Что такое Биогеоценоз? — Определение, характеристика, типы и примеры. Саморегуляция в популяциях и экосистемах Саморегуляция обеспечивает в биогеоценозе высокую


Потоки энергии и вещества, связывающие живые организмы друг с другом и со средой их обитания, обеспечивают целостность биогеоценозов. Способность организмов к размножению, наличие в среде пищи и энергии, необходимых для роста, развития и размножения, обусловливают самовоспроизводство биогеоценозов.

Биогеоценозы находятся в состоянии динамического равновесия и проявляют устойчивость, т.е. выдерживают изменения, создаваемые внешними воздействиями. Устойчивость биогеоценоза зависит от многообразия входящих в него видов, тесно связанных между собой различными формами взаимоотношений и эволюционно приспособленных к совместному обитанию. Богатый видовой состав экосистемы обеспечивает разветвленный характер цепей питания и наиболее полный круговорот веществ.

Численность особей в биогеоценозах саморегулируется: возрастание количества хищников приводит к снижению численности жертв. Снижение численности жертв ведет к замедлению размножения хищников, и количество хищника и жертвы возвращается к нормальному исходному соотношению. Та же зависимость проявляется при взаимодействии в звене паразит-хозяин. Если по каким-то причинам один из компонентов пищевых цепей исчезает, виды, питавшиеся в основном исчезнувшим видом, начинают поедать в большом количестве ту пищу, которая раньше была для них второстепенной. Вследствие подобной замены пищи численность видов-потребителей сохраняется.

Свойства биоценозов: саморегуляция и самовоспроизведимость. Принцип Ле-Шателье

Главными свойствами биоценозов, отличающих их от неживых компонентов, является способность продуцировать живое вещество , обладать саморегуляцией и самовоспроизводимостью . В биоценозе отдельные виды, популяции и группы видов могут заменяться соответственно другими без особого ущерба для содружества, а сама система существует за счет уравновешивания сил антагонизма (конкуренции) между видами. Для приобретения этих свойств биосистеме требуется время.

Очень важным свойством биоценозов, как всяких биологических материальных систем , являетсясаморегуляция – способность выдерживать высокие отрицательные нагрузки, способность возвращаться в близкое к исходному состояние после существенных нарушений компонентов, структуры, взаимосвязей. Саморегуляция отражает принцип Ле-Шателье.

Согласно принципу Ле-Шателье, биогеоценоз способен поддерживать свое состояние при резких, неблагоприятных для него, воздействиях внешних факторов или возмущениях. При этом он изменяется таким образом, что снижает эффект возмущения и, таким образом, сохраняет свой status quo.

Пример. Восстановление прежнего типа сообщества после пожара, рубки леса, ветровала, вытаптывания и др. Отмечается высокая активность роста и высокая скорость обменных процессов растений, произрастающих в экстремальных условиях.

Поскольку компоненты ценоза находятся друг с другом в постоянном взаимодействии – связаны друг с другом потоками вещества и энергии, то, говоря о равновесии биогеоценоза, следует иметь в виду не статическое, а динамическое равновесие , в первую очередь равновесие потоков вещества и энергии. В случае если экосистему вывести из состояния динамического равновесия, то она стремится вернуться к нему, используя при этом часть своей внутренней энергии и упорядоченности (упорядоченность – структурная негэнтропия). В случае если резерва внутренней энергии и негэнтропии хватает, то система возвращается в состояние близкое к исходному. В случае если ресурсов вещества и энергии недостаточно, то система (биогеоценоз) либо безвозвратно разрушается, либо переходит в новое состояние динамического равновесия, но на значительно более низком энергетическом уровне. При этом говорят, что экосистема деградировала.

ПРИМЕРОМ деградации является распашка и уничтожение естественной растительности на значительных пространствах в зоне сухой степи. Это воздействие резко снижает запасы влаги в почве, способствует ветровой эрозии почв и экосистема переходит в новое состояние с очень низкой биологической продуктивностью. Степные экосистемы сменяются при этом экосистемами пустынь. Некоторые ученые экологи считают, что именно так на месте саванны в Северной Африке примерно 10 тыс. лет назад образовалась пустыня Сахара.

Один из самых характерных примеров невосстановимого разрушения биогеоценозов – горные полигоны, на которых добыча полезных ископаемых ведется открытым способом. Лесные пойменные биогеоценозы, самые продуктивные и разнообразные по видовому составу, превращаются в лунные ландшафты. Уничтожение теплоизоляционного слоя – растительного покрова – на почвах с многолетней мерзлотой тоже приводит к нарушению динамического равновесия и явлению термокарста.

