 4-х проводный телефонный Общая шина с патчами до 0,5 м Адаптеры на базе дискретных компонентов DS9097E, DS1410E
Средняя До 100 м До 100 шт Витая пара 3 категории Строгая общая шина Активная подтяжка (DS2480В, DS2482, DS2483 или специальное схемное решение (MAX6314))
Длинная До 300 м До 250 шт Витая пара 5 категории или IEEE1394 (Firewire) Общая шина без разрыва ствола Link или программная модификация временных слотов 1-Wire-протокола

[Адаптер LinkUSB – наиболее эффективный привод для проблемных 1-Wire-сетей] Если же организация 1-Wire-сети на базе персонального компьютера связана с особыми трудностями (большая протяжённость кабеля магистрали, большое количество ведомых абонентов, плохое качество кабеля или сложная топология, много помех и т.д.), то наиболее оптимально использование интеллектуального адаптера для COM-порта типа Link или его аналога для USB-порта адаптера LinkUSB. Основой любого из таких адаптеров является микропроцессор, оснащённый специализированной программой управления. При этом все устройства, реализованные по технологии Link, полностью эмулируют со стороны последовательного порта работу популярного адаптера DS9097U производства Maxim Integrated. Поэтому всё программное обеспечение, ранее разработанное для поддержки адаптеров DS9097U, также подходит для взаимодействия с любым из адаптеров Link. Но главное, что благодаря собственным интеллектуальным ресурсам адаптеры Link и LinkUSB обеспечивают льготный режим работы ведомых абонентов в составе проблемных 1-Wire-сетей, в условиях сложной помеховой обстановки. Адаптеры Link и LinkUSB многократно улучшают механизм активной подтяжки шины данных 1-Wire-магистрали, что позволяет действительно получать идеальные сигналы обмена при длинах кабеля до 300 метров и числе ведомых абонентов до 250 шт. Кроме того, использование процессором Link?адаптера специальных алгоритмов цифровой фильтрации многократно улучшает устойчивость обслуживаемой им 1-Wire-сети к электромагнитным помехам, шумам и отражениям сигналов.