Для всякого биогеоценоза существуютпределы толерантности (устойчивости). Одни более толерантны, или устойчивы, к воздействию внешних возмущающих факторов, другие менее. Но пока мало известно о пределах толерантности естественных экосистем, и среди ученых имеются разногласия. К примеру, одни говорят, что экосистемы тундры очень неустойчивы и легко уязвимы. Другие, напротив, считают, что самые неустойчивые – экосистемы влажных тропических лесов, а экосистемы тундры не менее устойчивы, чем экосистемы тайги и степи. Толерантность разных экологических систем должна быть изучена как можно скорее, иначе под мощным антропогенным воздействием окажутся как раз наиболее уязвимые экосистемы.

Проблема эта очень сложна тем, что разные экосистемы оказываются в разной степени устойчивыми по отношению к разрушающим факторам.

НАПРИМЕР, колея от трактора на склоне в зоне тайги через 50 лет зарастет и исчезнет, а вот такая же колея в зоне тундры через 50 лет превратится в овраг глубиной до 20-30 м и шириной до 10-20 м.

Автором учения о биогеоценозах был советский ученый В. Н. Сукачев. Под этим термином он подразумевал совокупность живых организмов и факторов , которые расположены на определенной территории. Любой биогеоценоз связан с конкретным участком суши, то есть зависит от растительного сообщества.

Отличие биогеоценоза от агроценоза, биоценоза и экосистемы

Под агроценозом подразумевают искусственную , которая была создана людьми. Она, в отличие от биогеоценоза, не имеет устойчивых связей. Каждое естественное природное сообщество формировалось на протяжении столетий. На его развитие оказывал влияние естественный отбор. Поля и плантации, созданные человеком, подчиняются искусственному отбору. С помощью людей агроценозы получают дополнительную энергию, в то время как биогеоценозы существуют за счет солнечной энергией.

Биоценозом называют совокупность живых организмов, которые населяют определенное пространство. Это может быть не только участок суши, но и водоем. Понятие биогеоценоза гораздо шире, оно включает в себя биоценоз и факторы окружающей среды.

Термин "экосистема" придумал английский ботаник А. Тенсли. Он гораздо шире, чем биогеоценоз и агроценоз. Оба понятия тождественны, если речь идет о , или полях. , в которых невозможно выделить фитоценоз, попадают под определение экосистемы. Каждый биогеоценоз является экосистемой, но не каждая экосистема соответствует биогеоценозу.

Свойства биогеоценоза

Основными свойствами биогеоценоза являются:

  • Целостность . Солнечная энергия и питательные вещества обеспечивают все живые организмы. Неиспользованная пища переносится во внешнюю среду, возвращаясь в круговорот веществ, который происходит непрерывно;
  • Устойчивость . Сложившийся биогеоценоз способен выдержать испытания внешней среды;
  • Саморегуляция . Поддерживание определенного количества живых существ в разных пищевых цепях и сетях;
  • Самовоспроизводство . Способность организмов к размножению и воссозданию популяций;
  • Изменение . Явления, связанные с , влияют на численный состав организмов.

Показатели биогеоценоза

Существует три показателя биогеоценоза. Под видовым разнообразием понимают совокупность всех групп организмов. Если какое-то звено в цепи питания будет нарушено, то пострадает вся система. Плотность популяции напрямую зависит от обеспеченности питанием. На продуктивность биогеоценоза влияет биомасса, живое вещество во всех растительных и животных группах.

Структура биогеоценоза

Видовой состав систем всегда различен. На него влияет поступление и распределение света, состав почвы и климатические условия. Ученые рассматривают несколько структур:

  • Видовая . Она предполагает разнообразие живых организмов, их состав и количество. Сокращение одного вида носит угрозу существованию биогеоценоза.
  • Пространственная . Популяции распространяются по ярусам, в зависимости от своих потребностей. Чаще всего ярусность определяется растениями. Животные способствуют распространению семян и пыльцы.
  • Экологическая . Соотношение живых существ зависит от неорганической среды.
  • Трофическая . Животные в составе одного биогеоценоза служат пищей друг для друга. Сложные пищевые связи образуют пищевые сети.

Поскольку биогеоценозы складываются много сотен лет подряд, ученые периодически вводят новые компоненты в их структуру.

Виды и примеры биогеоценоза

Система представляет собой совокупность растений, животных, микроорганизмов и грибов. Основными компонентами является углерод, кислород, солнечный свет и живые организмы. Солнце обеспечивает необходимый приток энергии, в результате чего происходит круговорот энергии. Она передается от простейших организмов к гетеротрофам.

Примерами биогеоценоза могут послужить лес, пруд, луг, степь или пустыня.

Смена биогеоценозов

Численность видов в условиях одной системы постоянно меняется. Из-за различных факторов на смену одних биогеоценозов приходят другие. Скорость таких изменений может быть разной. изменят экосистему в пределах одного поколения людей. На то, чтобы вместо дюн были образованы леса, уйдут тысячелетия.

Главная роль в развитии биогеоценоза отведена растениям. Процесс саморазвития сообществ называется сукцессией. Самым простым примером смены биогеоценоза может послужить зарастание водоема. Сначала он покрывается тиной, а затем заболачивается. Видовой состав организмов будет существенно отличаться от обитателей водоема.

Устойчивость биогеоценоза

Устойчивостью называют способность непрерывно поддерживать структуру. Больше всего на нее оказывает влияние богатство видового состава. Именно от него зависит круговорот веществ и энергии. Бедные сообщества неустойчивы. К неблагоприятным воздействиям готовы сложные биогеоценозы, характеризующиеся многоярусностью и разнообразными пищевыми отношениями.

Формы взаимоотношений между организмами в биогеоценозах
Все элементы системы тесно связаны друг с другом. Взаимосвязь может быть положительной, отрицательной и нейтральной. Отношения, которые приносят пользу одному или обоим организмам, называют . Они возникают среди животных, птиц, растений, грибов. Ярким примером симбиоза являются пчелы и цветы.

Подразумевает, что только один из видов получит пользу. При два вида, проживающие в одном биогеоценозе, никак друг от друга не зависят. Как правило, животные не контактируют. Конкуренция предполагает, что два вида будут соперничать друг с другом за одни и те же ресурсы.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

САМОРЕГУЛЯЦИЯ В ЭКОСИСТЕМАХ

Общее представление о структуре экологической системы было изложено при характеристике уровней организации жизни (тема 1). Напомним, что полноценная экосистема представляет из себя биогеоценоз - неразрывное единство биоценоза и биотопа. Биоценоз - это сложное сообщество из популяций организмов разных видов - животных, растений, грибов, микроорганизмов, населяющих определенный ареал. При этом популяцией обозначают совокупность особей одного вида, обитающих на данном ареале. Биотопом называют всю совокупность факторов неживой среды, ареала, на котором обитает данный биоценоз.

Итак: биоценоз + биотоп = биогеоценоз (экосистема).

Прежде чем рассматривать механизмы саморегуляции в экосистемах, надо дать характеристику экологических факторов, без чего не возможно понять сути внутрисистемных экологических отношений.

Все условия среды, включая живые и неживые объекты, от которых зависит жизнь отдельного организма или популяции, обозначаются понятием экологические факторы. Для конкретных популяций разные факторы могут быть необходимыми, вредными, безразличными (нейтральными). Экологические факторы делят на абиотические и биотические. Кроме того, в особую группу выделяют антропогенные факторы, порожденные производственной деятельностью человека.

Абиотические факторы - факторы неживой природы, в основном климатические. Сюда относятся свет, тепло ("температура"), влажность, содержание в почве химических элементов, соленость морской воды, уровень радиации и др.

1. Конкуренция - за среду обитания, пищу, свет, половых партнеров и другие условия. Конкуренция может быть внутривидовой - между особями одного вида и межвидовой - между особями разных видов животных или растений, обитающих на одном ареале и требующих одинаковых условий жизни. Конкуренция - обязательная форма отношений у рядом проживающих организмов и составляет одну из форм борьбы за существование.

2. Хищничество - это способ добывания пищи и питания животных (редко - растений), при котором они ловят и поедают других животных. Жертва-хищник - одна из самых распространенных связей внутри сообщества. Внутривидовое хищничество известно как канибализм, распространено у хищных насекомых, пауков, рыб. Среди растений известны водная пузырчатка, болотные росянка, жирянка и другие, питающиеся насекомыми. Жертва захватывается быстрым смыканием листьев или лепестков, переваривается выделяемыми наружу ферментами и кислотами, и потом простые органические вещества всасываются клетками эпидермиса растения. Так пополняется недостаток азота в тканях растения.

4. Симбиоз (от греческого symbiosis - совместная жизнь) - взаимовыгодное сожительство. Примерами симбиоза являются клубеньковые бактерии и бобовые растения (бактерии получают от растения пищу, растение от бактерии - усвоенный азот), грибы и корни растений, термиты и живущие в их кишечнике жгутиковые простейшие, переваривающие клетчатку. Аналогичные отношения имеются у человека с кишечной микрофлорой - разнообразными бактериями, переваривающими определенные компоненты пищи. Нарушение этого симбиоза - дисбактериоз - ведет к расстройствам кишечника, нарушениям пищеварения.

Каждый биологический вид по каждому экологическому фактору имеет свои пределы. Бурый медведь по многим факторам имеет широкие пределы выносливости: переносит большие колебания температуры, влажности, неприхотлив в выборе пищи - всеяден. Арктические рыбы, напротив, имеют очень узкие температурные пределы - от -2 до +2 градусов Цельсия. Среди растений есть светолюбивые, световыносливые и тенелюбивые.

Выяснив природу экологических факторов и характер их воздействия на организмы, можно перейти к рассмотрению сути вопроса - об экологической саморегуляции.

Находясь под действием самых разнообразных экологических факторов, хорошо сбалансированный по составу биоценоз тем не менее саморегулируется и поддерживает внутреннее постоянство - гомеостаз. Состояние гомеостаза выражается в том, что:

организмы нормально размножаются, поэтому:

численность различных популяций в сообществе поддерживается на определенных уровнях, хотя и в колебательном режиме;

биоценоз сохраняет устойчивость и самовоспроизводится даже при колебаниях климатических условий.

Рассмотрим подробнее эти закономерности.

Элементарная саморегуляция осуществляется на уровне отдельных популяций конкретных видов животных, растений, грибов, бактерий. Численность популяции зависит от противодействия двух начал: репродуктивного потенциала популяции и сопротивления среды, между которыми устанавливаются прямая и обратная связи (рис. 24). Поясним это конкретным примером. Когда европейцы завезли в Австралию кроликов, последние, не встретив хищников, быстро расселялись по богатым растительностью территориям и их численность быстро возрастала. Этому способствовал высокий репродуктивный потенциал (плодовитость) кроликов. Но вскоре пищи стало не хватать, возник голод, распространились болезни - численность кроликов пошла на убыль. Сработал фактор сопротивления среды, который и выступил в качестве обратной отрицательной связи. Пока популяция кроликов пребывала в угнетенном состоянии, среда (растительность) восстановилась и процесс пошел на новую волну. Через несколько циклов амплитуда колебаний численности кроликов сократилась, и установилась некоторая средняя плотность популяции. Этот показатель обозначают в экологии как поддерживающая емкость среды.

На самом деле в биоценозе все сложнее, так как он состоит из нескольких взаимодействующих сообществ (зооценозы, фитоценозы, микробоценозы), а сообщества включают разные популяции конкретных видов. Все это взаимодействует на основе многочисленных прямых и обратных связей. Прежде всего важны трофические (пищевые) связи, которые можно определить и как энергетические, поскольку с пищей между организмами переносится энергия. По положению в пищевых отношениях все организмы делятся на три большие группы: продуценты, консументы и редуценты.

Продуценты - первичные производители органических веществ (прежде всего глюкозы и аминокислот) из неорганических веществ неживой природы: Н2О, СО2, NН3. Это автотрофные организмы - растения и некоторые (хемосинтетические) бактерии, использующие энергию солнечного света и хемоэнергию для первичного синтеза глюкозы (см. сегмент 13). Таким образом, внешняя энергия фиксируется для собственных потребностей продуцентов и для дальнейшего использования животными. Значительная часть энергии выводится из оборота, так как сохраняется в ископаемых остатках растительного происхождения: каменном угле (минерализованная древесина), янтарях (застывшие растительные смолы).

Консументы - потребители первичной продукции. Это животные организмы - гетеротрофы, в свою очередь выстроенные в пищевой ряд: травоядные (многие группы моллюсков, насекомых, рыб, птиц, копытные млекопитающие, грызуны), всеядные (есть в большинстве групп) и плотоядные - хищники (также имеются в разных группах беспозвоночных и позвоночных животных). Консументы поэтапно изменяют первичное органическое вещество и извлекают из него энергию. Часть этой энергии тратится на собственную жизнедеятельность, часть в виде тепла уходит во внешнюю среду, и третья часть сохраняется в мертвых остатках. Энергия, заключенная в минерализованных остатках (донные меловые отложения раковин фораминифер, моллюсков и других животных), фактически пропадает для дальнейшего использования, а энергия мягких тканей передается на следующий уровень.

Редуценты - разрушители органического вещества. Сюда относятся многие бактерии, грибы, а из животных - некоторые черви (дождевой и др.), насекомые (термиты, навозники, личинки мух) и другие. Все они гетеротрофы, так как питаются органическим, хотя и мертвым веществом - отмершими растениями, животными и продуктами их выделений. Редуценты доводят распад биомассы до неорганических веществ: Н 2 О, СО 2 , NН 3 и выделяют их во внешнюю среду - почву, воду, воздух. Перехваченная энергия используется редуцентами на их жизнедеятельность и в итоге рассеивается в разных оболочках биосферы - литосфере, гидросфере, атмосфере, а освобожденные неорганические вещества вновь поступают к продуцентам.

Таким образом, все организмы связаны переносом вещества и энергии, через них и через внешнюю среду совершается глобальный круговорот материи на Земле. Основным донором энергии для поддержания этого круговорота выступает Солнце - его световая энергия обеспечивает фотосинтез глюкозы у растений. Пути передачи вещества и энергии через пищевые отношения организмов обозначаются как цепи питания, или пищевые цепи. Эти цепи имеют одностороннюю направленность: от автотрофной биомассы продуцентов - в основном зеленых растений - к гетеротрофным консументам и далее к редуцентам. Значительная часть вещества возвращается в круговорот, но энергия, полученная от солнца, для живых организмов безвозвратно теряется, она либо аккумулируется в новых минералах почвы и донных осадков (каменные угли, мел и другие ископаемые), либо накапливается в виде тепла в оболочках Земли (разогрев атмосферы), либо рассеивается в Космос. Примеры пищевых цепей приведены на рис. 25 и 26.

Цепи питания имеют разную сложность, число звеньев в каждом из трех уровней может быть различным. Допустим, вариант короткой цепи: растения - заяц - волк - черви, бактерии. Длинная цепь: растения - травоядные насекомые (саранча, лесной клоп и др.) - хищные насекомые (жужелица, личинка стрекозы, водяной клоп и др.) - насекомоядные птицы (ласточки, мухоловки и др.) - хищные птицы (орел, коршун и др.) - черви, бактерии. Морская цепь: фитопланктон - мелкие ракообразные, черви - рыбы, питающиеся рачками и червями - хищные рыбы - хищные птицы... В любой цепи возможны многочисленные ответвления и запасные пути. Если какой-то член выпадает, поток вещества идет по другим каналам. Допустим, выпадение личинок стрекоз компенсируется водными клопами - те и другие водные хищники. Если исчезает основной вид пищевой растительности, травоядные животные переходят на второстепенные корма. Если пропадают бабочки, ласточки ловят мух. От травоядных насекомых цепь может пойти вообще по другому пути: лягушка- цапля - лиса и т. д. Особенно большую путаницу в пищевые цепи вносят всеядные животные и, конечно, человек, так как они "встраиваются" в цепи в самых разных звеньях. Так что на самом деле существуют не цепи, а пищевые сети - каждый трофический уровень образован многими видами. Такое положение стабилизирует потоки вещества и энергии через живые сообщества, увеличивает устойчивость биоценозов. Тем не менее общее направление трофического потока неизменное - продуценты - консументы нескольких порядков - редуценты.

Важно учитывать, что каждый трофический уровень передает на другой уровень энергию, заключенную в макромолекулах организмов. Причем эта энергия составляет только часть полученной от предыдущего уровня энергии, так как основная ее доля тратится на жизнедеятельность организмов данного уровня (биосинтезы, движение, транспорт ионов и др.), а так же теряется в виде тепла или построенных минералов. Эти же пропорции можно выразить и через понятие биомассы. Выстраивается так называемая экологическая пирамида - при переходе с низших трофических уровней на более высокие количество внутренней (свободной, заключенной в организмах) энергии и общая биомасса организмов уменьшаются. Подсчитано, что с уровня на уровень переходит около 10 % энергии, а от растительной массы до хищников и от них к редуцентам доходит всего 0,01 % энергии, полученной растениями от солнца. Наглядный пример пищевой пирамиды, построенной по численности обитателей на 1 гектаре земли приведен ниже:

350 тысяч хищных насекомых

700 тысяч растительноядных насекомых

9 миллионов растений.

Пищевая пирамида экосистемы, как отражение ее структуры, сохраняет саморегуляцию и устойчивое развитие. Характерная пропорция разных обитателей биоценоза устанавливается сама по себе, в результате процессов саморегуляции и отражает в целом поддерживающую емкость среды. Приведенные цифры являются средними, но реально во всех популяциях происходит колебание численности особей, причем колебания на низшем уровне неизменно ведут к таким же колебаниям на следующем уровне, а в целом система поддерживает равновесное состояние.

На рис. 27 приведен пример саморегулирующегося биоценоза из 4 трофических уровней. Проследим, как проявляются прямые и обратные связи в динамике численности организмов разных трофических уровней. В зависимости от колебаний погодно-климатических условий (солнечная активность, количество осадков и др.) год от года варьирует урожай кормовых растений - продуцентов. Вслед за ростом зеленой биомассы увеличивается численность травоядных животных - консументов первого порядка (прямая положительная связь), но уже на следующий год это отрицательно скажется на урожае растений, так как большинство из них не успеет дать семян, поскольку будет съедено (обратная отрицательная связь). В свою очередь увеличение числа травоядных создаст условия для хорошего питания и размножения хищников - консументов второго порядка, их численность начнет возрастать (прямая положительная связь). Но следом пойдет на убыль численность травоядных (обратная отрицательная связь). К этому времени в почве успеет разложиться до минеральных веществ травяной опад от первой волны урожая и экскременты травоядных животных и, в меньшей степени, хищников, что создаст благоприятные условия для роста растений. Начнется вторая волна урожая, и цикл повторится. Год от года численность особей разных трофических уровней будет варьировать, но в среднем на протяжении многих лет биоценоз будет сохранять устойчивое состояние. Это и есть гомеостаз.

Как отмечено в начале, биоценоз должен не просто саморегулироваться (судя по приведенной схеме, это не так уж и сложно), но он должен иметь устойчивость к изменениям внешних (абиотических, погодно-климатических) факторов, так сказать - запас прочности на случай неблагоприятных условий среды. Поддержанию высокой устойчивости биоценоза будет способствовать ряд условий:

высокий, но сбалансированный репродуктивный потенциал отдельных популяций - на случай массовой гибели особей;

адаптации (приспособления) отдельных видов к переживанию неблагоприятных условий;

разнообразие сообществ и разветвленные пищевые сети - исчезнувший объект должен заменяться другим, в норме второстепенным.

Таким образом, устойчивость экосистемы, ее саморегуляция, или гомеостаз, проявляется в ее самовоспроизведении, саморегуляции численности и устойчивости к экстремальным факторам среды.

Но устойчивость экосистемы относительна, не беспредельна. Она нарушается в основном в двух случаях:

при сильных изменениях внешней среды - пожары, наводнения, продолжительные засухи, оледенения и другие природные катаклизмы;

при резких изменениях состава сообществ - обычно человеком, например, в результате массового отстрела хищников, заселения новых видов, как было с кроликами в Австралии, вырубки лесов, распахивания степей и т. д.

При этом происходит смена экосистем, их переход в новое качество, что означает новый цикл развития в направлении повышения устойчивости. Идет восстановление биоценоза, но уже с новыми сообществами организмов, с новыми прямыми и обратными связями. Этот процесс смены экосистемы и ее развития к новому состоянию устойчивости происходит поэтапно и очень медленно и обозначается понятием сукцессия (от латинского successio - преемственность, наследование). Особо подчеркнем, что сукцессия представляет уже не саморегуляцию, а ее противоположность - самоорганизацию, развитие, так как при перестройке системы преобладают обратные положительные связи, вместо обратных отрицательных, и изменяются ее количественные и качественные характеристики.

Различают первичную и вторичную сукцессии.

Первичная сукцессия - самоорганизация экосистемы на свободном первичном субстрате: скальная порода, образовавшаяся в ходе геологических разломов земной коры; дно высохшего водоема, например, Аральского или Каспийского морей; пустыня, образовавшаяся после отступления ледника; пустой карьер после выработки полезных ископаемых и т. д. Ниже приведена типичная динамика первичной сукцессии.

Первичный субстрат (скала, песок, ил, щебень или др.);

выветривание, эрозия породы (разрушение под действием ветра, воды, перепада температур);

заселение бактериями, водорослями, микроскопическими грибами, что ведет к фиксации азота и формированию почвы;

поселение мхов и лишайников, увеличение слоя почвы;

поселение трав, формирование лугов и степей; одновременное заселение мелких животных - червей, насекомых, грызунов; вытеснение мхов и лишайников в результате конкуренции;

поселение кустарников, увеличение разнообразия животных (появление птиц, крупных млекопитающих);

поселение деревьев, формирование лесного многоярусного сообщества с разветвленной пищевой сетью.

Это конец развития - сформирована новая устойчивая саморегулирующаяся экосистема, с новым экологическим гомеостазом. Такое законченное, сбалансированное сообщество животных, растений, грибов, микроорганизмов называется климаксным сообществом. Однако конечный состав экосистемы зависит от географической широты, климата. Устойчивой может стать и тундра, саванна, даже пустыня - каждая со своим набором приспособленных к этим условиям организмов. На формирование первичной сукцессии обычно уходит несколько тысяч лет.

Вторичная сукцессия - процесс восстановления экосистемы после повреждений, причиненных внешним воздействием: после бури, пожара, вырубки леса, выпаса скота и т. п. Вторичные сукцессии обычно бывают неполные, упрощенные, обедненные видовым составом сообществ. Роль вторичных сукцессий возрастает с увеличение человеческого населения Земли, особенно с развитием городов, промышленного производства и интенсивного земледелия. Влияние человека на состояние экосистем стало сегодня решающим. Вторичные сукцессии развиваются в течение нескольких лет или десятилетий.

Таким образом, несмотря на саморегуляцию в экологических системах, природа закономерно и необратимо изменяется. Это естественный биогеохимический процесс, идущий независимо от воли и деятельности человека. Когда он протекает без резких отклонений, говорят об устойчивом развитии экосистем и в целом биосферы Земли. В этом определении отражено единство противоположностей: устойчивость, гомеостаз, с одной стороны, и развитие, необратимое изменение - с другой. Нарушение устойчивого развития означает наступление экологического кризиса, чреватого таким изменением биосферы, которое станет несовместимо с жизнью человечества. Основной причиной необратимых изменений биосферы в XX столетии стала хозяйственная деятельность человека. Задача науки экологии - понять движущие силы устойчивого развития, спрогнозировать экологический кризис, а задача общества - воспринять новое экологическое мышление и принять своевременные меры к недопущению кризисных состояний.

Размещено на Allbest.ru

Подобные документы

    презентация , добавлен 25.10.2013

    реферат , добавлен 04.09.2009

    курсовая работа , добавлен 28.03.2012

    Изучение сущности биоценоза - совокупности растений, животных, грибов и микроорганизмов, совместно населяющих участок земной поверхности. Характеристика видового состава, структуры, отношений между организмами. Зооценозы Чернобыльской зоны отчуждения.

    реферат , добавлен 10.11.2010

    реферат , добавлен 08.07.2010

    Почва как среда обитания и основные эдафические факторы, оценка ее роли и значения в жизнедеятельности живых организмов. Распределение животных в почве, отношение растений к ней. Роль микроорганизмов, растений и животных в почвообразовательных процессах.

    курсовая работа , добавлен 04.02.2014

    курсовая работа , добавлен 09.03.2015

    реферат , добавлен 20.07.2010

    курсовая работа , добавлен 19.04.2012

    Основные формы взаимополезного сожительства живых организмов. Особенности кооперации, мутуализма, микориза, симбиоза, комменсализма, нахлебничества, квартиранства. Совместная эволюция видов при симбиозе. Полезность сосуществования различных организмов.

БИОЦЕНОЗ , совокупность организмов – популяций растений, животных, грибов, микроорганизмов, населяющих однородный участок суши или водоёма и характеризующихся определёнными взаимоотношениями (пищевые цепи, симбиоз и т. д.) и приспособленностью к условиям окружающей среды. Каждая группа организмов занимает в биоценозе определённую ступень экологической пирамиды (продуценты, консументы и редуценты ). Примерами биоценозов могут служить совокупность организмов пруда, дубравы, соснового или берёзового леса и т. д. Во многих случаях границы биоценозов размыты и условны: напр., дубрава, сосновый или берёзовый лес постепенно через опушку переходят соответственно в суходольный луг, смешанный сосново-еловый лес, болото. Биоценозы, развиваясь, либо самообновляются (в сосновом лесу вырастает новое поколение сосен), либо стареют и сменяются другими биоценозами (сосна сменяется ельником, пруд заболачивается и т. п.), в результате могут происходить некоторые изменения и в абиотической среде (освещённость, влажность, тепло и т. д.). Наиболее сложно устроены и устойчивы биоценозы с высоким биологическим разнообразием организмов. В океане – это биоценозы коралловых рифов и водорослевых мелководий. На суше – биоценозы тропического леса и лесные биоценозы умеренного климата. Так, дубрава может быть образована более чем 100 видами растений, несколькими тысячами видов животных, сотнями видов грибов и микроорганизмов, в совокупности дающими плотность населения в десятки и сотни тысяч организмов на 1 м&襪. При этом сухая биомасса дубравы составляет 4–5 кг/м&襪, а биологическая продуктивность – 1,5 кг/м&襪 в год. Биоценоз – функциональная часть более сложной системы – биогеоценоза .

Биотические связи в биоценозах

Типы биоценотических отношений. Межвидовые связи организмов, которые населяют один и тот же биотоп, закладывают основу для возникновения и существования биоценозов, определяют основные условия жизни видов в сообществе, возможности добывания пищи и т.д.

Согласно классификации В.Н. Беклемищева (1951 г.), прямые и косвенные межвидовые отношения подразделяются на четыре типа: трофические, топические, форические и фабрические.

Трофические связи возникают в том случае, когда один вид питается другим (живым организмом, его остатками либо продуктами жизнедеятельности). Здесь возможна как прямая трофическая связь (пчела собирает нектар растений), так и косвенная. Последняя, например, имеет место в случае конкуренции двух видов из-за объекта питания, тогда деятельность одного так или иначе отражается на количестве и качестве питания другого.

Топические связи отражают любое (физическое или химическое) изменение условий обитания одного вида вследствие жизнедеятельности другого. При этом особенно большая роль в создании или изменении среды для других организмов принадлежит растениям.

Имея наибольшее значение в биоценозе, трофические и топические связи способствуют удержанию друг возле друга организмов разных видов, объединяя их в достаточно стабильные сообщества разных масштабов и состава.

Форические связи проявляются в том, что один вид участвует в распространении другого. В роли переносчиков выступают в основном животные. Транспортирование животными более мелких особей называется форезией, а перенос ими семян, спор, пыльцы растений - зоохорией.

Фабрические связи относятся к такому типу биоценотических отношений, в которые вступает вид, использующий для своих сооружений (фабрикаций) продукты выделения, либо мертвые остатки, либо даже живых особей другого вида. Типичный пример здесь - это птицы, употребляющие для постройки своих гнезд ветки деревьев, шерсть млекопитающих, траву, листья, пух и перья других видов птиц и т.п.

Весьма сложные биотические связи возникают у общественных насекомых. Так, муравьи-амазонки совершают набеги на чужие муравейники, захватывают там личинки и куколки и выводят из них в своем муравейнике взрослых муравьев - будущих «рабов». Последние выполняют всю работу по уходу за яйцами, потом личинками, куколками, а также по уборке и достройке жилища муравьев - «рабовладельцев».

Коадаптация животных и растений. В процессе сопряженной эволюции у различных видов растений и животных выработались взаимные приспособления друг к другу, т.е. коадаптации; они подчас бывают столь прочными, что раздельно жить в современных условиях указанные виды уже не могут. Именно в этом проявляется единство органического мира.

Коадаптации насекомоопыляемых растений и насекомых-опылителей есть примеры исторически возникших глубоких взаимных приспособлений. В частности, следствием совместной эволюции является привязанность различных групп животных к определенным группам растений и местам их произрастания.

Пищевые взаимоотношения способствовали возникновению специализированных групп животных, которые приспособились жить за счет определенных растений. Так, травоядные животные (копытные, многие грызуны) питаются травянистой растительностью. При этом все степные формы животных адаптировались к жизни на открытых пространствах, к питанию в основном грубыми кормами. Для них

характерны острое зрение, они быстро бегают, им свойственно особое строение пищеварительной системы.

Сезонные изменения запасов и качества растительного корма влияют на поведение, а также на образ жизни животных-фитофагов. Одни из них (например, сайгаки) в связи с исчезновением обычного корма вынуждены порой преодолевать огромные расстояния; другие (суслики, хомяки) на зиму впадают в спячку.

Кроме фитофагии в природе существует и зоофагия, т.е. питание растений животными-жертвами. Только растений-зоофагов насчитывается до 500 видов. Все они имеют различные, весьма хитроумные приспособления для ловли насекомых. Так, некоторые грибы ловят своих жертв с помощью микроскопических петель или клейких утолщений.

Весьма велика роль некоторых животных в опылении растений. Так, В.Н. Радкевич сообщает, что в Европе до 80% видов покрытосеменных растений опыляется насекомыми, 19 В ветром и около 1% другими способами. Исключительное значение как опылители имеют пчелы. Так, рабочая пчела за минуту облетает 12 цветков, а за день - около 7200. Следует подчеркнуть, что связи насекомых-опылителей с цветковыми растениями, которые развились в течение длительной эволюции, постепенно привели к такой тесной взаимозависимости, что раздельное их существование невозможно.

Поражает пример своеобразных взаимоотношений, которые сложились между некоторыми растениями и муравьями, обитающими в тропических лесах Индии, Китая и других странах: растения, образуя специальные нектарники у основания листьев, предоставляют муравьям убежище и пищу, а муравьи защищают их от вредителей.

Велика роль травоядных животных в степных, луговых и тундровых биоценозах. При этом изменения животного населения в любом из ландшафтов приводит к определенным изменениями в растительности. Полное же исключение животных приводит к гибели сообщества.

Истребление копытных животных в степях приводило к перерождению там растительности. Удивительно, но многие злаки, основные степные растения, способны успешно развиваться и расти лишь при Условии, если их объедают, «подстригают» копытные. В противном случае они начинают вырождаться, и в растительном сообществе происходит глубокая перестройка. Именно благодаря такому «мирному сосуществованию» и взаимного влияния сформировался характерный степной биоценоз.

Следовательно, травоядные животные отнюдь не являются разрушителями естественных фитоценозов, а напротив - их создателями. При этом в результате эволюции выработались и функционируют механизмы, которые поддерживают наиболее выгодные количественные соотношения численности травоядных животных и растений.

Саморегуляция в биогеоценозе

Способность к восстановлению и поддержанию внутреннего равновесия биологического круговорота веществ в биогеоценозе после какого-либо природного или антропогенного влиянии (ураган, пожар, наводнение, вырубка леса, земляные работы, вытаптывание).